TTS/utils/io.py

79 строки
2.6 KiB
Python

import os
import json
import re
import torch
import datetime
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
def load_config(config_path):
config = AttrDict()
with open(config_path, "r") as f:
input_str = f.read()
input_str = re.sub(r'\\\n', '', input_str)
input_str = re.sub(r'//.*\n', '\n', input_str)
data = json.loads(input_str)
config.update(data)
return config
def copy_config_file(config_file, out_path, new_fields):
config_lines = open(config_file, "r").readlines()
# add extra information fields
for key, value in new_fields.items():
if isinstance(value, str):
new_line = '"{}":"{}",\n'.format(key, value)
else:
new_line = '"{}":{},\n'.format(key, value)
config_lines.insert(1, new_line)
config_out_file = open(out_path, "w")
config_out_file.writelines(config_lines)
config_out_file.close()
def load_checkpoint(model, checkpoint_path, use_cuda=False):
state = torch.load(checkpoint_path, map_location=torch.device('cpu'))
model.load_state_dict(state['model'])
if use_cuda:
model.cuda()
# set model stepsize
if 'r' in state.keys():
model.decoder.set_r(state['r'])
return model, state
def save_model(model, optimizer, current_step, epoch, r, output_path, **kwargs):
new_state_dict = model.state_dict()
state = {
'model': new_state_dict,
'optimizer': optimizer.state_dict() if optimizer is not None else None,
'step': current_step,
'epoch': epoch,
'date': datetime.date.today().strftime("%B %d, %Y"),
'r': r
}
state.update(kwargs)
torch.save(state, output_path)
def save_checkpoint(model, optimizer, current_step, epoch, r, output_folder, **kwargs):
file_name = 'checkpoint_{}.pth.tar'.format(current_step)
checkpoint_path = os.path.join(output_folder, file_name)
print(" > CHECKPOINT : {}".format(checkpoint_path))
save_model(model, optimizer, current_step, epoch, r, checkpoint_path, **kwargs)
def save_best_model(target_loss, best_loss, model, optimizer, current_step, epoch, r, output_folder, **kwargs):
if target_loss < best_loss:
file_name = 'best_model.pth.tar'
checkpoint_path = os.path.join(output_folder, file_name)
print(" > BEST MODEL : {}".format(checkpoint_path))
save_model(model, optimizer, current_step, epoch, r, checkpoint_path, model_loss=target_loss, **kwargs)
best_loss = target_loss
return best_loss