зеркало из https://github.com/mozilla/TTS.git
41 строка
1.0 KiB
Python
41 строка
1.0 KiB
Python
import umap
|
|
import numpy as np
|
|
import matplotlib
|
|
import matplotlib.pyplot as plt
|
|
|
|
matplotlib.use('Agg')
|
|
|
|
|
|
colormap = np.array([
|
|
[76, 255, 0],
|
|
[0, 127, 70],
|
|
[255, 0, 0],
|
|
[255, 217, 38],
|
|
[0, 135, 255],
|
|
[165, 0, 165],
|
|
[255, 167, 255],
|
|
[0, 255, 255],
|
|
[255, 96, 38],
|
|
[142, 76, 0],
|
|
[33, 0, 127],
|
|
[0, 0, 0],
|
|
[183, 183, 183],
|
|
], dtype=np.float) / 255
|
|
|
|
|
|
def plot_embeddings(embeddings, num_utter_per_speaker):
|
|
embeddings = embeddings[:10*num_utter_per_speaker]
|
|
model = umap.UMAP()
|
|
projection = model.fit_transform(embeddings)
|
|
num_speakers = embeddings.shape[0] // num_utter_per_speaker
|
|
ground_truth = np.repeat(np.arange(num_speakers), num_utter_per_speaker)
|
|
colors = [colormap[i] for i in ground_truth]
|
|
|
|
fig, ax = plt.subplots(figsize=(16, 10))
|
|
im = ax.scatter(projection[:, 0], projection[:, 1], c=colors)
|
|
plt.gca().set_aspect("equal", "datalim")
|
|
plt.title("UMAP projection")
|
|
plt.tight_layout()
|
|
plt.savefig("umap")
|
|
return fig
|