зеркало из https://github.com/mozilla/TTS.git
Change scheduler AnnealLR and catch audio synthesis error in eval time
This commit is contained in:
Родитель
f5e87a0c70
Коммит
bb526c296f
31
train.py
31
train.py
|
@ -16,7 +16,7 @@ from tensorboardX import SummaryWriter
|
|||
from utils.generic_utils import (
|
||||
synthesis, remove_experiment_folder, create_experiment_folder,
|
||||
save_checkpoint, save_best_model, load_config, lr_decay, count_parameters,
|
||||
check_update, get_commit_hash, sequence_mask)
|
||||
check_update, get_commit_hash, sequence_mask, AnnealLR)
|
||||
from utils.visual import plot_alignment, plot_spectrogram
|
||||
from models.tacotron import Tacotron
|
||||
from layers.losses import L1LossMasked
|
||||
|
@ -312,22 +312,23 @@ def evaluate(model, criterion, criterion_st, data_loader, ap, current_step):
|
|||
# test sentences
|
||||
ap.griffin_lim_iters = 60
|
||||
for idx, test_sentence in enumerate(test_sentences):
|
||||
wav, linear_spec, alignments = synthesis(model, ap, test_sentence,
|
||||
use_cuda, c.text_cleaner)
|
||||
try:
|
||||
wav, linear_spec, alignments = synthesis(model, ap, test_sentence,
|
||||
use_cuda, c.text_cleaner)
|
||||
wav_name = 'TestSentences/{}'.format(idx)
|
||||
tb.add_audio(
|
||||
wav_name, wav, current_step, sample_rate=c.sample_rate)
|
||||
|
||||
align_img = alignments[0].data.cpu().numpy()
|
||||
linear_spec = plot_spectrogram(linear_spec, ap)
|
||||
align_img = plot_alignment(align_img)
|
||||
tb.add_figure('TestSentences/{}_Spectrogram'.format(idx), linear_spec,
|
||||
current_step)
|
||||
tb.add_figure('TestSentences/{}_Alignment'.format(idx), align_img,
|
||||
current_step)
|
||||
except:
|
||||
print(" !! Error as creating Test Sentence -", idx)
|
||||
pass
|
||||
align_img = alignments[0].data.cpu().numpy()
|
||||
linear_spec = plot_spectrogram(linear_spec, ap)
|
||||
align_img = plot_alignment(align_img)
|
||||
tb.add_figure('TestSentences/{}_Spectrogram'.format(idx), linear_spec,
|
||||
current_step)
|
||||
tb.add_figure('TestSentences/{}_Alignment'.format(idx), align_img,
|
||||
current_step)
|
||||
return avg_linear_loss
|
||||
|
||||
|
||||
|
@ -337,14 +338,6 @@ def main(args):
|
|||
audio = importlib.import_module('utils.' + c.audio_processor)
|
||||
AudioProcessor = getattr(audio, 'AudioProcessor')
|
||||
|
||||
print(" > LR scheduler: {} ", c.lr_scheduler)
|
||||
try:
|
||||
scheduler = importlib.import_module('torch.optim.lr_scheduler')
|
||||
scheduler = getattr(scheduler, c.lr_scheduler)
|
||||
except:
|
||||
scheduler = importlib.import_module('utils.generic_utils')
|
||||
scheduler = getattr(scheduler, c.lr_scheduler)
|
||||
|
||||
ap = AudioProcessor(
|
||||
sample_rate=c.sample_rate,
|
||||
num_mels=c.num_mels,
|
||||
|
@ -426,7 +419,7 @@ def main(args):
|
|||
criterion.cuda()
|
||||
criterion_st.cuda()
|
||||
|
||||
scheduler = StepLR(optimizer, step_size=c.decay_step, gamma=c.lr_decay)
|
||||
scheduler = AnnealLR(optimizer, warmup_steps=c.warmup_steps)
|
||||
num_params = count_parameters(model)
|
||||
print(" | > Model has {} parameters".format(num_params), flush=True)
|
||||
|
||||
|
|
|
@ -143,16 +143,16 @@ def lr_decay(init_lr, global_step, warmup_steps):
|
|||
|
||||
|
||||
class AnnealLR(torch.optim.lr_scheduler._LRScheduler):
|
||||
def __init__(self, optimizer, warmup_steps=0.1):
|
||||
def __init__(self, optimizer, warmup_steps=0.1, last_epoch=-1):
|
||||
self.warmup_steps = float(warmup_steps)
|
||||
super(AnnealLR, self).__init__(optimizer, last_epoch)
|
||||
|
||||
def get_lr(self):
|
||||
step = max(self.last_epoch, 1)
|
||||
return [
|
||||
base_lr * self.warmup_steps**0.5 * torch.min([
|
||||
self.last_epoch * self.warmup_steps**-1.5, self.last_epoch**
|
||||
-0.5
|
||||
]) for base_lr in self.base_lrs
|
||||
base_lr * self.warmup_steps**0.5 * min(
|
||||
step * self.warmup_steps**-1.5, step**-0.5)
|
||||
for base_lr in self.base_lrs
|
||||
]
|
||||
|
||||
|
||||
|
|
Загрузка…
Ссылка в новой задаче