зеркало из https://github.com/mozilla/TTS.git
train.py - replace data[0] with item()
This commit is contained in:
Родитель
10fd4f62b3
Коммит
c8bfe731d6
32
train.py
32
train.py
|
@ -118,19 +118,18 @@ def train(model, criterion, data_loader, optimizer, epoch):
|
|||
epoch_time += step_time
|
||||
|
||||
# update
|
||||
progbar.update(num_iter+1, values=[('total_loss', loss.data[0]),
|
||||
('linear_loss',
|
||||
linear_loss.data[0]),
|
||||
('mel_loss', mel_loss.data[0]),
|
||||
('grad_norm', grad_norm)])
|
||||
avg_linear_loss += linear_loss.data[0]
|
||||
avg_mel_loss += mel_loss.data[0]
|
||||
progbar.update(num_iter+1, values=[('total_loss', loss.item()),
|
||||
('linear_loss', linear_loss.item()),
|
||||
('mel_loss', mel_loss.item()),
|
||||
('grad_norm', grad_norm.item())])
|
||||
avg_linear_loss += linear_loss.item()
|
||||
avg_mel_loss += mel_loss.item()
|
||||
|
||||
# Plot Training Iter Stats
|
||||
tb.add_scalar('TrainIterLoss/TotalLoss', loss.data[0], current_step)
|
||||
tb.add_scalar('TrainIterLoss/LinearLoss', linear_loss.data[0],
|
||||
tb.add_scalar('TrainIterLoss/TotalLoss', loss.item(), current_step)
|
||||
tb.add_scalar('TrainIterLoss/LinearLoss', linear_loss.item(),
|
||||
current_step)
|
||||
tb.add_scalar('TrainIterLoss/MelLoss', mel_loss.data[0], current_step)
|
||||
tb.add_scalar('TrainIterLoss/MelLoss', mel_loss.item(), current_step)
|
||||
tb.add_scalar('Params/LearningRate', optimizer.param_groups[0]['lr'],
|
||||
current_step)
|
||||
tb.add_scalar('Params/GradNorm', grad_norm, current_step)
|
||||
|
@ -139,7 +138,7 @@ def train(model, criterion, data_loader, optimizer, epoch):
|
|||
if current_step % c.save_step == 0:
|
||||
if c.checkpoint:
|
||||
# save model
|
||||
save_checkpoint(model, optimizer, linear_loss.data[0],
|
||||
save_checkpoint(model, optimizer, linear_loss.item(),
|
||||
OUT_PATH, current_step, epoch)
|
||||
|
||||
# Diagnostic visualizations
|
||||
|
@ -225,13 +224,12 @@ def evaluate(model, criterion, data_loader, current_step):
|
|||
epoch_time += step_time
|
||||
|
||||
# update
|
||||
progbar.update(num_iter+1, values=[('total_loss', loss.data[0]),
|
||||
('linear_loss',
|
||||
linear_loss.data[0]),
|
||||
('mel_loss', mel_loss.data[0])])
|
||||
progbar.update(num_iter+1, values=[('total_loss', loss.item()),
|
||||
('linear_loss', linear_loss.item()),
|
||||
('mel_loss', mel_loss.item())])
|
||||
|
||||
avg_linear_loss += linear_loss.data[0]
|
||||
avg_mel_loss += mel_loss.data[0]
|
||||
avg_linear_loss += linear_loss.item()
|
||||
avg_mel_loss += mel_loss.item()
|
||||
|
||||
# Diagnostic visualizations
|
||||
idx = np.random.randint(mel_input.shape[0])
|
||||
|
|
Загрузка…
Ссылка в новой задаче