Small edits on training and audio scripts

This commit is contained in:
Eren Golge 2018-04-17 09:57:15 -07:00
Родитель 89dded8964
Коммит ee32fbc011
2 изменённых файлов: 7 добавлений и 4 удалений

Просмотреть файл

@ -12,7 +12,6 @@ import numpy as np
import torch.nn as nn
from torch import optim
from torch import onnx
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import ReduceLROnPlateau
@ -292,6 +291,9 @@ def evaluate(model, criterion, data_loader, current_step):
def main(args):
print(" > Using dataset: {}".format(c.dataset))
mod = importlib.import_module('datasets.{}'.format(c.dataset))
Dataset = getattr(mod, c.dataset+"Dataset")
# Setup the dataset
train_dataset = LJSpeechDataset(os.path.join(c.data_path, 'metadata_train.csv'),

Просмотреть файл

@ -1,6 +1,7 @@
import os
import librosa
import pickle
import copy
import numpy as np
from scipy import signal
@ -38,15 +39,15 @@ class AudioProcessor(object):
return librosa.filters.mel(self.sample_rate, n_fft, n_mels=self.num_mels)
def _normalize(self, S):
return np.clip((S - self.min_level_db) / -self.min_level_db, 0, 1)
return np.clip((S - self.min_level_db) / -self.min_level_db, 1e-8, 1)
def _denormalize(self, S):
return (np.clip(S, 0, 1) * -self.min_level_db) + self.min_level_db
def _stft_parameters(self, ):
n_fft = (self.num_freq - 1) * 2
hop_length = int(self.frame_shift_ms / 1000 * self.sample_rate)
win_length = int(self.frame_length_ms / 1000 * self.sample_rate)
hop_length = int(self.frame_shift_ms / 1000.0 * self.sample_rate)
win_length = int(self.frame_length_ms / 1000.0 * self.sample_rate)
return n_fft, hop_length, win_length
def _amp_to_db(self, x):