TTS/layers/tacotron2.py

356 строки
14 KiB
Python

import torch
from torch.autograd import Variable
from torch import nn
from torch.nn import functional as F
from .common_layers import init_attn, Prenet, Linear
class ConvBNBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, nonlinear=None):
super(ConvBNBlock, self).__init__()
assert (kernel_size - 1) % 2 == 0
padding = (kernel_size - 1) // 2
conv1d = nn.Conv1d(in_channels,
out_channels,
kernel_size,
padding=padding)
norm = nn.BatchNorm1d(out_channels)
dropout = nn.Dropout(p=0.5)
if nonlinear == 'relu':
self.net = nn.Sequential(conv1d, norm, nn.ReLU(), dropout)
elif nonlinear == 'tanh':
self.net = nn.Sequential(conv1d, norm, nn.Tanh(), dropout)
else:
self.net = nn.Sequential(conv1d, norm, dropout)
def forward(self, x):
output = self.net(x)
return output
class Postnet(nn.Module):
def __init__(self, mel_dim, num_convs=5):
super(Postnet, self).__init__()
self.convolutions = nn.ModuleList()
self.convolutions.append(
ConvBNBlock(mel_dim, 512, kernel_size=5, nonlinear='tanh'))
for _ in range(1, num_convs - 1):
self.convolutions.append(
ConvBNBlock(512, 512, kernel_size=5, nonlinear='tanh'))
self.convolutions.append(
ConvBNBlock(512, mel_dim, kernel_size=5, nonlinear=None))
def forward(self, x):
for layer in self.convolutions:
x = layer(x)
return x
class Encoder(nn.Module):
def __init__(self, in_features=512):
super(Encoder, self).__init__()
convolutions = []
for _ in range(3):
convolutions.append(
ConvBNBlock(in_features, in_features, 5, 'relu'))
self.convolutions = nn.Sequential(*convolutions)
self.lstm = nn.LSTM(in_features,
int(in_features / 2),
num_layers=1,
batch_first=True,
bidirectional=True)
self.rnn_state = None
def forward(self, x, input_lengths):
x = self.convolutions(x)
x = x.transpose(1, 2)
input_lengths = input_lengths.cpu().numpy()
x = nn.utils.rnn.pack_padded_sequence(x,
input_lengths,
batch_first=True)
self.lstm.flatten_parameters()
outputs, _ = self.lstm(x)
outputs, _ = nn.utils.rnn.pad_packed_sequence(
outputs,
batch_first=True,
)
return outputs
def inference(self, x):
x = self.convolutions(x)
x = x.transpose(1, 2)
self.lstm.flatten_parameters()
outputs, _ = self.lstm(x)
return outputs
def inference_truncated(self, x):
"""
Preserve encoder state for continuous inference
"""
x = self.convolutions(x)
x = x.transpose(1, 2)
self.lstm.flatten_parameters()
outputs, self.rnn_state = self.lstm(x, self.rnn_state)
return outputs
# adapted from https://github.com/NVIDIA/tacotron2/
class Decoder(nn.Module):
# Pylint gets confused by PyTorch conventions here
#pylint: disable=attribute-defined-outside-init
def __init__(self, in_features, memory_dim, r, attn_type, attn_win, attn_norm,
prenet_type, prenet_dropout, forward_attn, trans_agent,
forward_attn_mask, location_attn, attn_K, separate_stopnet,
speaker_embedding_dim):
super(Decoder, self).__init__()
self.memory_dim = memory_dim
self.r_init = r
self.r = r
self.encoder_embedding_dim = in_features
self.separate_stopnet = separate_stopnet
self.query_dim = 1024
self.decoder_rnn_dim = 1024
self.prenet_dim = 256
self.max_decoder_steps = 1000
self.gate_threshold = 0.5
self.p_attention_dropout = 0.1
self.p_decoder_dropout = 0.1
# memory -> |Prenet| -> processed_memory
prenet_dim = self.memory_dim
self.prenet = Prenet(
prenet_dim,
prenet_type,
prenet_dropout,
out_features=[self.prenet_dim, self.prenet_dim],
bias=False)
self.attention_rnn = nn.LSTMCell(self.prenet_dim + in_features,
self.query_dim)
self.attention = init_attn(attn_type=attn_type,
query_dim=self.query_dim,
embedding_dim=in_features,
attention_dim=128,
location_attention=location_attn,
attention_location_n_filters=32,
attention_location_kernel_size=31,
windowing=attn_win,
norm=attn_norm,
forward_attn=forward_attn,
trans_agent=trans_agent,
forward_attn_mask=forward_attn_mask,
attn_K=attn_K)
self.decoder_rnn = nn.LSTMCell(self.query_dim + in_features,
self.decoder_rnn_dim, 1)
self.linear_projection = Linear(self.decoder_rnn_dim + in_features,
self.memory_dim * self.r_init)
self.stopnet = nn.Sequential(
nn.Dropout(0.1),
Linear(self.decoder_rnn_dim + self.memory_dim * self.r_init,
1,
bias=True,
init_gain='sigmoid'))
self.memory_truncated = None
def set_r(self, new_r):
self.r = new_r
def get_go_frame(self, inputs):
B = inputs.size(0)
memory = torch.zeros(1, device=inputs.device).repeat(B,
self.memory_dim * self.r)
return memory
def _init_states(self, inputs, mask, keep_states=False):
B = inputs.size(0)
# T = inputs.size(1)
if not keep_states:
self.query = torch.zeros(1, device=inputs.device).repeat(
B, self.query_dim)
self.attention_rnn_cell_state = torch.zeros(
1, device=inputs.device).repeat(B, self.query_dim)
self.decoder_hidden = torch.zeros(1, device=inputs.device).repeat(
B, self.decoder_rnn_dim)
self.decoder_cell = torch.zeros(1, device=inputs.device).repeat(
B, self.decoder_rnn_dim)
self.context = torch.zeros(1, device=inputs.device).repeat(
B, self.encoder_embedding_dim)
self.inputs = inputs
self.processed_inputs = self.attention.preprocess_inputs(inputs)
self.mask = mask
def _reshape_memory(self, memory):
"""
Reshape the spectrograms for given 'r'
"""
# Grouping multiple frames if necessary
if memory.size(-1) == self.memory_dim:
memory = memory.view(memory.shape[0], memory.size(1) // self.r, -1)
# Time first (T_decoder, B, memory_dim)
memory = memory.transpose(0, 1)
return memory
def _parse_outputs(self, outputs, stop_tokens, alignments):
alignments = torch.stack(alignments).transpose(0, 1)
stop_tokens = torch.stack(stop_tokens).transpose(0, 1)
outputs = torch.stack(outputs).transpose(0, 1).contiguous()
outputs = outputs.view(outputs.size(0), -1, self.memory_dim)
outputs = outputs.transpose(1, 2)
return outputs, stop_tokens, alignments
def _update_memory(self, memory):
if len(memory.shape) == 2:
return memory[:, self.memory_dim * (self.r - 1):]
return memory[:, :, self.memory_dim * (self.r - 1):]
def decode(self, memory):
'''
shapes:
- memory: B x r * self.memory_dim
'''
# self.context: B x D_en
# query_input: B x D_en + (r * self.memory_dim)
query_input = torch.cat((memory, self.context), -1)
# self.query and self.attention_rnn_cell_state : B x D_attn_rnn
self.query, self.attention_rnn_cell_state = self.attention_rnn(
query_input, (self.query, self.attention_rnn_cell_state))
self.query = F.dropout(self.query, self.p_attention_dropout,
self.training)
self.attention_rnn_cell_state = F.dropout(
self.attention_rnn_cell_state, self.p_attention_dropout,
self.training)
# B x D_en
self.context = self.attention(self.query, self.inputs,
self.processed_inputs, self.mask)
# B x (D_en + D_attn_rnn)
decoder_rnn_input = torch.cat((self.query, self.context), -1)
# self.decoder_hidden and self.decoder_cell: B x D_decoder_rnn
self.decoder_hidden, self.decoder_cell = self.decoder_rnn(
decoder_rnn_input, (self.decoder_hidden, self.decoder_cell))
self.decoder_hidden = F.dropout(self.decoder_hidden,
self.p_decoder_dropout, self.training)
# B x (D_decoder_rnn + D_en)
decoder_hidden_context = torch.cat((self.decoder_hidden, self.context),
dim=1)
# B x (self.r * self.memory_dim)
decoder_output = self.linear_projection(decoder_hidden_context)
# B x (D_decoder_rnn + (self.r * self.memory_dim))
stopnet_input = torch.cat((self.decoder_hidden, decoder_output), dim=1)
if self.separate_stopnet:
stop_token = self.stopnet(stopnet_input.detach())
else:
stop_token = self.stopnet(stopnet_input)
# select outputs for the reduction rate self.r
decoder_output = decoder_output[:, :self.r * self.memory_dim]
return decoder_output, self.attention.attention_weights, stop_token
def forward(self, inputs, memories, mask, speaker_embeddings=None):
memory = self.get_go_frame(inputs).unsqueeze(0)
memories = self._reshape_memory(memories)
memories = torch.cat((memory, memories), dim=0)
memories = self._update_memory(memories)
if speaker_embeddings is not None:
memories = torch.cat([memories, speaker_embeddings], dim=-1)
memories = self.prenet(memories)
self._init_states(inputs, mask=mask)
self.attention.init_states(inputs)
outputs, stop_tokens, alignments = [], [], []
while len(outputs) < memories.size(0) - 1:
memory = memories[len(outputs)]
decoder_output, attention_weights, stop_token = self.decode(memory)
outputs += [decoder_output.squeeze(1)]
stop_tokens += [stop_token.squeeze(1)]
alignments += [attention_weights]
outputs, stop_tokens, alignments = self._parse_outputs(
outputs, stop_tokens, alignments)
return outputs, alignments, stop_tokens
def inference(self, inputs, speaker_embeddings=None):
memory = self.get_go_frame(inputs)
memory = self._update_memory(memory)
self._init_states(inputs, mask=None)
self.attention.init_states(inputs)
outputs, stop_tokens, alignments, t = [], [], [], 0
while True:
memory = self.prenet(memory)
if speaker_embeddings is not None:
memory = torch.cat([memory, speaker_embeddings], dim=-1)
decoder_output, alignment, stop_token = self.decode(memory)
stop_token = torch.sigmoid(stop_token.data)
outputs += [decoder_output.squeeze(1)]
stop_tokens += [stop_token]
alignments += [alignment]
if stop_token > 0.7:
break
if len(outputs) == self.max_decoder_steps:
print(" | > Decoder stopped with 'max_decoder_steps")
break
memory = self._update_memory(decoder_output)
t += 1
outputs, stop_tokens, alignments = self._parse_outputs(
outputs, stop_tokens, alignments)
return outputs, alignments, stop_tokens
def inference_truncated(self, inputs):
"""
Preserve decoder states for continuous inference
"""
if self.memory_truncated is None:
self.memory_truncated = self.get_go_frame(inputs)
self._init_states(inputs, mask=None, keep_states=False)
else:
self._init_states(inputs, mask=None, keep_states=True)
self.attention.init_win_idx()
self.attention.init_states(inputs)
outputs, stop_tokens, alignments, t = [], [], [], 0
stop_flags = [True, False, False]
while True:
memory = self.prenet(self.memory_truncated)
decoder_output, alignment, stop_token = self.decode(memory)
stop_token = torch.sigmoid(stop_token.data)
outputs += [decoder_output.squeeze(1)]
stop_tokens += [stop_token]
alignments += [alignment]
if stop_token > 0.7:
break
if len(outputs) == self.max_decoder_steps:
print(" | > Decoder stopped with 'max_decoder_steps")
break
self.memory_truncated = decoder_output
t += 1
outputs, stop_tokens, alignments = self._parse_outputs(
outputs, stop_tokens, alignments)
return outputs, alignments, stop_tokens
def inference_step(self, inputs, t, memory=None):
"""
For debug purposes
"""
if t == 0:
memory = self.get_go_frame(inputs)
self._init_states(inputs, mask=None)
memory = self.prenet(memory)
decoder_output, stop_token, alignment = self.decode(memory)
stop_token = torch.sigmoid(stop_token.data)
memory = decoder_output
return decoder_output, stop_token, alignment