зеркало из https://github.com/mozilla/TTS.git
inherit TacotronAbstact with both tacotron and tacotron2
This commit is contained in:
Родитель
b4ac68df7b
Коммит
bd7237d916
|
@ -1,23 +1,21 @@
|
||||||
# coding: utf-8
|
# coding: utf-8
|
||||||
import torch
|
import torch
|
||||||
import copy
|
|
||||||
from torch import nn
|
from torch import nn
|
||||||
from TTS.layers.tacotron import Encoder, Decoder, PostCBHG
|
|
||||||
from TTS.utils.generic_utils import sequence_mask
|
|
||||||
from TTS.layers.gst_layers import GST
|
from TTS.layers.gst_layers import GST
|
||||||
|
from TTS.layers.tacotron import Decoder, Encoder, PostCBHG
|
||||||
|
from TTS.models.tacotron_abstract import TacotronAbstract
|
||||||
|
|
||||||
|
|
||||||
class Tacotron(nn.Module):
|
class Tacotron(TacotronAbstract):
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
num_chars,
|
num_chars,
|
||||||
num_speakers,
|
num_speakers,
|
||||||
r=5,
|
r=5,
|
||||||
postnet_output_dim=1025,
|
postnet_output_dim=1025,
|
||||||
decoder_output_dim=80,
|
decoder_output_dim=80,
|
||||||
memory_size=5,
|
|
||||||
attn_type='original',
|
attn_type='original',
|
||||||
attn_win=False,
|
attn_win=False,
|
||||||
gst=False,
|
|
||||||
attn_norm="sigmoid",
|
attn_norm="sigmoid",
|
||||||
prenet_type="original",
|
prenet_type="original",
|
||||||
prenet_dropout=True,
|
prenet_dropout=True,
|
||||||
|
@ -27,38 +25,41 @@ class Tacotron(nn.Module):
|
||||||
location_attn=True,
|
location_attn=True,
|
||||||
attn_K=5,
|
attn_K=5,
|
||||||
separate_stopnet=True,
|
separate_stopnet=True,
|
||||||
bidirectional_decoder=False):
|
bidirectional_decoder=False,
|
||||||
super(Tacotron, self).__init__()
|
double_decoder_consistency=False,
|
||||||
self.r = r
|
ddc_r=None,
|
||||||
self.decoder_output_dim = decoder_output_dim
|
gst=False,
|
||||||
self.postnet_output_dim = postnet_output_dim
|
memory_size=5):
|
||||||
self.gst = gst
|
super(Tacotron,
|
||||||
self.num_speakers = num_speakers
|
self).__init__(num_chars, num_speakers, r, postnet_output_dim,
|
||||||
self.bidirectional_decoder = bidirectional_decoder
|
decoder_output_dim, attn_type, attn_win,
|
||||||
decoder_dim = 512 if num_speakers > 1 else 256
|
attn_norm, prenet_type, prenet_dropout,
|
||||||
encoder_dim = 512 if num_speakers > 1 else 256
|
forward_attn, trans_agent, forward_attn_mask,
|
||||||
|
location_attn, attn_K, separate_stopnet,
|
||||||
|
bidirectional_decoder, double_decoder_consistency,
|
||||||
|
ddc_r, gst)
|
||||||
|
decoder_in_features = 512 if num_speakers > 1 else 256
|
||||||
|
encoder_in_features = 512 if num_speakers > 1 else 256
|
||||||
|
speaker_embedding_dim = 256
|
||||||
proj_speaker_dim = 80 if num_speakers > 1 else 0
|
proj_speaker_dim = 80 if num_speakers > 1 else 0
|
||||||
# embedding layer
|
# base model layers
|
||||||
self.embedding = nn.Embedding(num_chars, 256, padding_idx=0)
|
self.embedding = nn.Embedding(num_chars, 256, padding_idx=0)
|
||||||
self.embedding.weight.data.normal_(0, 0.3)
|
self.embedding.weight.data.normal_(0, 0.3)
|
||||||
# boilerplate model
|
self.encoder = Encoder(encoder_in_features)
|
||||||
self.encoder = Encoder(encoder_dim)
|
self.decoder = Decoder(decoder_in_features, decoder_output_dim, r, memory_size, attn_type, attn_win,
|
||||||
self.decoder = Decoder(decoder_dim, decoder_output_dim, r, memory_size, attn_type, attn_win,
|
|
||||||
attn_norm, prenet_type, prenet_dropout,
|
attn_norm, prenet_type, prenet_dropout,
|
||||||
forward_attn, trans_agent, forward_attn_mask,
|
forward_attn, trans_agent, forward_attn_mask,
|
||||||
location_attn, attn_K, separate_stopnet,
|
location_attn, attn_K, separate_stopnet,
|
||||||
proj_speaker_dim)
|
proj_speaker_dim)
|
||||||
if self.bidirectional_decoder:
|
|
||||||
self.decoder_backward = copy.deepcopy(self.decoder)
|
|
||||||
self.postnet = PostCBHG(decoder_output_dim)
|
self.postnet = PostCBHG(decoder_output_dim)
|
||||||
self.last_linear = nn.Linear(self.postnet.cbhg.gru_features * 2,
|
self.last_linear = nn.Linear(self.postnet.cbhg.gru_features * 2,
|
||||||
postnet_output_dim)
|
postnet_output_dim)
|
||||||
# speaker embedding layers
|
# speaker embedding layers
|
||||||
if num_speakers > 1:
|
if num_speakers > 1:
|
||||||
self.speaker_embedding = nn.Embedding(num_speakers, 256)
|
self.speaker_embedding = nn.Embedding(num_speakers, speaker_embedding_dim)
|
||||||
self.speaker_embedding.weight.data.normal_(0, 0.3)
|
self.speaker_embedding.weight.data.normal_(0, 0.3)
|
||||||
self.speaker_project_mel = nn.Sequential(
|
self.speaker_project_mel = nn.Sequential(
|
||||||
nn.Linear(256, proj_speaker_dim), nn.Tanh())
|
nn.Linear(speaker_embedding_dim, proj_speaker_dim), nn.Tanh())
|
||||||
self.speaker_embeddings = None
|
self.speaker_embeddings = None
|
||||||
self.speaker_embeddings_projected = None
|
self.speaker_embeddings_projected = None
|
||||||
# global style token layers
|
# global style token layers
|
||||||
|
@ -68,28 +69,15 @@ class Tacotron(nn.Module):
|
||||||
num_heads=4,
|
num_heads=4,
|
||||||
num_style_tokens=10,
|
num_style_tokens=10,
|
||||||
embedding_dim=gst_embedding_dim)
|
embedding_dim=gst_embedding_dim)
|
||||||
|
# backward pass decoder
|
||||||
|
if self.bidirectional_decoder:
|
||||||
|
self._init_backward_decoder()
|
||||||
|
# setup DDC
|
||||||
|
if self.double_decoder_consistency:
|
||||||
|
self._init_coarse_decoder()
|
||||||
|
|
||||||
def _init_states(self):
|
|
||||||
self.speaker_embeddings = None
|
|
||||||
self.speaker_embeddings_projected = None
|
|
||||||
|
|
||||||
def compute_speaker_embedding(self, speaker_ids):
|
def forward(self, characters, text_lengths, mel_specs, mel_lengths=None, speaker_ids=None):
|
||||||
if hasattr(self, "speaker_embedding") and speaker_ids is None:
|
|
||||||
raise RuntimeError(
|
|
||||||
" [!] Model has speaker embedding layer but speaker_id is not provided"
|
|
||||||
)
|
|
||||||
if hasattr(self, "speaker_embedding") and speaker_ids is not None:
|
|
||||||
self.speaker_embeddings = self._compute_speaker_embedding(
|
|
||||||
speaker_ids)
|
|
||||||
self.speaker_embeddings_projected = self.speaker_project_mel(
|
|
||||||
self.speaker_embeddings).squeeze(1)
|
|
||||||
|
|
||||||
def compute_gst(self, inputs, mel_specs):
|
|
||||||
gst_outputs = self.gst_layer(mel_specs)
|
|
||||||
inputs = self._add_speaker_embedding(inputs, gst_outputs)
|
|
||||||
return inputs
|
|
||||||
|
|
||||||
def forward(self, characters, text_lengths, mel_specs, speaker_ids=None):
|
|
||||||
"""
|
"""
|
||||||
Shapes:
|
Shapes:
|
||||||
- characters: B x T_in
|
- characters: B x T_in
|
||||||
|
@ -98,45 +86,59 @@ class Tacotron(nn.Module):
|
||||||
- speaker_ids: B x 1
|
- speaker_ids: B x 1
|
||||||
"""
|
"""
|
||||||
self._init_states()
|
self._init_states()
|
||||||
mask = sequence_mask(text_lengths).to(characters.device)
|
input_mask, output_mask = self.compute_masks(text_lengths, mel_lengths)
|
||||||
# B x T_in x embed_dim
|
# B x T_in x embed_dim
|
||||||
inputs = self.embedding(characters)
|
inputs = self.embedding(characters)
|
||||||
# B x speaker_embed_dim
|
# B x speaker_embed_dim
|
||||||
self.compute_speaker_embedding(speaker_ids)
|
if speaker_ids is not None:
|
||||||
|
self.compute_speaker_embedding(speaker_ids)
|
||||||
if self.num_speakers > 1:
|
if self.num_speakers > 1:
|
||||||
# B x T_in x embed_dim + speaker_embed_dim
|
# B x T_in x embed_dim + speaker_embed_dim
|
||||||
inputs = self._concat_speaker_embedding(inputs,
|
inputs = self._concat_speaker_embedding(inputs,
|
||||||
self.speaker_embeddings)
|
self.speaker_embeddings)
|
||||||
# B x T_in x encoder_dim
|
# B x T_in x encoder_in_features
|
||||||
encoder_outputs = self.encoder(inputs)
|
encoder_outputs = self.encoder(inputs)
|
||||||
|
# sequence masking
|
||||||
|
encoder_outputs = encoder_outputs * input_mask.unsqueeze(2).expand_as(encoder_outputs)
|
||||||
|
# global style token
|
||||||
if self.gst:
|
if self.gst:
|
||||||
# B x gst_dim
|
# B x gst_dim
|
||||||
encoder_outputs = self.compute_gst(encoder_outputs, mel_specs)
|
encoder_outputs = self.compute_gst(encoder_outputs, mel_specs)
|
||||||
if self.num_speakers > 1:
|
if self.num_speakers > 1:
|
||||||
encoder_outputs = self._concat_speaker_embedding(
|
encoder_outputs = self._concat_speaker_embedding(
|
||||||
encoder_outputs, self.speaker_embeddings)
|
encoder_outputs, self.speaker_embeddings)
|
||||||
# decoder_outputs: B x decoder_dim x T_out
|
# decoder_outputs: B x decoder_in_features x T_out
|
||||||
# alignments: B x T_in x encoder_dim
|
# alignments: B x T_in x encoder_in_features
|
||||||
# stop_tokens: B x T_in
|
# stop_tokens: B x T_in
|
||||||
decoder_outputs, alignments, stop_tokens = self.decoder(
|
decoder_outputs, alignments, stop_tokens = self.decoder(
|
||||||
encoder_outputs, mel_specs, mask,
|
encoder_outputs, mel_specs, input_mask,
|
||||||
self.speaker_embeddings_projected)
|
self.speaker_embeddings_projected)
|
||||||
# B x T_out x decoder_dim
|
# sequence masking
|
||||||
|
if output_mask is not None:
|
||||||
|
decoder_outputs = decoder_outputs * output_mask.unsqueeze(1).expand_as(decoder_outputs)
|
||||||
|
# B x T_out x decoder_in_features
|
||||||
postnet_outputs = self.postnet(decoder_outputs)
|
postnet_outputs = self.postnet(decoder_outputs)
|
||||||
|
# sequence masking
|
||||||
|
if output_mask is not None:
|
||||||
|
postnet_outputs = postnet_outputs * output_mask.unsqueeze(2).expand_as(postnet_outputs)
|
||||||
# B x T_out x posnet_dim
|
# B x T_out x posnet_dim
|
||||||
postnet_outputs = self.last_linear(postnet_outputs)
|
postnet_outputs = self.last_linear(postnet_outputs)
|
||||||
# B x T_out x decoder_dim
|
# B x T_out x decoder_in_features
|
||||||
decoder_outputs = decoder_outputs.transpose(1, 2).contiguous()
|
decoder_outputs = decoder_outputs.transpose(1, 2).contiguous()
|
||||||
if self.bidirectional_decoder:
|
if self.bidirectional_decoder:
|
||||||
decoder_outputs_backward, alignments_backward = self._backward_inference(mel_specs, encoder_outputs, mask)
|
decoder_outputs_backward, alignments_backward = self._backward_pass(mel_specs, encoder_outputs, input_mask)
|
||||||
return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward
|
return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward
|
||||||
|
if self.double_decoder_consistency:
|
||||||
|
decoder_outputs_backward, alignments_backward = self._coarse_decoder_pass(mel_specs, encoder_outputs, alignments, input_mask)
|
||||||
|
return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward
|
||||||
return decoder_outputs, postnet_outputs, alignments, stop_tokens
|
return decoder_outputs, postnet_outputs, alignments, stop_tokens
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def inference(self, characters, speaker_ids=None, style_mel=None):
|
def inference(self, characters, speaker_ids=None, style_mel=None):
|
||||||
inputs = self.embedding(characters)
|
inputs = self.embedding(characters)
|
||||||
self._init_states()
|
self._init_states()
|
||||||
self.compute_speaker_embedding(speaker_ids)
|
if speaker_ids is not None:
|
||||||
|
self.compute_speaker_embedding(speaker_ids)
|
||||||
if self.num_speakers > 1:
|
if self.num_speakers > 1:
|
||||||
inputs = self._concat_speaker_embedding(inputs,
|
inputs = self._concat_speaker_embedding(inputs,
|
||||||
self.speaker_embeddings)
|
self.speaker_embeddings)
|
||||||
|
@ -152,28 +154,3 @@ class Tacotron(nn.Module):
|
||||||
postnet_outputs = self.last_linear(postnet_outputs)
|
postnet_outputs = self.last_linear(postnet_outputs)
|
||||||
decoder_outputs = decoder_outputs.transpose(1, 2)
|
decoder_outputs = decoder_outputs.transpose(1, 2)
|
||||||
return decoder_outputs, postnet_outputs, alignments, stop_tokens
|
return decoder_outputs, postnet_outputs, alignments, stop_tokens
|
||||||
|
|
||||||
def _backward_inference(self, mel_specs, encoder_outputs, mask):
|
|
||||||
decoder_outputs_b, alignments_b, _ = self.decoder_backward(
|
|
||||||
encoder_outputs, torch.flip(mel_specs, dims=(1,)), mask,
|
|
||||||
self.speaker_embeddings_projected)
|
|
||||||
decoder_outputs_b = decoder_outputs_b.transpose(1, 2).contiguous()
|
|
||||||
return decoder_outputs_b, alignments_b
|
|
||||||
|
|
||||||
def _compute_speaker_embedding(self, speaker_ids):
|
|
||||||
speaker_embeddings = self.speaker_embedding(speaker_ids)
|
|
||||||
return speaker_embeddings.unsqueeze_(1)
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def _add_speaker_embedding(outputs, speaker_embeddings):
|
|
||||||
speaker_embeddings_ = speaker_embeddings.expand(
|
|
||||||
outputs.size(0), outputs.size(1), -1)
|
|
||||||
outputs = outputs + speaker_embeddings_
|
|
||||||
return outputs
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def _concat_speaker_embedding(outputs, speaker_embeddings):
|
|
||||||
speaker_embeddings_ = speaker_embeddings.expand(
|
|
||||||
outputs.size(0), outputs.size(1), -1)
|
|
||||||
outputs = torch.cat([outputs, speaker_embeddings_], dim=-1)
|
|
||||||
return outputs
|
|
||||||
|
|
|
@ -1,13 +1,15 @@
|
||||||
import copy
|
|
||||||
import torch
|
|
||||||
from math import sqrt
|
from math import sqrt
|
||||||
|
|
||||||
|
import torch
|
||||||
from torch import nn
|
from torch import nn
|
||||||
from TTS.layers.tacotron2 import Encoder, Decoder, Postnet
|
|
||||||
from TTS.utils.generic_utils import sequence_mask
|
from TTS.layers.gst_layers import GST
|
||||||
|
from TTS.layers.tacotron2 import Decoder, Encoder, Postnet
|
||||||
|
from TTS.models.tacotron_abstract import TacotronAbstract
|
||||||
|
|
||||||
|
|
||||||
# TODO: match function arguments with tacotron
|
# TODO: match function arguments with tacotron
|
||||||
class Tacotron2(nn.Module):
|
class Tacotron2(TacotronAbstract):
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
num_chars,
|
num_chars,
|
||||||
num_speakers,
|
num_speakers,
|
||||||
|
@ -25,16 +27,22 @@ class Tacotron2(nn.Module):
|
||||||
location_attn=True,
|
location_attn=True,
|
||||||
attn_K=5,
|
attn_K=5,
|
||||||
separate_stopnet=True,
|
separate_stopnet=True,
|
||||||
bidirectional_decoder=False):
|
bidirectional_decoder=False,
|
||||||
super(Tacotron2, self).__init__()
|
double_decoder_consistency=False,
|
||||||
self.postnet_output_dim = postnet_output_dim
|
ddc_r=None,
|
||||||
self.decoder_output_dim = decoder_output_dim
|
gst=False):
|
||||||
self.r = r
|
super(Tacotron2,
|
||||||
self.bidirectional_decoder = bidirectional_decoder
|
self).__init__(num_chars, num_speakers, r, postnet_output_dim,
|
||||||
decoder_dim = 512 if num_speakers > 1 else 512
|
decoder_output_dim, attn_type, attn_win,
|
||||||
encoder_dim = 512 if num_speakers > 1 else 512
|
attn_norm, prenet_type, prenet_dropout,
|
||||||
|
forward_attn, trans_agent, forward_attn_mask,
|
||||||
|
location_attn, attn_K, separate_stopnet,
|
||||||
|
bidirectional_decoder, double_decoder_consistency,
|
||||||
|
ddc_r, gst)
|
||||||
|
decoder_in_features = 512 if num_speakers > 1 else 512
|
||||||
|
encoder_in_features = 512 if num_speakers > 1 else 512
|
||||||
proj_speaker_dim = 80 if num_speakers > 1 else 0
|
proj_speaker_dim = 80 if num_speakers > 1 else 0
|
||||||
# embedding layer
|
# base layers
|
||||||
self.embedding = nn.Embedding(num_chars, 512, padding_idx=0)
|
self.embedding = nn.Embedding(num_chars, 512, padding_idx=0)
|
||||||
std = sqrt(2.0 / (num_chars + 512))
|
std = sqrt(2.0 / (num_chars + 512))
|
||||||
val = sqrt(3.0) * std # uniform bounds for std
|
val = sqrt(3.0) * std # uniform bounds for std
|
||||||
|
@ -42,20 +50,25 @@ class Tacotron2(nn.Module):
|
||||||
if num_speakers > 1:
|
if num_speakers > 1:
|
||||||
self.speaker_embedding = nn.Embedding(num_speakers, 512)
|
self.speaker_embedding = nn.Embedding(num_speakers, 512)
|
||||||
self.speaker_embedding.weight.data.normal_(0, 0.3)
|
self.speaker_embedding.weight.data.normal_(0, 0.3)
|
||||||
self.speaker_embeddings = None
|
self.encoder = Encoder(encoder_in_features)
|
||||||
self.speaker_embeddings_projected = None
|
self.decoder = Decoder(decoder_in_features, self.decoder_output_dim, r, attn_type, attn_win,
|
||||||
self.encoder = Encoder(encoder_dim)
|
|
||||||
self.decoder = Decoder(decoder_dim, self.decoder_output_dim, r, attn_type, attn_win,
|
|
||||||
attn_norm, prenet_type, prenet_dropout,
|
attn_norm, prenet_type, prenet_dropout,
|
||||||
forward_attn, trans_agent, forward_attn_mask,
|
forward_attn, trans_agent, forward_attn_mask,
|
||||||
location_attn, attn_K, separate_stopnet, proj_speaker_dim)
|
location_attn, attn_K, separate_stopnet, proj_speaker_dim)
|
||||||
if self.bidirectional_decoder:
|
|
||||||
self.decoder_backward = copy.deepcopy(self.decoder)
|
|
||||||
self.postnet = Postnet(self.postnet_output_dim)
|
self.postnet = Postnet(self.postnet_output_dim)
|
||||||
|
# global style token layers
|
||||||
def _init_states(self):
|
if self.gst:
|
||||||
self.speaker_embeddings = None
|
gst_embedding_dim = encoder_in_features
|
||||||
self.speaker_embeddings_projected = None
|
self.gst_layer = GST(num_mel=80,
|
||||||
|
num_heads=4,
|
||||||
|
num_style_tokens=10,
|
||||||
|
embedding_dim=gst_embedding_dim)
|
||||||
|
# backward pass decoder
|
||||||
|
if self.bidirectional_decoder:
|
||||||
|
self._init_backward_decoder()
|
||||||
|
# setup DDC
|
||||||
|
if self.double_decoder_consistency:
|
||||||
|
self._init_coarse_decoder()
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def shape_outputs(mel_outputs, mel_outputs_postnet, alignments):
|
def shape_outputs(mel_outputs, mel_outputs_postnet, alignments):
|
||||||
|
@ -63,31 +76,60 @@ class Tacotron2(nn.Module):
|
||||||
mel_outputs_postnet = mel_outputs_postnet.transpose(1, 2)
|
mel_outputs_postnet = mel_outputs_postnet.transpose(1, 2)
|
||||||
return mel_outputs, mel_outputs_postnet, alignments
|
return mel_outputs, mel_outputs_postnet, alignments
|
||||||
|
|
||||||
def forward(self, text, text_lengths, mel_specs=None, speaker_ids=None):
|
def forward(self, text, text_lengths, mel_specs=None, mel_lengths=None, speaker_ids=None):
|
||||||
self._init_states()
|
self._init_states()
|
||||||
# compute mask for padding
|
# compute mask for padding
|
||||||
mask = sequence_mask(text_lengths).to(text.device)
|
# B x T_in_max (boolean)
|
||||||
|
input_mask, output_mask = self.compute_masks(text_lengths, mel_lengths)
|
||||||
|
# B x D_embed x T_in_max
|
||||||
embedded_inputs = self.embedding(text).transpose(1, 2)
|
embedded_inputs = self.embedding(text).transpose(1, 2)
|
||||||
|
# B x T_in_max x D_en
|
||||||
encoder_outputs = self.encoder(embedded_inputs, text_lengths)
|
encoder_outputs = self.encoder(embedded_inputs, text_lengths)
|
||||||
encoder_outputs = self._add_speaker_embedding(encoder_outputs,
|
# adding speaker embeddding to encoder output
|
||||||
speaker_ids)
|
# TODO: multi-speaker
|
||||||
|
# B x speaker_embed_dim
|
||||||
|
if speaker_ids is not None:
|
||||||
|
self.compute_speaker_embedding(speaker_ids)
|
||||||
|
if self.num_speakers > 1:
|
||||||
|
# B x T_in x embed_dim + speaker_embed_dim
|
||||||
|
encoder_outputs = self._add_speaker_embedding(encoder_outputs,
|
||||||
|
self.speaker_embeddings)
|
||||||
|
encoder_outputs = encoder_outputs * input_mask.unsqueeze(2).expand_as(encoder_outputs)
|
||||||
|
# global style token
|
||||||
|
if self.gst:
|
||||||
|
# B x gst_dim
|
||||||
|
encoder_outputs = self.compute_gst(encoder_outputs, mel_specs)
|
||||||
|
# B x mel_dim x T_out -- B x T_out//r x T_in -- B x T_out//r
|
||||||
decoder_outputs, alignments, stop_tokens = self.decoder(
|
decoder_outputs, alignments, stop_tokens = self.decoder(
|
||||||
encoder_outputs, mel_specs, mask)
|
encoder_outputs, mel_specs, input_mask)
|
||||||
|
# sequence masking
|
||||||
|
if mel_lengths is not None:
|
||||||
|
decoder_outputs = decoder_outputs * output_mask.unsqueeze(1).expand_as(decoder_outputs)
|
||||||
|
# B x mel_dim x T_out
|
||||||
postnet_outputs = self.postnet(decoder_outputs)
|
postnet_outputs = self.postnet(decoder_outputs)
|
||||||
postnet_outputs = decoder_outputs + postnet_outputs
|
# sequence masking
|
||||||
|
if output_mask is not None:
|
||||||
|
postnet_outputs = postnet_outputs * output_mask.unsqueeze(1).expand_as(postnet_outputs)
|
||||||
|
# B x T_out x mel_dim -- B x T_out x mel_dim -- B x T_out//r x T_in
|
||||||
decoder_outputs, postnet_outputs, alignments = self.shape_outputs(
|
decoder_outputs, postnet_outputs, alignments = self.shape_outputs(
|
||||||
decoder_outputs, postnet_outputs, alignments)
|
decoder_outputs, postnet_outputs, alignments)
|
||||||
if self.bidirectional_decoder:
|
if self.bidirectional_decoder:
|
||||||
decoder_outputs_backward, alignments_backward = self._backward_inference(mel_specs, encoder_outputs, mask)
|
decoder_outputs_backward, alignments_backward = self._backward_pass(mel_specs, encoder_outputs, input_mask)
|
||||||
return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward
|
return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward
|
||||||
|
if self.double_decoder_consistency:
|
||||||
|
decoder_outputs_backward, alignments_backward = self._coarse_decoder_pass(mel_specs, encoder_outputs, alignments, input_mask)
|
||||||
|
return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward
|
||||||
return decoder_outputs, postnet_outputs, alignments, stop_tokens
|
return decoder_outputs, postnet_outputs, alignments, stop_tokens
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def inference(self, text, speaker_ids=None):
|
def inference(self, text, speaker_ids=None):
|
||||||
embedded_inputs = self.embedding(text).transpose(1, 2)
|
embedded_inputs = self.embedding(text).transpose(1, 2)
|
||||||
encoder_outputs = self.encoder.inference(embedded_inputs)
|
encoder_outputs = self.encoder.inference(embedded_inputs)
|
||||||
encoder_outputs = self._add_speaker_embedding(encoder_outputs,
|
if speaker_ids is not None:
|
||||||
speaker_ids)
|
self.compute_speaker_embedding(speaker_ids)
|
||||||
|
if self.num_speakers > 1:
|
||||||
|
encoder_outputs = self._add_speaker_embedding(encoder_outputs,
|
||||||
|
self.speaker_embeddings)
|
||||||
mel_outputs, alignments, stop_tokens = self.decoder.inference(
|
mel_outputs, alignments, stop_tokens = self.decoder.inference(
|
||||||
encoder_outputs)
|
encoder_outputs)
|
||||||
mel_outputs_postnet = self.postnet(mel_outputs)
|
mel_outputs_postnet = self.postnet(mel_outputs)
|
||||||
|
@ -112,22 +154,16 @@ class Tacotron2(nn.Module):
|
||||||
mel_outputs, mel_outputs_postnet, alignments)
|
mel_outputs, mel_outputs_postnet, alignments)
|
||||||
return mel_outputs, mel_outputs_postnet, alignments, stop_tokens
|
return mel_outputs, mel_outputs_postnet, alignments, stop_tokens
|
||||||
|
|
||||||
def _backward_inference(self, mel_specs, encoder_outputs, mask):
|
|
||||||
decoder_outputs_b, alignments_b, _ = self.decoder_backward(
|
|
||||||
encoder_outputs, torch.flip(mel_specs, dims=(1,)), mask,
|
|
||||||
self.speaker_embeddings_projected)
|
|
||||||
decoder_outputs_b = decoder_outputs_b.transpose(1, 2)
|
|
||||||
return decoder_outputs_b, alignments_b
|
|
||||||
|
|
||||||
def _add_speaker_embedding(self, encoder_outputs, speaker_ids):
|
def _speaker_embedding_pass(self, encoder_outputs, speaker_ids):
|
||||||
if hasattr(self, "speaker_embedding") and speaker_ids is None:
|
# TODO: multi-speaker
|
||||||
raise RuntimeError(" [!] Model has speaker embedding layer but speaker_id is not provided")
|
# if hasattr(self, "speaker_embedding") and speaker_ids is None:
|
||||||
if hasattr(self, "speaker_embedding") and speaker_ids is not None:
|
# raise RuntimeError(" [!] Model has speaker embedding layer but speaker_id is not provided")
|
||||||
speaker_embeddings = self.speaker_embedding(speaker_ids)
|
# if hasattr(self, "speaker_embedding") and speaker_ids is not None:
|
||||||
|
|
||||||
speaker_embeddings.unsqueeze_(1)
|
# speaker_embeddings = speaker_embeddings.expand(encoder_outputs.size(0),
|
||||||
speaker_embeddings = speaker_embeddings.expand(encoder_outputs.size(0),
|
# encoder_outputs.size(1),
|
||||||
encoder_outputs.size(1),
|
# -1)
|
||||||
-1)
|
# encoder_outputs = encoder_outputs + speaker_embeddings
|
||||||
encoder_outputs = encoder_outputs + speaker_embeddings
|
# return encoder_outputs
|
||||||
return encoder_outputs
|
pass
|
||||||
|
|
Загрузка…
Ссылка в новой задаче