зеркало из https://github.com/mozilla/TTS.git
254 строки
8.5 KiB
Python
254 строки
8.5 KiB
Python
import argparse
|
|
import os
|
|
import sys
|
|
import time
|
|
import traceback
|
|
|
|
import torch
|
|
from torch.utils.data import DataLoader
|
|
from TTS.datasets.preprocess import load_meta_data
|
|
from TTS.speaker_encoder.dataset import MyDataset
|
|
from TTS.speaker_encoder.loss import GE2ELoss
|
|
from TTS.speaker_encoder.model import SpeakerEncoder
|
|
from TTS.speaker_encoder.visual import plot_embeddings
|
|
from TTS.speaker_encoder.generic_utils import save_best_model
|
|
from TTS.utils.audio import AudioProcessor
|
|
from TTS.utils.generic_utils import (NoamLR, check_update, copy_config_file,
|
|
count_parameters,
|
|
create_experiment_folder, get_git_branch,
|
|
load_config,
|
|
remove_experiment_folder, set_init_dict)
|
|
from TTS.utils.logger import Logger
|
|
from TTS.utils.radam import RAdam
|
|
|
|
torch.backends.cudnn.enabled = True
|
|
torch.backends.cudnn.benchmark = True
|
|
torch.manual_seed(54321)
|
|
use_cuda = torch.cuda.is_available()
|
|
num_gpus = torch.cuda.device_count()
|
|
print(" > Using CUDA: ", use_cuda)
|
|
print(" > Number of GPUs: ", num_gpus)
|
|
|
|
|
|
def setup_loader(ap, is_val=False, verbose=False):
|
|
if is_val:
|
|
loader = None
|
|
else:
|
|
dataset = MyDataset(ap,
|
|
meta_data_eval if is_val else meta_data_train,
|
|
voice_len=1.6,
|
|
num_utter_per_speaker=10,
|
|
skip_speakers=False,
|
|
verbose=verbose)
|
|
# sampler = DistributedSampler(dataset) if num_gpus > 1 else None
|
|
loader = DataLoader(dataset,
|
|
batch_size=c.num_speakers_in_batch,
|
|
shuffle=False,
|
|
num_workers=0,
|
|
collate_fn=dataset.collate_fn)
|
|
return loader
|
|
|
|
|
|
def train(model, criterion, optimizer, scheduler, ap, global_step):
|
|
data_loader = setup_loader(ap, is_val=False, verbose=True)
|
|
model.train()
|
|
epoch_time = 0
|
|
best_loss = float('inf')
|
|
avg_loss = 0
|
|
end_time = time.time()
|
|
for _, data in enumerate(data_loader):
|
|
start_time = time.time()
|
|
|
|
# setup input data
|
|
inputs = data[0]
|
|
loader_time = time.time() - end_time
|
|
global_step += 1
|
|
|
|
# setup lr
|
|
if c.lr_decay:
|
|
scheduler.step()
|
|
optimizer.zero_grad()
|
|
|
|
# dispatch data to GPU
|
|
if use_cuda:
|
|
inputs = inputs.cuda(non_blocking=True)
|
|
# labels = labels.cuda(non_blocking=True)
|
|
|
|
# forward pass model
|
|
outputs = model(inputs)
|
|
|
|
# loss computation
|
|
loss = criterion(
|
|
outputs.view(c.num_speakers_in_batch,
|
|
outputs.shape[0] // c.num_speakers_in_batch, -1))
|
|
loss.backward()
|
|
grad_norm, _ = check_update(model, c.grad_clip)
|
|
optimizer.step()
|
|
|
|
step_time = time.time() - start_time
|
|
epoch_time += step_time
|
|
|
|
avg_loss = 0.01 * loss.item(
|
|
) + 0.99 * avg_loss if avg_loss != 0 else loss.item()
|
|
current_lr = optimizer.param_groups[0]['lr']
|
|
|
|
if global_step % c.steps_plot_stats == 0:
|
|
# Plot Training Epoch Stats
|
|
train_stats = {
|
|
"GE2Eloss": avg_loss,
|
|
"lr": current_lr,
|
|
"grad_norm": grad_norm,
|
|
"step_time": step_time
|
|
}
|
|
tb_logger.tb_train_epoch_stats(global_step, train_stats)
|
|
figures = {
|
|
# FIXME: not constant
|
|
"UMAP Plot": plot_embeddings(outputs.detach().cpu().numpy(),
|
|
10),
|
|
}
|
|
tb_logger.tb_train_figures(global_step, figures)
|
|
|
|
if global_step % c.print_step == 0:
|
|
print(
|
|
" | > Step:{} Loss:{:.5f} AvgLoss:{:.5f} GradNorm:{:.5f} "
|
|
"StepTime:{:.2f} LoaderTime:{:.2f} LR:{:.6f}".format(
|
|
global_step, loss.item(), avg_loss, grad_norm, step_time,
|
|
loader_time, current_lr),
|
|
flush=True)
|
|
|
|
# save best model
|
|
best_loss = save_best_model(model, optimizer, avg_loss, best_loss,
|
|
OUT_PATH, global_step)
|
|
|
|
end_time = time.time()
|
|
return avg_loss, global_step
|
|
|
|
|
|
def main(args): # pylint: disable=redefined-outer-name
|
|
# pylint: disable=global-variable-undefined
|
|
global meta_data_train
|
|
global meta_data_eval
|
|
|
|
ap = AudioProcessor(**c.audio)
|
|
model = SpeakerEncoder(input_dim=40,
|
|
proj_dim=128,
|
|
lstm_dim=384,
|
|
num_lstm_layers=3)
|
|
optimizer = RAdam(model.parameters(), lr=c.lr)
|
|
criterion = GE2ELoss(loss_method='softmax')
|
|
|
|
if args.restore_path:
|
|
checkpoint = torch.load(args.restore_path)
|
|
try:
|
|
# TODO: fix optimizer init, model.cuda() needs to be called before
|
|
# optimizer restore
|
|
# optimizer.load_state_dict(checkpoint['optimizer'])
|
|
if c.reinit_layers:
|
|
raise RuntimeError
|
|
model.load_state_dict(checkpoint['model'])
|
|
except KeyError:
|
|
print(" > Partial model initialization.")
|
|
model_dict = model.state_dict()
|
|
model_dict = set_init_dict(model_dict, checkpoint, c)
|
|
model.load_state_dict(model_dict)
|
|
del model_dict
|
|
for group in optimizer.param_groups:
|
|
group['lr'] = c.lr
|
|
print(" > Model restored from step %d" % checkpoint['step'],
|
|
flush=True)
|
|
args.restore_step = checkpoint['step']
|
|
else:
|
|
args.restore_step = 0
|
|
|
|
if use_cuda:
|
|
model = model.cuda()
|
|
criterion.cuda()
|
|
|
|
if c.lr_decay:
|
|
scheduler = NoamLR(optimizer,
|
|
warmup_steps=c.warmup_steps,
|
|
last_epoch=args.restore_step - 1)
|
|
else:
|
|
scheduler = None
|
|
|
|
num_params = count_parameters(model)
|
|
print("\n > Model has {} parameters".format(num_params), flush=True)
|
|
|
|
# pylint: disable=redefined-outer-name
|
|
meta_data_train, meta_data_eval = load_meta_data(c.datasets)
|
|
|
|
global_step = args.restore_step
|
|
train_loss, global_step = train(model, criterion, optimizer, scheduler, ap,
|
|
global_step)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
'--restore_path',
|
|
type=str,
|
|
help='Path to model outputs (checkpoint, tensorboard etc.).',
|
|
default=0)
|
|
parser.add_argument(
|
|
'--config_path',
|
|
type=str,
|
|
help='Path to config file for training.',
|
|
)
|
|
parser.add_argument('--debug',
|
|
type=bool,
|
|
default=True,
|
|
help='Do not verify commit integrity to run training.')
|
|
parser.add_argument(
|
|
'--data_path',
|
|
type=str,
|
|
default='',
|
|
help='Defines the data path. It overwrites config.json.')
|
|
parser.add_argument('--output_path',
|
|
type=str,
|
|
help='path for training outputs.',
|
|
default='')
|
|
parser.add_argument('--output_folder',
|
|
type=str,
|
|
default='',
|
|
help='folder name for training outputs.')
|
|
args = parser.parse_args()
|
|
|
|
# setup output paths and read configs
|
|
c = load_config(args.config_path)
|
|
_ = os.path.dirname(os.path.realpath(__file__))
|
|
if args.data_path != '':
|
|
c.data_path = args.data_path
|
|
|
|
if args.output_path == '':
|
|
OUT_PATH = os.path.join(_, c.output_path)
|
|
else:
|
|
OUT_PATH = args.output_path
|
|
|
|
if args.output_folder == '':
|
|
OUT_PATH = create_experiment_folder(OUT_PATH, c.run_name, args.debug)
|
|
else:
|
|
OUT_PATH = os.path.join(OUT_PATH, args.output_folder)
|
|
|
|
new_fields = {}
|
|
if args.restore_path:
|
|
new_fields["restore_path"] = args.restore_path
|
|
new_fields["github_branch"] = get_git_branch()
|
|
copy_config_file(args.config_path, os.path.join(OUT_PATH, 'config.json'),
|
|
new_fields)
|
|
|
|
LOG_DIR = OUT_PATH
|
|
tb_logger = Logger(LOG_DIR)
|
|
|
|
try:
|
|
main(args)
|
|
except KeyboardInterrupt:
|
|
remove_experiment_folder(OUT_PATH)
|
|
try:
|
|
sys.exit(0)
|
|
except SystemExit:
|
|
os._exit(0) # pylint: disable=protected-access
|
|
except Exception: # pylint: disable=broad-except
|
|
remove_experiment_folder(OUT_PATH)
|
|
traceback.print_exc()
|
|
sys.exit(1)
|