aom/vp10/common/vp10_inv_txfm2d.c

147 строки
5.4 KiB
C
Исходник Обычный вид История

/*
* Copyright (c) 2015 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vp10/common/vp10_txfm.h"
#include "vp10/common/vp10_inv_txfm1d.h"
static INLINE TxfmFunc inv_txfm_type_to_func(TXFM_TYPE txfm_type) {
switch (txfm_type) {
case TXFM_TYPE_DCT4:
return vp10_idct4_new;
break;
case TXFM_TYPE_DCT8:
return vp10_idct8_new;
break;
case TXFM_TYPE_DCT16:
return vp10_idct16_new;
break;
case TXFM_TYPE_DCT32:
return vp10_idct32_new;
break;
case TXFM_TYPE_DCT64:
return vp10_idct64_new;
break;
case TXFM_TYPE_ADST4:
return vp10_iadst4_new;
break;
case TXFM_TYPE_ADST8:
return vp10_iadst8_new;
break;
case TXFM_TYPE_ADST16:
return vp10_iadst16_new;
break;
case TXFM_TYPE_ADST32:
return vp10_iadst32_new;
break;
default:
assert(0);
return NULL;
}
}
static INLINE void inv_txfm2d_add_c(const int32_t *input, int16_t *output,
int stride, const TXFM_2D_CFG *cfg,
int32_t *txfm_buf) {
const int txfm_size = cfg->txfm_size;
const int8_t *shift = cfg->shift;
const int8_t *stage_range_col = cfg->stage_range_col;
const int8_t *stage_range_row = cfg->stage_range_row;
const int8_t *cos_bit_col = cfg->cos_bit_col;
const int8_t *cos_bit_row = cfg->cos_bit_row;
const TxfmFunc txfm_func_col = inv_txfm_type_to_func(cfg->txfm_type_col);
const TxfmFunc txfm_func_row = inv_txfm_type_to_func(cfg->txfm_type_row);
// txfm_buf's length is txfm_size * txfm_size + 2 * txfm_size
// it is used for intermediate data buffering
int32_t *temp_in = txfm_buf;
int32_t *temp_out = temp_in + txfm_size;
int32_t *buf = temp_out + txfm_size;
int32_t *buf_ptr = buf;
int i, j;
// Rows
for (i = 0; i < txfm_size; ++i) {
txfm_func_row(input, buf_ptr, cos_bit_row, stage_range_row);
round_shift_array(buf_ptr, txfm_size, -shift[0]);
input += txfm_size;
buf_ptr += txfm_size;
}
// Columns
for (i = 0; i < txfm_size; ++i) {
for (j = 0; j < txfm_size; ++j)
temp_in[j] = buf[j * txfm_size + i];
txfm_func_col(temp_in, temp_out, cos_bit_col, stage_range_col);
round_shift_array(temp_out, txfm_size, -shift[1]);
for (j = 0; j < txfm_size; ++j)
output[j * stride + i] += temp_out[j];
}
}
void vp10_inv_txfm2d_add_4x4_c(const int32_t *input, uint16_t *output,
const int stride, const TXFM_2D_CFG *cfg,
const int bd) {
int txfm_buf[4 * 4 + 4 + 4];
// output contains the prediction signal which is always positive and smaller
// than (1 << bd) - 1
// since bd < 16-1, therefore we can treat the uint16_t* output buffer as an
// int16_t*
inv_txfm2d_add_c(input, (int16_t *)output, stride, cfg, txfm_buf);
clamp_block((int16_t *)output, 4, stride, 0, (1 << bd) - 1);
}
void vp10_inv_txfm2d_add_8x8_c(const int32_t *input, uint16_t *output,
const int stride, const TXFM_2D_CFG *cfg,
const int bd) {
int txfm_buf[8 * 8 + 8 + 8];
// output contains the prediction signal which is always positive and smaller
// than (1 << bd) - 1
// since bd < 16-1, therefore we can treat the uint16_t* output buffer as an
// int16_t*
inv_txfm2d_add_c(input, (int16_t *)output, stride, cfg, txfm_buf);
clamp_block((int16_t *)output, 8, stride, 0, (1 << bd) - 1);
}
void vp10_inv_txfm2d_add_16x16_c(const int32_t *input, uint16_t *output,
const int stride, const TXFM_2D_CFG *cfg,
const int bd) {
int txfm_buf[16 * 16 + 16 + 16];
// output contains the prediction signal which is always positive and smaller
// than (1 << bd) - 1
// since bd < 16-1, therefore we can treat the uint16_t* output buffer as an
// int16_t*
inv_txfm2d_add_c(input, (int16_t *)output, stride, cfg, txfm_buf);
clamp_block((int16_t *)output, 16, stride, 0, (1 << bd) - 1);
}
void vp10_inv_txfm2d_add_32x32_c(const int32_t *input, uint16_t *output,
const int stride, const TXFM_2D_CFG *cfg,
const int bd) {
int txfm_buf[32 * 32 + 32 + 32];
// output contains the prediction signal which is always positive and smaller
// than (1 << bd) - 1
// since bd < 16-1, therefore we can treat the uint16_t* output buffer as an
// int16_t*
inv_txfm2d_add_c(input, (int16_t *)output, stride, cfg, txfm_buf);
clamp_block((int16_t *)output, 32, stride, 0, (1 << bd) - 1);
}
void vp10_inv_txfm2d_add_64x64_c(const int32_t *input, uint16_t *output,
const int stride, const TXFM_2D_CFG *cfg,
const int bd) {
int txfm_buf[64 * 64 + 64 + 64];
// output contains the prediction signal which is always positive and smaller
// than (1 << bd) - 1
// since bd < 16-1, therefore we can treat the uint16_t* output buffer as an
// int16_t*
inv_txfm2d_add_c(input, (int16_t *)output, stride, cfg, txfm_buf);
clamp_block((int16_t *)output, 64, stride, 0, (1 << bd) - 1);
}