зеркало из https://github.com/mozilla/TTS.git
58 строки
3.2 KiB
JSON
58 строки
3.2 KiB
JSON
{
|
|
"run_name": "libritts_360-half",
|
|
"run_description": "train speaker encoder for libritts 360",
|
|
"audio": {
|
|
// Audio processing parameters
|
|
"num_mels": 40, // size of the mel spec frame.
|
|
"num_freq": 1025, // number of stft frequency levels. Size of the linear spectogram frame.
|
|
"sample_rate": 16000, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
|
|
"frame_length_ms": 50, // stft window length in ms.
|
|
"frame_shift_ms": 12.5, // stft window hop-lengh in ms.
|
|
"preemphasis": 0.98, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
|
|
"min_level_db": -100, // normalization range
|
|
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
|
|
// Normalization parameters
|
|
"signal_norm": true, // normalize the spec values in range [0, 1]
|
|
"symmetric_norm": true, // move normalization to range [-1, 1]
|
|
"max_norm": 4, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
|
|
"clip_norm": true, // clip normalized values into the range.
|
|
"mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
|
|
"mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!!
|
|
"do_trim_silence": false // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
|
|
},
|
|
"reinit_layers": [],
|
|
"grad_clip": 3.0, // upper limit for gradients for clipping.
|
|
"epochs": 1000, // total number of epochs to train.
|
|
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
|
|
"lr_decay": false, // if true, Noam learning rate decaying is applied through training.
|
|
"warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
|
|
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
|
"steps_plot_stats": 10, // number of steps to plot embeddings.
|
|
"num_speakers_in_batch": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
|
|
"wd": 0.000001, // Weight decay weight.
|
|
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
|
"save_step": 1000, // Number of training steps expected to save traning stats and checkpoints.
|
|
"print_step": 1, // Number of steps to log traning on console.
|
|
"output_path": "/media/erogol/data_ssd/Models/libri_tts/speaker_encoder/", // DATASET-RELATED: output path for all training outputs.
|
|
"model": {
|
|
"input_dim": 40,
|
|
"proj_dim": 128,
|
|
"lstm_dim": 384,
|
|
"num_lstm_layers": 3
|
|
},
|
|
"datasets":
|
|
[
|
|
{
|
|
"name": "libri_tts",
|
|
"path": "/home/erogol/Data/Libri-TTS/train-clean-360/",
|
|
"meta_file_train": null,
|
|
"meta_file_val": null
|
|
},
|
|
{
|
|
"name": "libri_tts",
|
|
"path": "/home/erogol/Data/Libri-TTS/train-clean-100/",
|
|
"meta_file_train": null,
|
|
"meta_file_val": null
|
|
}
|
|
]
|
|
} |