πŸ€– πŸ’¬ Deep learning for Text to Speech (Discussion forum: https://discourse.mozilla.org/c/tts)
ΠŸΠ΅Ρ€Π΅ΠΉΡ‚ΠΈ ΠΊ Ρ„Π°ΠΉΠ»Ρƒ
Eren Golge e3b2d2a827 Merge branch 'master' of https://github.com/Mozilla/TTS 2018-02-22 05:24:23 -08:00
datasets updates and debugs 2018-02-13 01:45:52 -08:00
layers Remove DataParallel from the model state before saving 2018-02-21 07:03:53 -08:00
models More layer tests 2018-02-13 08:08:23 -08:00
notebooks Remove DataParallel from the model state before saving 2018-02-21 07:03:53 -08:00
png Beginning 2018-01-22 01:48:59 -08:00
tests More layer tests 2018-02-13 08:08:23 -08:00
utils some more tests for model saving 2018-02-21 07:21:44 -08:00
.gitignore gitignore update 2018-01-31 07:25:37 -08:00
LICENSE.txt Create LICENSE.txt 2018-02-13 22:37:59 +01:00
README.md Update README.md 2018-02-22 14:22:27 +01:00
__init__.py Beginning 2018-01-22 01:48:59 -08:00
config.json config change - remove redundant config fields 2018-02-13 08:18:01 -08:00
debug_config.py A big revision: visualization, data loader, tests 2018-02-04 08:25:00 -08:00
module.py Beginning 2018-01-22 01:48:59 -08:00
requirements.txt Merge branch 'master' into testing_docing 2018-02-13 17:13:00 +01:00
synthesis.py Bug solve on attention module and a new Notebook to experiment spectrogram reconstruction 2018-01-31 07:21:22 -08:00
train.py some more tests for model saving 2018-02-21 07:21:44 -08:00

README.md

TTS (Work in Progress...)

Here we have pytorch implementation of:

At the end, it should be easy to add new models and try different architectures.

You can find here a brief note about possible TTS architectures and their comparisons.

Requirements

Highly recommended to use miniconda for easier installation.

  • python 3.6
  • pytorch > 0.2.0
  • TODO

Data

Currently TTS provides data loaders for

Training the network

To run your own training, you need to define a config.json file (simple template below) and call with the command.

train.py --config_path config.json

If you like to use specific set of GPUs.

CUDA_VISIBLE_DEVICES="0,1,4" train.py --config_path config.json

Each run creates an experiment folder with the corresponfing date and time, under the folder you set in config.json. And if there is no checkpoint yet under that folder, it is going to be removed when you press Ctrl+C.

You can also enjoy Tensorboard with couple of good training logs, if you point --logdir the experiment folder.

Example config.json:

{
  // Data loading parameters
  "num_mels": 80,
  "num_freq": 1024,
  "sample_rate": 20000,
  "frame_length_ms": 50.0,
  "frame_shift_ms": 12.5,
  "preemphasis": 0.97,
  "min_level_db": -100,
  "ref_level_db": 20,
  "hidden_size": 128,
  "embedding_size": 256,
  "text_cleaner": "english_cleaners",

  // Training parameters
  "epochs": 2000,
  "lr": 0.001,
  "batch_size": 256,
  "griffinf_lim_iters": 60,
  "power": 1.5,
  "r": 5,            // number of decoder outputs for Tacotron

  // Number of data loader processes
  "num_loader_workers": 8,

  // Experiment logging parameters
  "checkpoint": true,  // if save checkpoint per save_step
  "save_step": 200,
  "data_path": "/path/to/KeithIto/LJSpeech-1.0",
  "output_path": "/path/to/my_experiment",
  "log_dir": "/path/to/my/tensorboard/logs/"
}

Testing

Best way to test your pretrained network is to use the Notebook under notebooks folder.

Contribution

Any kind of contribution is highly welcome as we are propelled by the open-source spirit. If you like to add or edit things in code, please also consider to write tests to verify your segment so that we can be sure things are on the track as this repo gets bigger.