aom/vp8/encoder/onyx_if.c

5603 строки
177 KiB
C
Исходник Обычный вид История

2010-05-18 19:58:33 +04:00
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
2010-05-18 19:58:33 +04:00
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
2010-05-18 19:58:33 +04:00
*/
#include "vpx_config.h"
#include "vp8/common/onyxc_int.h"
#include "vp8/common/blockd.h"
2010-05-18 19:58:33 +04:00
#include "onyx_int.h"
#include "vp8/common/systemdependent.h"
2010-05-18 19:58:33 +04:00
#include "quantize.h"
#include "vp8/common/alloccommon.h"
2010-05-18 19:58:33 +04:00
#include "mcomp.h"
#include "firstpass.h"
#include "psnr.h"
#include "vpx_scale/vpxscale.h"
#include "vp8/common/extend.h"
2010-05-18 19:58:33 +04:00
#include "ratectrl.h"
#include "vp8/common/quant_common.h"
#include "segmentation.h"
#if CONFIG_POSTPROC
#include "vp8/common/postproc.h"
#endif
2010-05-18 19:58:33 +04:00
#include "vpx_mem/vpx_mem.h"
#include "vp8/common/swapyv12buffer.h"
#include "vp8/common/threading.h"
2010-05-18 19:58:33 +04:00
#include "vpx_ports/vpx_timer.h"
Add runtime CPU detection support for ARM. The primary goal is to allow a binary to be built which supports NEON, but can fall back to non-NEON routines, since some Android devices do not have NEON, even if they are otherwise ARMv7 (e.g., Tegra). The configure-generated flags HAVE_ARMV7, etc., are used to decide which versions of each function to build, and when CONFIG_RUNTIME_CPU_DETECT is enabled, the correct version is chosen at run time. In order for this to work, the CFLAGS must be set to something appropriate (e.g., without -mfpu=neon for ARMv7, and with appropriate -march and -mcpu for even earlier configurations), or the native C code will not be able to run. The ASFLAGS must remain set for the most advanced instruction set required at build time, since the ARM assembler will refuse to emit them otherwise. I have not attempted to make any changes to configure to do this automatically. Doing so will probably require the addition of new configure options. Many of the hooks for RTCD on ARM were already there, but a lot of the code had bit-rotted, and a good deal of the ARM-specific code is not integrated into the RTCD structs at all. I did not try to resolve the latter, merely to add the minimal amount of protection around them to allow RTCD to work. Those functions that were called based on an ifdef at the calling site were expanded to check the RTCD flags at that site, but they should be added to an RTCD struct somewhere in the future. The functions invoked with global function pointers still are, but these should be moved into an RTCD struct for thread safety (I believe every platform currently supported has atomic pointer stores, but this is not guaranteed). The encoder's boolhuff functions did not even have _c and armv7 suffixes, and the correct version was resolved at link time. The token packing functions did have appropriate suffixes, but the version was selected with a define, with no associated RTCD struct. However, for both of these, the only armv7 instruction they actually used was rbit, and this was completely superfluous, so I reworked them to avoid it. The only non-ARMv4 instruction remaining in them is clz, which is ARMv5 (not even ARMv5TE is required). Considering that there are no ARM-specific configs which are not at least ARMv5TE, I did not try to detect these at runtime, and simply enable them for ARMv5 and above. Finally, the NEON register saving code was completely non-reentrant, since it saved the registers to a global, static variable. I moved the storage for this onto the stack. A single binary built with this code was tested on an ARM11 (ARMv6) and a Cortex A8 (ARMv7 w/NEON), for both the encoder and decoder, and produced identical output, while using the correct accelerated functions on each. I did not test on any earlier processors. Change-Id: I45cbd63a614f4554c3b325c45d46c0806f009eaa
2010-10-21 02:39:11 +04:00
#if ARCH_ARM
#include "vpx_ports/arm.h"
#endif
#if CONFIG_MULTI_RES_ENCODING
#include "mr_dissim.h"
#endif
#include "encodeframe.h"
2010-05-18 19:58:33 +04:00
#include <math.h>
#include <stdio.h>
#include <limits.h>
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
extern int vp8_update_coef_context(VP8_COMP *cpi);
extern void vp8_update_coef_probs(VP8_COMP *cpi);
#endif
2010-05-18 19:58:33 +04:00
extern void vp8cx_pick_filter_level_fast(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi);
extern void vp8cx_set_alt_lf_level(VP8_COMP *cpi, int filt_val);
extern void vp8cx_pick_filter_level(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi);
extern void vp8_deblock_frame(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *post, int filt_lvl, int low_var_thresh, int flag);
extern void print_parms(VP8_CONFIG *ocf, char *filenam);
extern unsigned int vp8_get_processor_freq();
extern void print_tree_update_probs();
extern int vp8cx_create_encoder_threads(VP8_COMP *cpi);
2010-05-18 19:58:33 +04:00
extern void vp8cx_remove_encoder_threads(VP8_COMP *cpi);
int vp8_estimate_entropy_savings(VP8_COMP *cpi);
int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest);
2010-05-18 19:58:33 +04:00
extern void vp8_temporal_filter_prepare_c(VP8_COMP *cpi, int distance);
2010-05-18 19:58:33 +04:00
static void set_default_lf_deltas(VP8_COMP *cpi);
2010-05-18 19:58:33 +04:00
extern const int vp8_gf_interval_table[101];
#if CONFIG_INTERNAL_STATS
2010-05-18 19:58:33 +04:00
#include "math.h"
extern double vp8_calc_ssim
(
YV12_BUFFER_CONFIG *source,
YV12_BUFFER_CONFIG *dest,
int lumamask,
double *weight
2010-05-18 19:58:33 +04:00
);
2010-05-18 19:58:33 +04:00
extern double vp8_calc_ssimg
(
YV12_BUFFER_CONFIG *source,
YV12_BUFFER_CONFIG *dest,
double *ssim_y,
double *ssim_u,
double *ssim_v
2010-05-18 19:58:33 +04:00
);
#endif
#ifdef OUTPUT_YUV_SRC
FILE *yuv_file;
#endif
#if 0
FILE *framepsnr;
FILE *kf_list;
FILE *keyfile;
#endif
#if 0
extern int skip_true_count;
extern int skip_false_count;
#endif
#ifdef ENTROPY_STATS
extern int intra_mode_stats[10][10][10];
#endif
#ifdef SPEEDSTATS
unsigned int frames_at_speed[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
unsigned int tot_pm = 0;
unsigned int cnt_pm = 0;
unsigned int tot_ef = 0;
unsigned int cnt_ef = 0;
#endif
#ifdef MODE_STATS
extern unsigned __int64 Sectionbits[50];
extern int y_modes[5] ;
extern int uv_modes[4] ;
extern int b_modes[10] ;
extern int inter_y_modes[10] ;
extern int inter_uv_modes[4] ;
extern unsigned int inter_b_modes[15];
#endif
extern const int vp8_bits_per_mb[2][QINDEX_RANGE];
extern const int qrounding_factors[129];
extern const int qzbin_factors[129];
extern void vp8cx_init_quantizer(VP8_COMP *cpi);
extern const int vp8cx_base_skip_false_prob[128];
/* Tables relating active max Q to active min Q */
static const unsigned char kf_low_motion_minq[QINDEX_RANGE] =
{
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,
3,3,3,3,3,3,4,4,4,5,5,5,5,5,6,6,
6,6,7,7,8,8,8,8,9,9,10,10,10,10,11,11,
11,11,12,12,13,13,13,13,14,14,15,15,15,15,16,16,
16,16,17,17,18,18,18,18,19,20,20,21,21,22,23,23
};
static const unsigned char kf_high_motion_minq[QINDEX_RANGE] =
{
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,
3,3,3,3,4,4,4,4,5,5,5,5,5,5,6,6,
6,6,7,7,8,8,8,8,9,9,10,10,10,10,11,11,
11,11,12,12,13,13,13,13,14,14,15,15,15,15,16,16,
16,16,17,17,18,18,18,18,19,19,20,20,20,20,21,21,
21,21,22,22,23,23,24,25,25,26,26,27,28,28,29,30
};
static const unsigned char gf_low_motion_minq[QINDEX_RANGE] =
{
0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,
3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,
7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,
11,11,12,12,13,13,14,14,15,15,16,16,17,17,18,18,
19,19,20,20,21,21,22,22,23,23,24,24,25,25,26,26,
27,27,28,28,29,29,30,30,31,31,32,32,33,33,34,34,
35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,
43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58
};
static const unsigned char gf_mid_motion_minq[QINDEX_RANGE] =
{
0,0,0,0,1,1,1,1,1,1,2,2,3,3,3,4,
4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,
9,10,10,10,10,11,11,11,12,12,12,12,13,13,13,14,
14,14,15,15,16,16,17,17,18,18,19,19,20,20,21,21,
22,22,23,23,24,24,25,25,26,26,27,27,28,28,29,29,
30,30,31,31,32,32,33,33,34,34,35,35,36,36,37,37,
38,39,39,40,40,41,41,42,42,43,43,44,45,46,47,48,
49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64
};
static const unsigned char gf_high_motion_minq[QINDEX_RANGE] =
{
0,0,0,0,1,1,1,1,1,2,2,2,3,3,3,4,
4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,
9,10,10,10,11,11,12,12,13,13,14,14,15,15,16,16,
17,17,18,18,19,19,20,20,21,21,22,22,23,23,24,24,
25,25,26,26,27,27,28,28,29,29,30,30,31,31,32,32,
33,33,34,34,35,35,36,36,37,37,38,38,39,39,40,40,
41,41,42,42,43,44,45,46,47,48,49,50,51,52,53,54,
55,56,57,58,59,60,62,64,66,68,70,72,74,76,78,80
};
static const unsigned char inter_minq[QINDEX_RANGE] =
{
0,0,1,1,2,3,3,4,4,5,6,6,7,8,8,9,
9,10,11,11,12,13,13,14,15,15,16,17,17,18,19,20,
20,21,22,22,23,24,24,25,26,27,27,28,29,30,30,31,
32,33,33,34,35,36,36,37,38,39,39,40,41,42,42,43,
44,45,46,46,47,48,49,50,50,51,52,53,54,55,55,56,
57,58,59,60,60,61,62,63,64,65,66,67,67,68,69,70,
71,72,73,74,75,75,76,77,78,79,80,81,82,83,84,85,
86,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100
};
2010-05-18 19:58:33 +04:00
#ifdef PACKET_TESTING
extern FILE *vpxlogc;
#endif
static void save_layer_context(VP8_COMP *cpi)
{
LAYER_CONTEXT *lc = &cpi->layer_context[cpi->current_layer];
/* Save layer dependent coding state */
lc->target_bandwidth = cpi->target_bandwidth;
lc->starting_buffer_level = cpi->oxcf.starting_buffer_level;
lc->optimal_buffer_level = cpi->oxcf.optimal_buffer_level;
lc->maximum_buffer_size = cpi->oxcf.maximum_buffer_size;
lc->starting_buffer_level_in_ms = cpi->oxcf.starting_buffer_level_in_ms;
lc->optimal_buffer_level_in_ms = cpi->oxcf.optimal_buffer_level_in_ms;
lc->maximum_buffer_size_in_ms = cpi->oxcf.maximum_buffer_size_in_ms;
lc->buffer_level = cpi->buffer_level;
lc->bits_off_target = cpi->bits_off_target;
lc->total_actual_bits = cpi->total_actual_bits;
lc->worst_quality = cpi->worst_quality;
lc->active_worst_quality = cpi->active_worst_quality;
lc->best_quality = cpi->best_quality;
lc->active_best_quality = cpi->active_best_quality;
lc->ni_av_qi = cpi->ni_av_qi;
lc->ni_tot_qi = cpi->ni_tot_qi;
lc->ni_frames = cpi->ni_frames;
lc->avg_frame_qindex = cpi->avg_frame_qindex;
lc->rate_correction_factor = cpi->rate_correction_factor;
lc->key_frame_rate_correction_factor = cpi->key_frame_rate_correction_factor;
lc->gf_rate_correction_factor = cpi->gf_rate_correction_factor;
lc->zbin_over_quant = cpi->zbin_over_quant;
lc->inter_frame_target = cpi->inter_frame_target;
lc->total_byte_count = cpi->total_byte_count;
lc->filter_level = cpi->common.filter_level;
lc->last_frame_percent_intra = cpi->last_frame_percent_intra;
memcpy (lc->count_mb_ref_frame_usage,
cpi->count_mb_ref_frame_usage,
sizeof(cpi->count_mb_ref_frame_usage));
}
static void restore_layer_context(VP8_COMP *cpi, const int layer)
{
LAYER_CONTEXT *lc = &cpi->layer_context[layer];
/* Restore layer dependent coding state */
cpi->current_layer = layer;
cpi->target_bandwidth = lc->target_bandwidth;
cpi->oxcf.target_bandwidth = lc->target_bandwidth;
cpi->oxcf.starting_buffer_level = lc->starting_buffer_level;
cpi->oxcf.optimal_buffer_level = lc->optimal_buffer_level;
cpi->oxcf.maximum_buffer_size = lc->maximum_buffer_size;
cpi->oxcf.starting_buffer_level_in_ms = lc->starting_buffer_level_in_ms;
cpi->oxcf.optimal_buffer_level_in_ms = lc->optimal_buffer_level_in_ms;
cpi->oxcf.maximum_buffer_size_in_ms = lc->maximum_buffer_size_in_ms;
cpi->buffer_level = lc->buffer_level;
cpi->bits_off_target = lc->bits_off_target;
cpi->total_actual_bits = lc->total_actual_bits;
cpi->active_worst_quality = lc->active_worst_quality;
cpi->active_best_quality = lc->active_best_quality;
cpi->ni_av_qi = lc->ni_av_qi;
cpi->ni_tot_qi = lc->ni_tot_qi;
cpi->ni_frames = lc->ni_frames;
cpi->avg_frame_qindex = lc->avg_frame_qindex;
cpi->rate_correction_factor = lc->rate_correction_factor;
cpi->key_frame_rate_correction_factor = lc->key_frame_rate_correction_factor;
cpi->gf_rate_correction_factor = lc->gf_rate_correction_factor;
cpi->zbin_over_quant = lc->zbin_over_quant;
cpi->inter_frame_target = lc->inter_frame_target;
cpi->total_byte_count = lc->total_byte_count;
cpi->common.filter_level = lc->filter_level;
cpi->last_frame_percent_intra = lc->last_frame_percent_intra;
memcpy (cpi->count_mb_ref_frame_usage,
lc->count_mb_ref_frame_usage,
sizeof(cpi->count_mb_ref_frame_usage));
}
2010-05-18 19:58:33 +04:00
static void setup_features(VP8_COMP *cpi)
{
// If segmentation enabled set the update flags
if ( cpi->mb.e_mbd.segmentation_enabled )
{
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
}
else
{
cpi->mb.e_mbd.update_mb_segmentation_map = 0;
cpi->mb.e_mbd.update_mb_segmentation_data = 0;
}
2010-05-18 19:58:33 +04:00
cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 0;
cpi->mb.e_mbd.mode_ref_lf_delta_update = 0;
vpx_memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas));
vpx_memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas));
vpx_memset(cpi->mb.e_mbd.last_ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas));
vpx_memset(cpi->mb.e_mbd.last_mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas));
2010-05-18 19:58:33 +04:00
set_default_lf_deltas(cpi);
2010-05-18 19:58:33 +04:00
}
static void dealloc_raw_frame_buffers(VP8_COMP *cpi);
static void dealloc_compressor_data(VP8_COMP *cpi)
2010-05-18 19:58:33 +04:00
{
vpx_free(cpi->tplist);
cpi->tplist = NULL;
/* Delete last frame MV storage buffers */
vpx_free(cpi->lfmv);
cpi->lfmv = 0;
vpx_free(cpi->lf_ref_frame_sign_bias);
cpi->lf_ref_frame_sign_bias = 0;
vpx_free(cpi->lf_ref_frame);
cpi->lf_ref_frame = 0;
2010-05-18 19:58:33 +04:00
/* Delete sementation map */
vpx_free(cpi->segmentation_map);
2010-05-18 19:58:33 +04:00
cpi->segmentation_map = 0;
vpx_free(cpi->active_map);
2010-05-18 19:58:33 +04:00
cpi->active_map = 0;
vp8_de_alloc_frame_buffers(&cpi->common);
vp8_yv12_de_alloc_frame_buffer(&cpi->pick_lf_lvl_frame);
2010-05-18 19:58:33 +04:00
vp8_yv12_de_alloc_frame_buffer(&cpi->scaled_source);
dealloc_raw_frame_buffers(cpi);
2010-05-18 19:58:33 +04:00
vpx_free(cpi->tok);
cpi->tok = 0;
/* Structure used to monitor GF usage */
vpx_free(cpi->gf_active_flags);
cpi->gf_active_flags = 0;
/* Activity mask based per mb zbin adjustments */
vpx_free(cpi->mb_activity_map);
cpi->mb_activity_map = 0;
vpx_free(cpi->mb_norm_activity_map);
cpi->mb_norm_activity_map = 0;
vpx_free(cpi->mb.pip);
cpi->mb.pip = 0;
#if CONFIG_MULTITHREAD
vpx_free(cpi->mt_current_mb_col);
cpi->mt_current_mb_col = NULL;
#endif
2010-05-18 19:58:33 +04:00
}
static void enable_segmentation(VP8_COMP *cpi)
2010-05-18 19:58:33 +04:00
{
/* Set the appropriate feature bit */
2010-05-18 19:58:33 +04:00
cpi->mb.e_mbd.segmentation_enabled = 1;
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
}
static void disable_segmentation(VP8_COMP *cpi)
2010-05-18 19:58:33 +04:00
{
/* Clear the appropriate feature bit */
2010-05-18 19:58:33 +04:00
cpi->mb.e_mbd.segmentation_enabled = 0;
}
/* Valid values for a segment are 0 to 3
* Segmentation map is arrange as [Rows][Columns]
*/
static void set_segmentation_map(VP8_COMP *cpi, unsigned char *segmentation_map)
2010-05-18 19:58:33 +04:00
{
/* Copy in the new segmentation map */
2010-05-18 19:58:33 +04:00
vpx_memcpy(cpi->segmentation_map, segmentation_map, (cpi->common.mb_rows * cpi->common.mb_cols));
/* Signal that the map should be updated. */
2010-05-18 19:58:33 +04:00
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
}
/* The values given for each segment can be either deltas (from the default
* value chosen for the frame) or absolute values.
*
* Valid range for abs values is:
* (0-127 for MB_LVL_ALT_Q), (0-63 for SEGMENT_ALT_LF)
* Valid range for delta values are:
* (+/-127 for MB_LVL_ALT_Q), (+/-63 for SEGMENT_ALT_LF)
*
* abs_delta = SEGMENT_DELTADATA (deltas)
* abs_delta = SEGMENT_ABSDATA (use the absolute values given).
*
*/
static void set_segment_data(VP8_COMP *cpi, signed char *feature_data, unsigned char abs_delta)
2010-05-18 19:58:33 +04:00
{
cpi->mb.e_mbd.mb_segement_abs_delta = abs_delta;
vpx_memcpy(cpi->segment_feature_data, feature_data, sizeof(cpi->segment_feature_data));
}
static void segmentation_test_function(VP8_COMP *cpi)
2010-05-18 19:58:33 +04:00
{
unsigned char *seg_map;
signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS];
// Create a temporary map for segmentation data.
2010-05-18 19:58:33 +04:00
CHECK_MEM_ERROR(seg_map, vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols, 1));
// Set the segmentation Map
set_segmentation_map(cpi, seg_map);
2010-05-18 19:58:33 +04:00
// Activate segmentation.
enable_segmentation(cpi);
2010-05-18 19:58:33 +04:00
// Set up the quant segment data
2010-05-18 19:58:33 +04:00
feature_data[MB_LVL_ALT_Q][0] = 0;
feature_data[MB_LVL_ALT_Q][1] = 4;
feature_data[MB_LVL_ALT_Q][2] = 0;
feature_data[MB_LVL_ALT_Q][3] = 0;
// Set up the loop segment data
2010-05-18 19:58:33 +04:00
feature_data[MB_LVL_ALT_LF][0] = 0;
feature_data[MB_LVL_ALT_LF][1] = 0;
feature_data[MB_LVL_ALT_LF][2] = 0;
feature_data[MB_LVL_ALT_LF][3] = 0;
// Initialise the feature data structure
// SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1
set_segment_data(cpi, &feature_data[0][0], SEGMENT_DELTADATA);
2010-05-18 19:58:33 +04:00
// Delete sementation map
vpx_free(seg_map);
2010-05-18 19:58:33 +04:00
seg_map = 0;
}
/* A simple function to cyclically refresh the background at a lower Q */
2010-05-18 19:58:33 +04:00
static void cyclic_background_refresh(VP8_COMP *cpi, int Q, int lf_adjustment)
{
unsigned char *seg_map = cpi->segmentation_map;
2010-05-18 19:58:33 +04:00
signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS];
int i;
int block_count = cpi->cyclic_refresh_mode_max_mbs_perframe;
int mbs_in_frame = cpi->common.mb_rows * cpi->common.mb_cols;
cpi->cyclic_refresh_q = Q / 2;
2010-05-18 19:58:33 +04:00
// Set every macroblock to be eligible for update.
// For key frame this will reset seg map to 0.
vpx_memset(cpi->segmentation_map, 0, mbs_in_frame);
2010-05-18 19:58:33 +04:00
if (cpi->common.frame_type != KEY_FRAME)
{
/* Cycle through the macro_block rows */
/* MB loop to set local segmentation map */
i = cpi->cyclic_refresh_mode_index;
assert(i < mbs_in_frame);
do
2010-05-18 19:58:33 +04:00
{
/* If the MB is as a candidate for clean up then mark it for
* possible boost/refresh (segment 1) The segment id may get
* reset to 0 later if the MB gets coded anything other than
* last frame 0,0 as only (last frame 0,0) MBs are eligable for
* refresh : that is to say Mbs likely to be background blocks.
*/
if (cpi->cyclic_refresh_map[i] == 0)
{
seg_map[i] = 1;
block_count --;
}
else if (cpi->cyclic_refresh_map[i] < 0)
cpi->cyclic_refresh_map[i]++;
i++;
if (i == mbs_in_frame)
i = 0;
2010-05-18 19:58:33 +04:00
}
while(block_count && i != cpi->cyclic_refresh_mode_index);
2010-05-18 19:58:33 +04:00
cpi->cyclic_refresh_mode_index = i;
}
/* Activate segmentation. */
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
enable_segmentation(cpi);
2010-05-18 19:58:33 +04:00
/* Set up the quant segment data */
2010-05-18 19:58:33 +04:00
feature_data[MB_LVL_ALT_Q][0] = 0;
feature_data[MB_LVL_ALT_Q][1] = (cpi->cyclic_refresh_q - Q);
feature_data[MB_LVL_ALT_Q][2] = 0;
feature_data[MB_LVL_ALT_Q][3] = 0;
/* Set up the loop segment data */
2010-05-18 19:58:33 +04:00
feature_data[MB_LVL_ALT_LF][0] = 0;
feature_data[MB_LVL_ALT_LF][1] = lf_adjustment;
feature_data[MB_LVL_ALT_LF][2] = 0;
feature_data[MB_LVL_ALT_LF][3] = 0;
/* Initialise the feature data structure */
set_segment_data(cpi, &feature_data[0][0], SEGMENT_DELTADATA);
2010-05-18 19:58:33 +04:00
}
static void set_default_lf_deltas(VP8_COMP *cpi)
2010-05-18 19:58:33 +04:00
{
cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 1;
cpi->mb.e_mbd.mode_ref_lf_delta_update = 1;
vpx_memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas));
vpx_memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas));
/* Test of ref frame deltas */
2010-05-18 19:58:33 +04:00
cpi->mb.e_mbd.ref_lf_deltas[INTRA_FRAME] = 2;
cpi->mb.e_mbd.ref_lf_deltas[LAST_FRAME] = 0;
cpi->mb.e_mbd.ref_lf_deltas[GOLDEN_FRAME] = -2;
cpi->mb.e_mbd.ref_lf_deltas[ALTREF_FRAME] = -2;
cpi->mb.e_mbd.mode_lf_deltas[0] = 4; /* BPRED */
if(cpi->oxcf.Mode == MODE_REALTIME)
cpi->mb.e_mbd.mode_lf_deltas[1] = -12; /* Zero */
else
cpi->mb.e_mbd.mode_lf_deltas[1] = -2; /* Zero */
cpi->mb.e_mbd.mode_lf_deltas[2] = 2; /* New mv */
cpi->mb.e_mbd.mode_lf_deltas[3] = 4; /* Split mv */
2010-05-18 19:58:33 +04:00
}
/* Convenience macros for mapping speed and mode into a continuous
* range
*/
#define GOOD(x) (x+1)
#define RT(x) (x+7)
static int speed_map(int speed, const int *map)
{
int res;
do
{
res = *map++;
} while(speed >= *map++);
return res;
}
static const int thresh_mult_map_znn[] = {
/* map common to zero, nearest, and near */
0, GOOD(2), 1500, GOOD(3), 2000, RT(0), 1000, RT(2), 2000, INT_MAX
};
static const int thresh_mult_map_vhpred[] = {
1000, GOOD(2), 1500, GOOD(3), 2000, RT(0), 1000, RT(1), 2000,
RT(7), INT_MAX, INT_MAX
};
static const int thresh_mult_map_bpred[] = {
2000, GOOD(0), 2500, GOOD(2), 5000, GOOD(3), 7500, RT(0), 2500, RT(1), 5000,
RT(6), INT_MAX, INT_MAX
};
static const int thresh_mult_map_tm[] = {
1000, GOOD(2), 1500, GOOD(3), 2000, RT(0), 0, RT(1), 1000, RT(2), 2000,
RT(7), INT_MAX, INT_MAX
};
static const int thresh_mult_map_new1[] = {
1000, GOOD(2), 2000, RT(0), 2000, INT_MAX
};
static const int thresh_mult_map_new2[] = {
1000, GOOD(2), 2000, GOOD(3), 2500, GOOD(5), 4000, RT(0), 2000, RT(2), 2500,
RT(5), 4000, INT_MAX
};
static const int thresh_mult_map_split1[] = {
2500, GOOD(0), 1700, GOOD(2), 10000, GOOD(3), 25000, GOOD(4), INT_MAX,
RT(0), 5000, RT(1), 10000, RT(2), 25000, RT(3), INT_MAX, INT_MAX
};
static const int thresh_mult_map_split2[] = {
5000, GOOD(0), 4500, GOOD(2), 20000, GOOD(3), 50000, GOOD(4), INT_MAX,
RT(0), 10000, RT(1), 20000, RT(2), 50000, RT(3), INT_MAX, INT_MAX
};
static const int mode_check_freq_map_zn2[] = {
/* {zero,nearest}{2,3} */
0, RT(10), 1<<1, RT(11), 1<<2, RT(12), 1<<3, INT_MAX
};
static const int mode_check_freq_map_vhbpred[] = {
0, GOOD(5), 2, RT(0), 0, RT(3), 2, RT(5), 4, INT_MAX
};
static const int mode_check_freq_map_near2[] = {
0, GOOD(5), 2, RT(0), 0, RT(3), 2, RT(10), 1<<2, RT(11), 1<<3, RT(12), 1<<4,
INT_MAX
};
static const int mode_check_freq_map_new1[] = {
0, RT(10), 1<<1, RT(11), 1<<2, RT(12), 1<<3, INT_MAX
};
static const int mode_check_freq_map_new2[] = {
0, GOOD(5), 4, RT(0), 0, RT(3), 4, RT(10), 1<<3, RT(11), 1<<4, RT(12), 1<<5,
INT_MAX
};
static const int mode_check_freq_map_split1[] = {
0, GOOD(2), 2, GOOD(3), 7, RT(1), 2, RT(2), 7, INT_MAX
};
static const int mode_check_freq_map_split2[] = {
0, GOOD(1), 2, GOOD(2), 4, GOOD(3), 15, RT(1), 4, RT(2), 15, INT_MAX
};
2010-05-18 19:58:33 +04:00
void vp8_set_speed_features(VP8_COMP *cpi)
{
SPEED_FEATURES *sf = &cpi->sf;
int Mode = cpi->compressor_speed;
int Speed = cpi->Speed;
int i;
VP8_COMMON *cm = &cpi->common;
int last_improved_quant = sf->improved_quant;
int ref_frames;
2010-05-18 19:58:33 +04:00
/* Initialise default mode frequency sampling variables */
2010-05-18 19:58:33 +04:00
for (i = 0; i < MAX_MODES; i ++)
{
cpi->mode_check_freq[i] = 0;
cpi->mode_test_hit_counts[i] = 0;
cpi->mode_chosen_counts[i] = 0;
}
cpi->mbs_tested_so_far = 0;
/* best quality defaults */
2010-05-18 19:58:33 +04:00
sf->RD = 1;
sf->search_method = NSTEP;
sf->improved_quant = 1;
sf->improved_dct = 1;
sf->auto_filter = 1;
sf->recode_loop = 1;
sf->quarter_pixel_search = 1;
sf->half_pixel_search = 1;
sf->iterative_sub_pixel = 1;
sf->optimize_coefficients = 1;
sf->use_fastquant_for_pick = 0;
sf->no_skip_block4x4_search = 1;
2010-05-18 19:58:33 +04:00
sf->first_step = 0;
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
sf->improved_mv_pred = 1;
2010-05-18 19:58:33 +04:00
/* default thresholds to 0 */
2010-05-18 19:58:33 +04:00
for (i = 0; i < MAX_MODES; i++)
sf->thresh_mult[i] = 0;
/* Count enabled references */
ref_frames = 1;
if (cpi->ref_frame_flags & VP8_LAST_FRAME)
ref_frames++;
if (cpi->ref_frame_flags & VP8_GOLD_FRAME)
ref_frames++;
if (cpi->ref_frame_flags & VP8_ALTR_FRAME)
ref_frames++;
/* Convert speed to continuous range, with clamping */
if (Mode == 0)
Speed = 0;
else if (Mode == 2)
Speed = RT(Speed);
else
{
if (Speed > 5)
Speed = 5;
Speed = GOOD(Speed);
}
sf->thresh_mult[THR_ZERO1] =
sf->thresh_mult[THR_NEAREST1] =
sf->thresh_mult[THR_NEAR1] =
sf->thresh_mult[THR_DC] = 0; /* always */
sf->thresh_mult[THR_ZERO2] =
sf->thresh_mult[THR_ZERO3] =
sf->thresh_mult[THR_NEAREST2] =
sf->thresh_mult[THR_NEAREST3] =
sf->thresh_mult[THR_NEAR2] =
sf->thresh_mult[THR_NEAR3] = speed_map(Speed, thresh_mult_map_znn);
sf->thresh_mult[THR_V_PRED] =
sf->thresh_mult[THR_H_PRED] = speed_map(Speed, thresh_mult_map_vhpred);
sf->thresh_mult[THR_B_PRED] = speed_map(Speed, thresh_mult_map_bpred);
sf->thresh_mult[THR_TM] = speed_map(Speed, thresh_mult_map_tm);
sf->thresh_mult[THR_NEW1] = speed_map(Speed, thresh_mult_map_new1);
sf->thresh_mult[THR_NEW2] =
sf->thresh_mult[THR_NEW3] = speed_map(Speed, thresh_mult_map_new2);
sf->thresh_mult[THR_SPLIT1] = speed_map(Speed, thresh_mult_map_split1);
sf->thresh_mult[THR_SPLIT2] =
sf->thresh_mult[THR_SPLIT3] = speed_map(Speed, thresh_mult_map_split2);
cpi->mode_check_freq[THR_ZERO1] =
cpi->mode_check_freq[THR_NEAREST1] =
cpi->mode_check_freq[THR_NEAR1] =
cpi->mode_check_freq[THR_TM] =
cpi->mode_check_freq[THR_DC] = 0; /* always */
cpi->mode_check_freq[THR_ZERO2] =
cpi->mode_check_freq[THR_ZERO3] =
cpi->mode_check_freq[THR_NEAREST2] =
cpi->mode_check_freq[THR_NEAREST3] = speed_map(Speed,
mode_check_freq_map_zn2);
cpi->mode_check_freq[THR_NEAR2] =
cpi->mode_check_freq[THR_NEAR3] = speed_map(Speed,
mode_check_freq_map_near2);
cpi->mode_check_freq[THR_V_PRED] =
cpi->mode_check_freq[THR_H_PRED] =
cpi->mode_check_freq[THR_B_PRED] = speed_map(Speed,
mode_check_freq_map_vhbpred);
cpi->mode_check_freq[THR_NEW1] = speed_map(Speed,
mode_check_freq_map_new1);
cpi->mode_check_freq[THR_NEW2] =
cpi->mode_check_freq[THR_NEW3] = speed_map(Speed,
mode_check_freq_map_new2);
cpi->mode_check_freq[THR_SPLIT1] = speed_map(Speed,
mode_check_freq_map_split1);
cpi->mode_check_freq[THR_SPLIT2] =
cpi->mode_check_freq[THR_SPLIT3] = speed_map(Speed,
mode_check_freq_map_split2);
Speed = cpi->Speed;
2010-05-18 19:58:33 +04:00
switch (Mode)
{
#if !(CONFIG_REALTIME_ONLY)
case 0: /* best quality mode */
2010-05-18 19:58:33 +04:00
sf->first_step = 0;
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
break;
case 1:
case 3:
if (Speed > 0)
2010-05-18 19:58:33 +04:00
{
/* Disable coefficient optimization above speed 0 */
sf->optimize_coefficients = 0;
sf->use_fastquant_for_pick = 1;
sf->no_skip_block4x4_search = 0;
sf->first_step = 1;
2010-05-18 19:58:33 +04:00
}
if (Speed > 2)
2010-05-18 19:58:33 +04:00
{
sf->improved_quant = 0;
sf->improved_dct = 0;
/* Only do recode loop on key frames, golden frames and
* alt ref frames
*/
2010-05-18 19:58:33 +04:00
sf->recode_loop = 2;
}
if (Speed > 3)
2010-05-18 19:58:33 +04:00
{
sf->auto_filter = 1;
sf->recode_loop = 0; /* recode loop off */
sf->RD = 0; /* Turn rd off */
2010-05-18 19:58:33 +04:00
}
if (Speed > 4)
{
sf->auto_filter = 0; /* Faster selection of loop filter */
2010-05-18 19:58:33 +04:00
}
break;
#endif
case 2:
sf->optimize_coefficients = 0;
sf->recode_loop = 0;
sf->auto_filter = 1;
sf->iterative_sub_pixel = 1;
sf->search_method = NSTEP;
if (Speed > 0)
{
sf->improved_quant = 0;
sf->improved_dct = 0;
sf->use_fastquant_for_pick = 1;
sf->no_skip_block4x4_search = 0;
sf->first_step = 1;
2010-05-18 19:58:33 +04:00
}
if (Speed > 2)
sf->auto_filter = 0; /* Faster selection of loop filter */
2010-05-18 19:58:33 +04:00
if (Speed > 3)
{
sf->RD = 0;
sf->auto_filter = 1;
}
if (Speed > 4)
{
sf->auto_filter = 0; /* Faster selection of loop filter */
2010-05-18 19:58:33 +04:00
sf->search_method = HEX;
sf->iterative_sub_pixel = 0;
2010-05-18 19:58:33 +04:00
}
if (Speed > 6)
{
unsigned int sum = 0;
2010-05-18 19:58:33 +04:00
unsigned int total_mbs = cm->MBs;
int i, thresh;
unsigned int total_skip;
2010-05-18 19:58:33 +04:00
int min = 2000;
if (cpi->oxcf.encode_breakout > 2000)
min = cpi->oxcf.encode_breakout;
min >>= 7;
for (i = 0; i < min; i++)
{
sum += cpi->error_bins[i];
}
total_skip = sum;
sum = 0;
/* i starts from 2 to make sure thresh started from 2048 */
2010-05-18 19:58:33 +04:00
for (; i < 1024; i++)
{
sum += cpi->error_bins[i];
if (10 * sum >= (unsigned int)(cpi->Speed - 6)*(total_mbs - total_skip))
break;
}
i--;
thresh = (i << 7);
if (thresh < 2000)
thresh = 2000;
if (ref_frames > 1)
2010-05-18 19:58:33 +04:00
{
sf->thresh_mult[THR_NEW1 ] = thresh;
sf->thresh_mult[THR_NEAREST1 ] = thresh >> 1;
sf->thresh_mult[THR_NEAR1 ] = thresh >> 1;
2010-05-18 19:58:33 +04:00
}
if (ref_frames > 2)
2010-05-18 19:58:33 +04:00
{
sf->thresh_mult[THR_NEW2] = thresh << 1;
sf->thresh_mult[THR_NEAREST2 ] = thresh;
sf->thresh_mult[THR_NEAR2 ] = thresh;
2010-05-18 19:58:33 +04:00
}
if (ref_frames > 3)
2010-05-18 19:58:33 +04:00
{
sf->thresh_mult[THR_NEW3] = thresh << 1;
sf->thresh_mult[THR_NEAREST3 ] = thresh;
sf->thresh_mult[THR_NEAR3 ] = thresh;
2010-05-18 19:58:33 +04:00
}
sf->improved_mv_pred = 0;
2010-05-18 19:58:33 +04:00
}
if (Speed > 8)
sf->quarter_pixel_search = 0;
if(cm->version == 0)
{
cm->filter_type = NORMAL_LOOPFILTER;
2010-05-18 19:58:33 +04:00
if (Speed >= 14)
cm->filter_type = SIMPLE_LOOPFILTER;
}
else
{
2010-05-18 19:58:33 +04:00
cm->filter_type = SIMPLE_LOOPFILTER;
}
2010-05-18 19:58:33 +04:00
/* This has a big hit on quality. Last resort */
2010-05-18 19:58:33 +04:00
if (Speed >= 15)
sf->half_pixel_search = 0;
2010-05-18 19:58:33 +04:00
vpx_memset(cpi->error_bins, 0, sizeof(cpi->error_bins));
}; /* switch */
/* Slow quant, dct and trellis not worthwhile for first pass
* so make sure they are always turned off.
*/
if ( cpi->pass == 1 )
{
sf->improved_quant = 0;
sf->optimize_coefficients = 0;
sf->improved_dct = 0;
}
2010-05-18 19:58:33 +04:00
if (cpi->sf.search_method == NSTEP)
{
vp8_init3smotion_compensation(&cpi->mb, cm->yv12_fb[cm->lst_fb_idx].y_stride);
2010-05-18 19:58:33 +04:00
}
else if (cpi->sf.search_method == DIAMOND)
{
vp8_init_dsmotion_compensation(&cpi->mb, cm->yv12_fb[cm->lst_fb_idx].y_stride);
2010-05-18 19:58:33 +04:00
}
if (cpi->sf.improved_dct)
{
cpi->mb.short_fdct8x4 = vp8_short_fdct8x4;
cpi->mb.short_fdct4x4 = vp8_short_fdct4x4;
2010-05-18 19:58:33 +04:00
}
else
{
/* No fast FDCT defined for any platform at this time. */
cpi->mb.short_fdct8x4 = vp8_short_fdct8x4;
cpi->mb.short_fdct4x4 = vp8_short_fdct4x4;
2010-05-18 19:58:33 +04:00
}
cpi->mb.short_walsh4x4 = vp8_short_walsh4x4;
2010-05-18 19:58:33 +04:00
if (cpi->sf.improved_quant)
{
cpi->mb.quantize_b = vp8_regular_quantize_b;
cpi->mb.quantize_b_pair = vp8_regular_quantize_b_pair;
2010-05-18 19:58:33 +04:00
}
else
{
cpi->mb.quantize_b = vp8_fast_quantize_b;
cpi->mb.quantize_b_pair = vp8_fast_quantize_b_pair;
2010-05-18 19:58:33 +04:00
}
if (cpi->sf.improved_quant != last_improved_quant)
vp8cx_init_quantizer(cpi);
2010-05-18 19:58:33 +04:00
if (cpi->sf.iterative_sub_pixel == 1)
{
cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step_iteratively;
}
else if (cpi->sf.quarter_pixel_search)
{
cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step;
}
else if (cpi->sf.half_pixel_search)
{
cpi->find_fractional_mv_step = vp8_find_best_half_pixel_step;
}
else
{
cpi->find_fractional_mv_step = vp8_skip_fractional_mv_step;
}
if (cpi->sf.optimize_coefficients == 1 && cpi->pass!=1)
cpi->mb.optimize = 1;
2010-05-18 19:58:33 +04:00
else
cpi->mb.optimize = 0;
if (cpi->common.full_pixel)
cpi->find_fractional_mv_step = vp8_skip_fractional_mv_step;
#ifdef SPEEDSTATS
frames_at_speed[cpi->Speed]++;
#endif
}
#undef GOOD
#undef RT
2010-05-18 19:58:33 +04:00
static void alloc_raw_frame_buffers(VP8_COMP *cpi)
{
#if VP8_TEMPORAL_ALT_REF
int width = (cpi->oxcf.Width + 15) & ~15;
int height = (cpi->oxcf.Height + 15) & ~15;
#endif
2010-05-18 19:58:33 +04:00
cpi->lookahead = vp8_lookahead_init(cpi->oxcf.Width, cpi->oxcf.Height,
cpi->oxcf.lag_in_frames);
if(!cpi->lookahead)
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate lag buffers");
2010-05-18 19:58:33 +04:00
#if VP8_TEMPORAL_ALT_REF
if (vp8_yv12_alloc_frame_buffer(&cpi->alt_ref_buffer,
width, height, VP8BORDERINPIXELS))
2010-05-18 19:58:33 +04:00
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate altref buffer");
#endif
}
static void dealloc_raw_frame_buffers(VP8_COMP *cpi)
{
#if VP8_TEMPORAL_ALT_REF
vp8_yv12_de_alloc_frame_buffer(&cpi->alt_ref_buffer);
#endif
vp8_lookahead_destroy(cpi->lookahead);
}
static int vp8_alloc_partition_data(VP8_COMP *cpi)
{
vpx_free(cpi->mb.pip);
cpi->mb.pip = vpx_calloc((cpi->common.mb_cols + 1) *
(cpi->common.mb_rows + 1),
sizeof(PARTITION_INFO));
if(!cpi->mb.pip)
return 1;
cpi->mb.pi = cpi->mb.pip + cpi->common.mode_info_stride + 1;
return 0;
}
2010-05-18 19:58:33 +04:00
void vp8_alloc_compressor_data(VP8_COMP *cpi)
{
VP8_COMMON *cm = & cpi->common;
int width = cm->Width;
int height = cm->Height;
if (vp8_alloc_frame_buffers(cm, width, height))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffers");
if (vp8_alloc_partition_data(cpi))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate partition data");
2010-05-18 19:58:33 +04:00
if ((width & 0xf) != 0)
width += 16 - (width & 0xf);
if ((height & 0xf) != 0)
height += 16 - (height & 0xf);
if (vp8_yv12_alloc_frame_buffer(&cpi->pick_lf_lvl_frame,
2010-05-18 19:58:33 +04:00
width, height, VP8BORDERINPIXELS))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate last frame buffer");
if (vp8_yv12_alloc_frame_buffer(&cpi->scaled_source,
width, height, VP8BORDERINPIXELS))
2010-05-18 19:58:33 +04:00
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate scaled source buffer");
vpx_free(cpi->tok);
2010-05-18 19:58:33 +04:00
{
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
unsigned int tokens = 8 * 24 * 16; /* one MB for each thread */
#else
2010-05-18 19:58:33 +04:00
unsigned int tokens = cm->mb_rows * cm->mb_cols * 24 * 16;
#endif
2010-05-18 19:58:33 +04:00
CHECK_MEM_ERROR(cpi->tok, vpx_calloc(tokens, sizeof(*cpi->tok)));
}
/* Data used for real time vc mode to see if gf needs refreshing */
2010-05-18 19:58:33 +04:00
cpi->inter_zz_count = 0;
cpi->zeromv_count = 0;
2010-05-18 19:58:33 +04:00
cpi->gf_bad_count = 0;
cpi->gf_update_recommended = 0;
/* Structures used to monitor GF usage */
vpx_free(cpi->gf_active_flags);
CHECK_MEM_ERROR(cpi->gf_active_flags,
vpx_calloc(sizeof(*cpi->gf_active_flags),
cm->mb_rows * cm->mb_cols));
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
vpx_free(cpi->mb_activity_map);
CHECK_MEM_ERROR(cpi->mb_activity_map,
vpx_calloc(sizeof(*cpi->mb_activity_map),
cm->mb_rows * cm->mb_cols));
vpx_free(cpi->mb_norm_activity_map);
CHECK_MEM_ERROR(cpi->mb_norm_activity_map,
vpx_calloc(sizeof(*cpi->mb_norm_activity_map),
cm->mb_rows * cm->mb_cols));
/* allocate memory for storing last frame's MVs for MV prediction. */
vpx_free(cpi->lfmv);
CHECK_MEM_ERROR(cpi->lfmv, vpx_calloc((cm->mb_rows+2) * (cm->mb_cols+2),
sizeof(*cpi->lfmv)));
vpx_free(cpi->lf_ref_frame_sign_bias);
CHECK_MEM_ERROR(cpi->lf_ref_frame_sign_bias,
vpx_calloc((cm->mb_rows+2) * (cm->mb_cols+2),
sizeof(*cpi->lf_ref_frame_sign_bias)));
vpx_free(cpi->lf_ref_frame);
CHECK_MEM_ERROR(cpi->lf_ref_frame,
vpx_calloc((cm->mb_rows+2) * (cm->mb_cols+2),
sizeof(*cpi->lf_ref_frame)));
/* Create the encoder segmentation map and set all entries to 0 */
vpx_free(cpi->segmentation_map);
CHECK_MEM_ERROR(cpi->segmentation_map,
vpx_calloc(cm->mb_rows * cm->mb_cols,
sizeof(*cpi->segmentation_map)));
cpi->cyclic_refresh_mode_index = 0;
vpx_free(cpi->active_map);
CHECK_MEM_ERROR(cpi->active_map,
vpx_calloc(cm->mb_rows * cm->mb_cols,
sizeof(*cpi->active_map)));
vpx_memset(cpi->active_map , 1, (cm->mb_rows * cm->mb_cols));
#if CONFIG_MULTITHREAD
if (width < 640)
cpi->mt_sync_range = 1;
else if (width <= 1280)
cpi->mt_sync_range = 4;
else if (width <= 2560)
cpi->mt_sync_range = 8;
else
cpi->mt_sync_range = 16;
if (cpi->oxcf.multi_threaded > 1)
{
vpx_free(cpi->mt_current_mb_col);
CHECK_MEM_ERROR(cpi->mt_current_mb_col,
vpx_malloc(sizeof(*cpi->mt_current_mb_col) * cm->mb_rows));
}
#endif
vpx_free(cpi->tplist);
CHECK_MEM_ERROR(cpi->tplist, vpx_malloc(sizeof(TOKENLIST) * cm->mb_rows));
2010-05-18 19:58:33 +04:00
}
/* Quant MOD */
2010-05-18 19:58:33 +04:00
static const int q_trans[] =
{
0, 1, 2, 3, 4, 5, 7, 8,
9, 10, 12, 13, 15, 17, 18, 19,
20, 21, 23, 24, 25, 26, 27, 28,
29, 30, 31, 33, 35, 37, 39, 41,
43, 45, 47, 49, 51, 53, 55, 57,
59, 61, 64, 67, 70, 73, 76, 79,
82, 85, 88, 91, 94, 97, 100, 103,
106, 109, 112, 115, 118, 121, 124, 127,
};
int vp8_reverse_trans(int x)
{
int i;
for (i = 0; i < 64; i++)
if (q_trans[i] >= x)
return i;
return 63;
}
2010-05-18 19:58:33 +04:00
void vp8_new_frame_rate(VP8_COMP *cpi, double framerate)
{
2010-10-15 00:19:06 +04:00
if(framerate < .1)
framerate = 30;
cpi->frame_rate = framerate;
cpi->output_frame_rate = framerate;
cpi->per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth /
cpi->output_frame_rate);
cpi->av_per_frame_bandwidth = cpi->per_frame_bandwidth;
cpi->min_frame_bandwidth = (int)(cpi->av_per_frame_bandwidth *
cpi->oxcf.two_pass_vbrmin_section / 100);
2010-05-18 19:58:33 +04:00
/* Set Maximum gf/arf interval */
cpi->max_gf_interval = ((int)(cpi->output_frame_rate / 2.0) + 2);
if(cpi->max_gf_interval < 12)
cpi->max_gf_interval = 12;
2010-05-18 19:58:33 +04:00
/* Extended interval for genuinely static scenes */
cpi->twopass.static_scene_max_gf_interval = cpi->key_frame_frequency >> 1;
2010-05-18 19:58:33 +04:00
/* Special conditions when altr ref frame enabled in lagged compress mode */
if (cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames)
2010-05-18 19:58:33 +04:00
{
if (cpi->max_gf_interval > cpi->oxcf.lag_in_frames - 1)
cpi->max_gf_interval = cpi->oxcf.lag_in_frames - 1;
if (cpi->twopass.static_scene_max_gf_interval > cpi->oxcf.lag_in_frames - 1)
cpi->twopass.static_scene_max_gf_interval = cpi->oxcf.lag_in_frames - 1;
2010-05-18 19:58:33 +04:00
}
if ( cpi->max_gf_interval > cpi->twopass.static_scene_max_gf_interval )
cpi->max_gf_interval = cpi->twopass.static_scene_max_gf_interval;
2010-05-18 19:58:33 +04:00
}
static int
rescale(int val, int num, int denom)
{
int64_t llnum = num;
int64_t llden = denom;
int64_t llval = val;
return (int)(llval * llnum / llden);
}
static void init_config(VP8_COMP *cpi, VP8_CONFIG *oxcf)
2010-05-18 19:58:33 +04:00
{
VP8_COMMON *cm = &cpi->common;
cpi->oxcf = *oxcf;
2010-05-18 19:58:33 +04:00
cpi->auto_gold = 1;
cpi->auto_adjust_gold_quantizer = 1;
cm->version = oxcf->Version;
vp8_setup_version(cm);
/* frame rate is not available on the first frame, as it's derived from
* the observed timestamps. The actual value used here doesn't matter
* too much, as it will adapt quickly. If the reciprocal of the timebase
* seems like a reasonable framerate, then use that as a guess, otherwise
* use 30.
*/
cpi->frame_rate = (double)(oxcf->timebase.den) /
(double)(oxcf->timebase.num);
if (cpi->frame_rate > 180)
cpi->frame_rate = 30;
cpi->ref_frame_rate = cpi->frame_rate;
/* change includes all joint functionality */
vp8_change_config(cpi, oxcf);
2010-05-18 19:58:33 +04:00
/* Initialize active best and worst q and average q values. */
cpi->active_worst_quality = cpi->oxcf.worst_allowed_q;
cpi->active_best_quality = cpi->oxcf.best_allowed_q;
cpi->avg_frame_qindex = cpi->oxcf.worst_allowed_q;
/* Initialise the starting buffer levels */
cpi->buffer_level = cpi->oxcf.starting_buffer_level;
2010-05-18 19:58:33 +04:00
cpi->bits_off_target = cpi->oxcf.starting_buffer_level;
cpi->rolling_target_bits = cpi->av_per_frame_bandwidth;
cpi->rolling_actual_bits = cpi->av_per_frame_bandwidth;
cpi->long_rolling_target_bits = cpi->av_per_frame_bandwidth;
cpi->long_rolling_actual_bits = cpi->av_per_frame_bandwidth;
2010-05-18 19:58:33 +04:00
cpi->total_actual_bits = 0;
cpi->total_target_vs_actual = 0;
2010-05-18 19:58:33 +04:00
/* Temporal scalabilty */
if (cpi->oxcf.number_of_layers > 1)
{
unsigned int i;
double prev_layer_frame_rate=0;
for (i=0; i<cpi->oxcf.number_of_layers; i++)
{
LAYER_CONTEXT *lc = &cpi->layer_context[i];
/* Layer configuration */
lc->frame_rate =
cpi->output_frame_rate / cpi->oxcf.rate_decimator[i];
lc->target_bandwidth = cpi->oxcf.target_bitrate[i] * 1000;
lc->starting_buffer_level_in_ms = oxcf->starting_buffer_level;
lc->optimal_buffer_level_in_ms = oxcf->optimal_buffer_level;
lc->maximum_buffer_size_in_ms = oxcf->maximum_buffer_size;
lc->starting_buffer_level =
rescale((int)(oxcf->starting_buffer_level),
lc->target_bandwidth, 1000);
if (oxcf->optimal_buffer_level == 0)
lc->optimal_buffer_level = lc->target_bandwidth / 8;
else
lc->optimal_buffer_level =
rescale((int)(oxcf->optimal_buffer_level),
lc->target_bandwidth, 1000);
if (oxcf->maximum_buffer_size == 0)
lc->maximum_buffer_size = lc->target_bandwidth / 8;
else
lc->maximum_buffer_size =
rescale((int)oxcf->maximum_buffer_size,
lc->target_bandwidth, 1000);
/* Work out the average size of a frame within this layer */
if (i > 0)
lc->avg_frame_size_for_layer =
(int)((cpi->oxcf.target_bitrate[i] -
cpi->oxcf.target_bitrate[i-1]) * 1000 /
(lc->frame_rate - prev_layer_frame_rate));
lc->active_worst_quality = cpi->oxcf.worst_allowed_q;
lc->active_best_quality = cpi->oxcf.best_allowed_q;
lc->avg_frame_qindex = cpi->oxcf.worst_allowed_q;
lc->buffer_level = lc->starting_buffer_level;
lc->bits_off_target = lc->starting_buffer_level;
lc->total_actual_bits = 0;
lc->ni_av_qi = 0;
lc->ni_tot_qi = 0;
lc->ni_frames = 0;
lc->rate_correction_factor = 1.0;
lc->key_frame_rate_correction_factor = 1.0;
lc->gf_rate_correction_factor = 1.0;
lc->inter_frame_target = 0;
prev_layer_frame_rate = lc->frame_rate;
}
}
2010-05-18 19:58:33 +04:00
#if VP8_TEMPORAL_ALT_REF
{
int i;
cpi->fixed_divide[0] = 0;
for (i = 1; i < 512; i++)
cpi->fixed_divide[i] = 0x80000 / i;
2010-05-18 19:58:33 +04:00
}
#endif
}
static void update_layer_contexts (VP8_COMP *cpi)
{
VP8_CONFIG *oxcf = &cpi->oxcf;
/* Update snapshots of the layer contexts to reflect new parameters */
if (oxcf->number_of_layers > 1)
{
unsigned int i;
double prev_layer_frame_rate=0;
for (i=0; i<oxcf->number_of_layers; i++)
{
LAYER_CONTEXT *lc = &cpi->layer_context[i];
lc->frame_rate =
cpi->ref_frame_rate / oxcf->rate_decimator[i];
lc->target_bandwidth = oxcf->target_bitrate[i] * 1000;
lc->starting_buffer_level = rescale(
(int)oxcf->starting_buffer_level_in_ms,
lc->target_bandwidth, 1000);
if (oxcf->optimal_buffer_level == 0)
lc->optimal_buffer_level = lc->target_bandwidth / 8;
else
lc->optimal_buffer_level = rescale(
(int)oxcf->optimal_buffer_level_in_ms,
lc->target_bandwidth, 1000);
if (oxcf->maximum_buffer_size == 0)
lc->maximum_buffer_size = lc->target_bandwidth / 8;
else
lc->maximum_buffer_size = rescale(
(int)oxcf->maximum_buffer_size_in_ms,
lc->target_bandwidth, 1000);
/* Work out the average size of a frame within this layer */
if (i > 0)
lc->avg_frame_size_for_layer =
(int)((oxcf->target_bitrate[i] -
oxcf->target_bitrate[i-1]) * 1000 /
(lc->frame_rate - prev_layer_frame_rate));
prev_layer_frame_rate = lc->frame_rate;
}
}
}
2010-05-18 19:58:33 +04:00
void vp8_change_config(VP8_COMP *cpi, VP8_CONFIG *oxcf)
2010-05-18 19:58:33 +04:00
{
VP8_COMMON *cm = &cpi->common;
int last_w, last_h;
2010-05-18 19:58:33 +04:00
if (!cpi)
return;
if (!oxcf)
return;
#if CONFIG_MULTITHREAD
/* wait for the last picture loopfilter thread done */
if (cpi->b_lpf_running)
{
sem_wait(&cpi->h_event_end_lpf);
cpi->b_lpf_running = 0;
}
#endif
2010-05-18 19:58:33 +04:00
if (cm->version != oxcf->Version)
{
cm->version = oxcf->Version;
vp8_setup_version(cm);
}
last_w = cpi->oxcf.Width;
last_h = cpi->oxcf.Height;
2010-05-18 19:58:33 +04:00
cpi->oxcf = *oxcf;
switch (cpi->oxcf.Mode)
{
case MODE_REALTIME:
cpi->pass = 0;
cpi->compressor_speed = 2;
if (cpi->oxcf.cpu_used < -16)
{
cpi->oxcf.cpu_used = -16;
}
if (cpi->oxcf.cpu_used > 16)
cpi->oxcf.cpu_used = 16;
break;
case MODE_GOODQUALITY:
cpi->pass = 0;
cpi->compressor_speed = 1;
if (cpi->oxcf.cpu_used < -5)
{
cpi->oxcf.cpu_used = -5;
}
if (cpi->oxcf.cpu_used > 5)
cpi->oxcf.cpu_used = 5;
break;
case MODE_BESTQUALITY:
cpi->pass = 0;
cpi->compressor_speed = 0;
break;
case MODE_FIRSTPASS:
cpi->pass = 1;
cpi->compressor_speed = 1;
break;
case MODE_SECONDPASS:
cpi->pass = 2;
cpi->compressor_speed = 1;
if (cpi->oxcf.cpu_used < -5)
{
cpi->oxcf.cpu_used = -5;
}
if (cpi->oxcf.cpu_used > 5)
cpi->oxcf.cpu_used = 5;
break;
case MODE_SECONDPASS_BEST:
cpi->pass = 2;
cpi->compressor_speed = 0;
break;
}
if (cpi->pass == 0)
2010-05-18 19:58:33 +04:00
cpi->auto_worst_q = 1;
cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q];
cpi->oxcf.best_allowed_q = q_trans[oxcf->best_allowed_q];
cpi->oxcf.cq_level = q_trans[cpi->oxcf.cq_level];
2010-05-18 19:58:33 +04:00
if (oxcf->fixed_q >= 0)
{
if (oxcf->worst_allowed_q < 0)
cpi->oxcf.fixed_q = q_trans[0];
else
cpi->oxcf.fixed_q = q_trans[oxcf->worst_allowed_q];
if (oxcf->alt_q < 0)
cpi->oxcf.alt_q = q_trans[0];
else
cpi->oxcf.alt_q = q_trans[oxcf->alt_q];
if (oxcf->key_q < 0)
cpi->oxcf.key_q = q_trans[0];
else
cpi->oxcf.key_q = q_trans[oxcf->key_q];
if (oxcf->gold_q < 0)
cpi->oxcf.gold_q = q_trans[0];
else
cpi->oxcf.gold_q = q_trans[oxcf->gold_q];
}
cpi->baseline_gf_interval =
cpi->oxcf.alt_freq ? cpi->oxcf.alt_freq : DEFAULT_GF_INTERVAL;
2010-05-18 19:58:33 +04:00
cpi->ref_frame_flags = VP8_ALTR_FRAME | VP8_GOLD_FRAME | VP8_LAST_FRAME;
2010-05-18 19:58:33 +04:00
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 1;
cm->refresh_entropy_probs = 1;
#if (CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
cpi->oxcf.token_partitions = 3;
#endif
2010-05-18 19:58:33 +04:00
if (cpi->oxcf.token_partitions >= 0 && cpi->oxcf.token_partitions <= 3)
cm->multi_token_partition =
(TOKEN_PARTITION) cpi->oxcf.token_partitions;
2010-05-18 19:58:33 +04:00
setup_features(cpi);
{
int i;
for (i = 0; i < MAX_MB_SEGMENTS; i++)
cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout;
}
/* At the moment the first order values may not be > MAXQ */
2010-05-18 19:58:33 +04:00
if (cpi->oxcf.fixed_q > MAXQ)
cpi->oxcf.fixed_q = MAXQ;
/* local file playback mode == really big buffer */
2010-05-18 19:58:33 +04:00
if (cpi->oxcf.end_usage == USAGE_LOCAL_FILE_PLAYBACK)
{
cpi->oxcf.starting_buffer_level = 60000;
cpi->oxcf.optimal_buffer_level = 60000;
cpi->oxcf.maximum_buffer_size = 240000;
cpi->oxcf.starting_buffer_level_in_ms = 60000;
cpi->oxcf.optimal_buffer_level_in_ms = 60000;
cpi->oxcf.maximum_buffer_size_in_ms = 240000;
2010-05-18 19:58:33 +04:00
}
/* Convert target bandwidth from Kbit/s to Bit/s */
2010-05-18 19:58:33 +04:00
cpi->oxcf.target_bandwidth *= 1000;
cpi->oxcf.starting_buffer_level =
rescale((int)cpi->oxcf.starting_buffer_level,
cpi->oxcf.target_bandwidth, 1000);
/* Set or reset optimal and maximum buffer levels. */
2010-05-18 19:58:33 +04:00
if (cpi->oxcf.optimal_buffer_level == 0)
cpi->oxcf.optimal_buffer_level = cpi->oxcf.target_bandwidth / 8;
else
cpi->oxcf.optimal_buffer_level =
rescale((int)cpi->oxcf.optimal_buffer_level,
cpi->oxcf.target_bandwidth, 1000);
2010-05-18 19:58:33 +04:00
if (cpi->oxcf.maximum_buffer_size == 0)
cpi->oxcf.maximum_buffer_size = cpi->oxcf.target_bandwidth / 8;
else
cpi->oxcf.maximum_buffer_size =
rescale((int)cpi->oxcf.maximum_buffer_size,
cpi->oxcf.target_bandwidth, 1000);
2010-05-18 19:58:33 +04:00
/* Set up frame rate and related parameters rate control values. */
vp8_new_frame_rate(cpi, cpi->frame_rate);
/* Set absolute upper and lower quality limits */
2010-05-18 19:58:33 +04:00
cpi->worst_quality = cpi->oxcf.worst_allowed_q;
cpi->best_quality = cpi->oxcf.best_allowed_q;
/* active values should only be modified if out of new range */
if (cpi->active_worst_quality > cpi->oxcf.worst_allowed_q)
{
cpi->active_worst_quality = cpi->oxcf.worst_allowed_q;
}
/* less likely */
else if (cpi->active_worst_quality < cpi->oxcf.best_allowed_q)
{
cpi->active_worst_quality = cpi->oxcf.best_allowed_q;
}
if (cpi->active_best_quality < cpi->oxcf.best_allowed_q)
{
cpi->active_best_quality = cpi->oxcf.best_allowed_q;
}
/* less likely */
else if (cpi->active_best_quality > cpi->oxcf.worst_allowed_q)
{
cpi->active_best_quality = cpi->oxcf.worst_allowed_q;
}
cpi->buffered_mode = cpi->oxcf.optimal_buffer_level > 0;
2010-05-18 19:58:33 +04:00
cpi->cq_target_quality = cpi->oxcf.cq_level;
2010-05-18 19:58:33 +04:00
/* Only allow dropped frames in buffered mode */
cpi->drop_frames_allowed = cpi->oxcf.allow_df && cpi->buffered_mode;
2010-05-18 19:58:33 +04:00
cpi->target_bandwidth = cpi->oxcf.target_bandwidth;
cm->Width = cpi->oxcf.Width;
cm->Height = cpi->oxcf.Height;
2010-05-18 19:58:33 +04:00
/* TODO(jkoleszar): if an internal spatial resampling is active,
* and we downsize the input image, maybe we should clear the
* internal scale immediately rather than waiting for it to
* correct.
*/
2010-05-18 19:58:33 +04:00
/* VP8 sharpness level mapping 0-7 (vs 0-10 in general VPx dialogs) */
2010-05-18 19:58:33 +04:00
if (cpi->oxcf.Sharpness > 7)
cpi->oxcf.Sharpness = 7;
cm->sharpness_level = cpi->oxcf.Sharpness;
if (cm->horiz_scale != NORMAL || cm->vert_scale != NORMAL)
{
int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs);
int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs);
Scale2Ratio(cm->horiz_scale, &hr, &hs);
Scale2Ratio(cm->vert_scale, &vr, &vs);
/* always go to the next whole number */
2010-05-18 19:58:33 +04:00
cm->Width = (hs - 1 + cpi->oxcf.Width * hr) / hs;
cm->Height = (vs - 1 + cpi->oxcf.Height * vr) / vs;
}
if (last_w != cpi->oxcf.Width || last_h != cpi->oxcf.Height)
cpi->force_next_frame_intra = 1;
if (((cm->Width + 15) & 0xfffffff0) !=
cm->yv12_fb[cm->lst_fb_idx].y_width ||
((cm->Height + 15) & 0xfffffff0) !=
cm->yv12_fb[cm->lst_fb_idx].y_height ||
cm->yv12_fb[cm->lst_fb_idx].y_width == 0)
2010-05-18 19:58:33 +04:00
{
dealloc_raw_frame_buffers(cpi);
2010-05-18 19:58:33 +04:00
alloc_raw_frame_buffers(cpi);
vp8_alloc_compressor_data(cpi);
}
if (cpi->oxcf.fixed_q >= 0)
{
cpi->last_q[0] = cpi->oxcf.fixed_q;
cpi->last_q[1] = cpi->oxcf.fixed_q;
}
cpi->Speed = cpi->oxcf.cpu_used;
/* force to allowlag to 0 if lag_in_frames is 0; */
2010-05-18 19:58:33 +04:00
if (cpi->oxcf.lag_in_frames == 0)
{
cpi->oxcf.allow_lag = 0;
}
/* Limit on lag buffers as these are not currently dynamically allocated */
2010-05-18 19:58:33 +04:00
else if (cpi->oxcf.lag_in_frames > MAX_LAG_BUFFERS)
cpi->oxcf.lag_in_frames = MAX_LAG_BUFFERS;
/* YX Temp */
cpi->alt_ref_source = NULL;
2010-05-18 19:58:33 +04:00
cpi->is_src_frame_alt_ref = 0;
#if CONFIG_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity)
{
if (!cpi->denoiser.yv12_mc_running_avg.buffer_alloc)
{
int width = (cpi->oxcf.Width + 15) & ~15;
int height = (cpi->oxcf.Height + 15) & ~15;
vp8_denoiser_allocate(&cpi->denoiser, width, height);
}
}
#endif
2010-05-18 19:58:33 +04:00
#if 0
/* Experimental RD Code */
2010-05-18 19:58:33 +04:00
cpi->frame_distortion = 0;
cpi->last_frame_distortion = 0;
#endif
}
#define M_LOG2_E 0.693147180559945309417
#define log2f(x) (log (x) / (float) M_LOG2_E)
static void cal_mvsadcosts(int *mvsadcost[2])
{
int i = 1;
mvsadcost [0] [0] = 300;
mvsadcost [1] [0] = 300;
do
{
double z = 256 * (2 * (log2f(8 * i) + .6));
2010-05-18 19:58:33 +04:00
mvsadcost [0][i] = (int) z;
mvsadcost [1][i] = (int) z;
mvsadcost [0][-i] = (int) z;
mvsadcost [1][-i] = (int) z;
}
while (++i <= mvfp_max);
2010-05-18 19:58:33 +04:00
}
struct VP8_COMP* vp8_create_compressor(VP8_CONFIG *oxcf)
2010-05-18 19:58:33 +04:00
{
int i;
2010-05-18 19:58:33 +04:00
VP8_COMP *cpi;
VP8_COMMON *cm;
cpi = vpx_memalign(32, sizeof(VP8_COMP));
/* Check that the CPI instance is valid */
2010-05-18 19:58:33 +04:00
if (!cpi)
return 0;
cm = &cpi->common;
vpx_memset(cpi, 0, sizeof(VP8_COMP));
if (setjmp(cm->error.jmp))
{
cpi->common.error.setjmp = 0;
vp8_remove_compressor(&cpi);
2010-05-18 19:58:33 +04:00
return 0;
}
cpi->common.error.setjmp = 1;
CHECK_MEM_ERROR(cpi->mb.ss, vpx_calloc(sizeof(search_site), (MAX_MVSEARCH_STEPS * 8) + 1));
vp8_create_common(&cpi->common);
init_config(cpi, oxcf);
2010-05-18 19:58:33 +04:00
memcpy(cpi->base_skip_false_prob, vp8cx_base_skip_false_prob, sizeof(vp8cx_base_skip_false_prob));
cpi->common.current_video_frame = 0;
cpi->kf_overspend_bits = 0;
cpi->kf_bitrate_adjustment = 0;
cpi->frames_till_gf_update_due = 0;
cpi->gf_overspend_bits = 0;
cpi->non_gf_bitrate_adjustment = 0;
cpi->prob_last_coded = 128;
cpi->prob_gf_coded = 128;
cpi->prob_intra_coded = 63;
/* Prime the recent reference frame usage counters.
* Hereafter they will be maintained as a sort of moving average
*/
2010-05-18 19:58:33 +04:00
cpi->recent_ref_frame_usage[INTRA_FRAME] = 1;
cpi->recent_ref_frame_usage[LAST_FRAME] = 1;
cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1;
cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1;
/* Set reference frame sign bias for ALTREF frame to 1 (for now) */
2010-05-18 19:58:33 +04:00
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1;
cpi->twopass.gf_decay_rate = 0;
2010-05-18 19:58:33 +04:00
cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL;
cpi->gold_is_last = 0 ;
cpi->alt_is_last = 0 ;
cpi->gold_is_alt = 0 ;
cpi->active_map_enabled = 0;
#if 0
/* Experimental code for lagged and one pass */
/* Initialise one_pass GF frames stats */
/* Update stats used for GF selection */
2010-05-18 19:58:33 +04:00
if (cpi->pass == 0)
{
cpi->one_pass_frame_index = 0;
for (i = 0; i < MAX_LAG_BUFFERS; i++)
{
cpi->one_pass_frame_stats[i].frames_so_far = 0;
cpi->one_pass_frame_stats[i].frame_intra_error = 0.0;
cpi->one_pass_frame_stats[i].frame_coded_error = 0.0;
cpi->one_pass_frame_stats[i].frame_pcnt_inter = 0.0;
cpi->one_pass_frame_stats[i].frame_pcnt_motion = 0.0;
cpi->one_pass_frame_stats[i].frame_mvr = 0.0;
cpi->one_pass_frame_stats[i].frame_mvr_abs = 0.0;
cpi->one_pass_frame_stats[i].frame_mvc = 0.0;
cpi->one_pass_frame_stats[i].frame_mvc_abs = 0.0;
}
}
#endif
/* Should we use the cyclic refresh method.
* Currently this is tied to error resilliant mode
*/
2010-05-18 19:58:33 +04:00
cpi->cyclic_refresh_mode_enabled = cpi->oxcf.error_resilient_mode;
cpi->cyclic_refresh_mode_max_mbs_perframe = (cpi->common.mb_rows * cpi->common.mb_cols) / 5;
2010-05-18 19:58:33 +04:00
cpi->cyclic_refresh_mode_index = 0;
cpi->cyclic_refresh_q = 32;
if (cpi->cyclic_refresh_mode_enabled)
{
CHECK_MEM_ERROR(cpi->cyclic_refresh_map, vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1));
}
else
cpi->cyclic_refresh_map = (signed char *) NULL;
#ifdef ENTROPY_STATS
init_context_counters();
#endif
/*Initialize the feed-forward activity masking.*/
cpi->activity_avg = 90<<12;
2010-05-18 19:58:33 +04:00
/* Give a sensible default for the first frame. */
cpi->frames_since_key = 8;
2010-05-18 19:58:33 +04:00
cpi->key_frame_frequency = cpi->oxcf.key_freq;
cpi->this_key_frame_forced = 0;
cpi->next_key_frame_forced = 0;
2010-05-18 19:58:33 +04:00
cpi->source_alt_ref_pending = 0;
cpi->source_alt_ref_active = 0;
2010-05-18 19:58:33 +04:00
cpi->common.refresh_alt_ref_frame = 0;
cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS;
#if CONFIG_INTERNAL_STATS
2010-05-18 19:58:33 +04:00
cpi->b_calculate_ssimg = 0;
cpi->count = 0;
cpi->bytes = 0;
if (cpi->b_calculate_psnr)
{
cpi->total_sq_error = 0.0;
cpi->total_sq_error2 = 0.0;
cpi->total_y = 0.0;
cpi->total_u = 0.0;
cpi->total_v = 0.0;
cpi->total = 0.0;
cpi->totalp_y = 0.0;
cpi->totalp_u = 0.0;
cpi->totalp_v = 0.0;
cpi->totalp = 0.0;
cpi->tot_recode_hits = 0;
cpi->summed_quality = 0;
cpi->summed_weights = 0;
}
if (cpi->b_calculate_ssimg)
{
cpi->total_ssimg_y = 0;
cpi->total_ssimg_u = 0;
cpi->total_ssimg_v = 0;
cpi->total_ssimg_all = 0;
}
#endif
cpi->first_time_stamp_ever = 0x7FFFFFFF;
2010-05-18 19:58:33 +04:00
cpi->frames_till_gf_update_due = 0;
cpi->key_frame_count = 1;
cpi->ni_av_qi = cpi->oxcf.worst_allowed_q;
cpi->ni_tot_qi = 0;
cpi->ni_frames = 0;
cpi->total_byte_count = 0;
cpi->drop_frame = 0;
cpi->rate_correction_factor = 1.0;
cpi->key_frame_rate_correction_factor = 1.0;
cpi->gf_rate_correction_factor = 1.0;
cpi->twopass.est_max_qcorrection_factor = 1.0;
2010-05-18 19:58:33 +04:00
for (i = 0; i < KEY_FRAME_CONTEXT; i++)
{
cpi->prior_key_frame_distance[i] = (int)cpi->output_frame_rate;
}
#ifdef OUTPUT_YUV_SRC
yuv_file = fopen("bd.yuv", "ab");
#endif
#if 0
framepsnr = fopen("framepsnr.stt", "a");
kf_list = fopen("kf_list.stt", "w");
#endif
cpi->output_pkt_list = oxcf->output_pkt_list;
#if !(CONFIG_REALTIME_ONLY)
if (cpi->pass == 1)
{
vp8_init_first_pass(cpi);
}
else if (cpi->pass == 2)
{
size_t packet_sz = sizeof(FIRSTPASS_STATS);
int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz);
cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf;
cpi->twopass.stats_in = cpi->twopass.stats_in_start;
cpi->twopass.stats_in_end = (void*)((char *)cpi->twopass.stats_in
+ (packets - 1) * packet_sz);
2010-05-18 19:58:33 +04:00
vp8_init_second_pass(cpi);
}
#endif
if (cpi->compressor_speed == 2)
{
cpi->avg_encode_time = 0;
cpi->avg_pick_mode_time = 0;
}
vp8_set_speed_features(cpi);
/* Set starting values of RD threshold multipliers (128 = *1) */
2010-05-18 19:58:33 +04:00
for (i = 0; i < MAX_MODES; i++)
{
cpi->rd_thresh_mult[i] = 128;
}
#ifdef ENTROPY_STATS
init_mv_ref_counts();
#endif
#if CONFIG_MULTITHREAD
if(vp8cx_create_encoder_threads(cpi))
{
vp8_remove_compressor(&cpi);
return 0;
}
#endif
2010-05-18 19:58:33 +04:00
cpi->fn_ptr[BLOCK_16X16].sdf = vp8_sad16x16;
cpi->fn_ptr[BLOCK_16X16].vf = vp8_variance16x16;
cpi->fn_ptr[BLOCK_16X16].svf = vp8_sub_pixel_variance16x16;
cpi->fn_ptr[BLOCK_16X16].svf_halfpix_h = vp8_variance_halfpixvar16x16_h;
cpi->fn_ptr[BLOCK_16X16].svf_halfpix_v = vp8_variance_halfpixvar16x16_v;
cpi->fn_ptr[BLOCK_16X16].svf_halfpix_hv = vp8_variance_halfpixvar16x16_hv;
cpi->fn_ptr[BLOCK_16X16].sdx3f = vp8_sad16x16x3;
cpi->fn_ptr[BLOCK_16X16].sdx8f = vp8_sad16x16x8;
cpi->fn_ptr[BLOCK_16X16].sdx4df = vp8_sad16x16x4d;
cpi->fn_ptr[BLOCK_16X8].sdf = vp8_sad16x8;
cpi->fn_ptr[BLOCK_16X8].vf = vp8_variance16x8;
cpi->fn_ptr[BLOCK_16X8].svf = vp8_sub_pixel_variance16x8;
cpi->fn_ptr[BLOCK_16X8].svf_halfpix_h = NULL;
cpi->fn_ptr[BLOCK_16X8].svf_halfpix_v = NULL;
cpi->fn_ptr[BLOCK_16X8].svf_halfpix_hv = NULL;
cpi->fn_ptr[BLOCK_16X8].sdx3f = vp8_sad16x8x3;
cpi->fn_ptr[BLOCK_16X8].sdx8f = vp8_sad16x8x8;
cpi->fn_ptr[BLOCK_16X8].sdx4df = vp8_sad16x8x4d;
cpi->fn_ptr[BLOCK_8X16].sdf = vp8_sad8x16;
cpi->fn_ptr[BLOCK_8X16].vf = vp8_variance8x16;
cpi->fn_ptr[BLOCK_8X16].svf = vp8_sub_pixel_variance8x16;
cpi->fn_ptr[BLOCK_8X16].svf_halfpix_h = NULL;
cpi->fn_ptr[BLOCK_8X16].svf_halfpix_v = NULL;
cpi->fn_ptr[BLOCK_8X16].svf_halfpix_hv = NULL;
cpi->fn_ptr[BLOCK_8X16].sdx3f = vp8_sad8x16x3;
cpi->fn_ptr[BLOCK_8X16].sdx8f = vp8_sad8x16x8;
cpi->fn_ptr[BLOCK_8X16].sdx4df = vp8_sad8x16x4d;
cpi->fn_ptr[BLOCK_8X8].sdf = vp8_sad8x8;
cpi->fn_ptr[BLOCK_8X8].vf = vp8_variance8x8;
cpi->fn_ptr[BLOCK_8X8].svf = vp8_sub_pixel_variance8x8;
cpi->fn_ptr[BLOCK_8X8].svf_halfpix_h = NULL;
cpi->fn_ptr[BLOCK_8X8].svf_halfpix_v = NULL;
cpi->fn_ptr[BLOCK_8X8].svf_halfpix_hv = NULL;
cpi->fn_ptr[BLOCK_8X8].sdx3f = vp8_sad8x8x3;
cpi->fn_ptr[BLOCK_8X8].sdx8f = vp8_sad8x8x8;
cpi->fn_ptr[BLOCK_8X8].sdx4df = vp8_sad8x8x4d;
cpi->fn_ptr[BLOCK_4X4].sdf = vp8_sad4x4;
cpi->fn_ptr[BLOCK_4X4].vf = vp8_variance4x4;
cpi->fn_ptr[BLOCK_4X4].svf = vp8_sub_pixel_variance4x4;
cpi->fn_ptr[BLOCK_4X4].svf_halfpix_h = NULL;
cpi->fn_ptr[BLOCK_4X4].svf_halfpix_v = NULL;
cpi->fn_ptr[BLOCK_4X4].svf_halfpix_hv = NULL;
cpi->fn_ptr[BLOCK_4X4].sdx3f = vp8_sad4x4x3;
cpi->fn_ptr[BLOCK_4X4].sdx8f = vp8_sad4x4x8;
cpi->fn_ptr[BLOCK_4X4].sdx4df = vp8_sad4x4x4d;
2010-05-18 19:58:33 +04:00
#if ARCH_X86 || ARCH_X86_64
cpi->fn_ptr[BLOCK_16X16].copymem = vp8_copy32xn;
cpi->fn_ptr[BLOCK_16X8].copymem = vp8_copy32xn;
cpi->fn_ptr[BLOCK_8X16].copymem = vp8_copy32xn;
cpi->fn_ptr[BLOCK_8X8].copymem = vp8_copy32xn;
cpi->fn_ptr[BLOCK_4X4].copymem = vp8_copy32xn;
#endif
cpi->full_search_sad = vp8_full_search_sad;
cpi->diamond_search_sad = vp8_diamond_search_sad;
cpi->refining_search_sad = vp8_refining_search_sad;
2010-05-18 19:58:33 +04:00
/* make sure frame 1 is okay */
2010-05-18 19:58:33 +04:00
cpi->error_bins[0] = cpi->common.MBs;
/* vp8cx_init_quantizer() is first called here. Add check in
* vp8cx_frame_init_quantizer() so that vp8cx_init_quantizer is only
* called later when needed. This will avoid unnecessary calls of
* vp8cx_init_quantizer() for every frame.
*/
2010-05-18 19:58:33 +04:00
vp8cx_init_quantizer(cpi);
vp8_loop_filter_init(cm);
2010-05-18 19:58:33 +04:00
cpi->common.error.setjmp = 0;
#if CONFIG_MULTI_RES_ENCODING
/* Calculate # of MBs in a row in lower-resolution level image. */
if (cpi->oxcf.mr_encoder_id > 0)
vp8_cal_low_res_mb_cols(cpi);
#endif
/* setup RD costs to MACROBLOCK struct */
2010-05-18 19:58:33 +04:00
cpi->mb.mvcost[0] = &cpi->rd_costs.mvcosts[0][mv_max+1];
cpi->mb.mvcost[1] = &cpi->rd_costs.mvcosts[1][mv_max+1];
cpi->mb.mvsadcost[0] = &cpi->rd_costs.mvsadcosts[0][mvfp_max+1];
cpi->mb.mvsadcost[1] = &cpi->rd_costs.mvsadcosts[1][mvfp_max+1];
cal_mvsadcosts(cpi->mb.mvsadcost);
cpi->mb.mbmode_cost = cpi->rd_costs.mbmode_cost;
cpi->mb.intra_uv_mode_cost = cpi->rd_costs.intra_uv_mode_cost;
cpi->mb.bmode_costs = cpi->rd_costs.bmode_costs;
cpi->mb.inter_bmode_costs = cpi->rd_costs.inter_bmode_costs;
cpi->mb.token_costs = cpi->rd_costs.token_costs;
/* setup block ptrs & offsets */
vp8_setup_block_ptrs(&cpi->mb);
vp8_setup_block_dptrs(&cpi->mb.e_mbd);
return cpi;
2010-05-18 19:58:33 +04:00
}
void vp8_remove_compressor(VP8_COMP **ptr)
2010-05-18 19:58:33 +04:00
{
VP8_COMP *cpi = *ptr;
2010-05-18 19:58:33 +04:00
if (!cpi)
return;
if (cpi && (cpi->common.current_video_frame > 0))
{
#if !(CONFIG_REALTIME_ONLY)
if (cpi->pass == 2)
{
vp8_end_second_pass(cpi);
}
#endif
#ifdef ENTROPY_STATS
print_context_counters();
print_tree_update_probs();
print_mode_context();
#endif
#if CONFIG_INTERNAL_STATS
2010-05-18 19:58:33 +04:00
if (cpi->pass != 1)
{
FILE *f = fopen("opsnr.stt", "a");
double time_encoded = (cpi->last_end_time_stamp_seen
- cpi->first_time_stamp_ever) / 10000000.000;
double total_encode_time = (cpi->time_receive_data +
cpi->time_compress_data) / 1000.000;
double dr = (double)cpi->bytes * 8.0 / 1000.0 / time_encoded;
2010-05-18 19:58:33 +04:00
if (cpi->b_calculate_psnr)
{
YV12_BUFFER_CONFIG *lst_yv12 =
&cpi->common.yv12_fb[cpi->common.lst_fb_idx];
if (cpi->oxcf.number_of_layers > 1)
{
int i;
fprintf(f, "Layer\tBitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\t"
"GLPsnrP\tVPXSSIM\t\n");
for (i=0; i<(int)cpi->oxcf.number_of_layers; i++)
{
double dr = (double)cpi->bytes_in_layer[i] *
8.0 / 1000.0 / time_encoded;
double samples = 3.0 / 2 * cpi->frames_in_layer[i] *
lst_yv12->y_width * lst_yv12->y_height;
double total_psnr = vp8_mse2psnr(samples, 255.0,
cpi->total_error2[i]);
double total_psnr2 = vp8_mse2psnr(samples, 255.0,
cpi->total_error2_p[i]);
double total_ssim = 100 * pow(cpi->sum_ssim[i] /
cpi->sum_weights[i], 8.0);
fprintf(f, "%5d\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
"%7.3f\t%7.3f\n",
i, dr,
cpi->sum_psnr[i] / cpi->frames_in_layer[i],
total_psnr,
cpi->sum_psnr_p[i] / cpi->frames_in_layer[i],
total_psnr2, total_ssim);
}
}
else
{
double samples = 3.0 / 2 * cpi->count *
lst_yv12->y_width * lst_yv12->y_height;
double total_psnr = vp8_mse2psnr(samples, 255.0,
cpi->total_sq_error);
double total_psnr2 = vp8_mse2psnr(samples, 255.0,
cpi->total_sq_error2);
double total_ssim = 100 * pow(cpi->summed_quality /
cpi->summed_weights, 8.0);
fprintf(f, "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\t"
"GLPsnrP\tVPXSSIM\t Time(us)\n");
fprintf(f, "%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
"%7.3f\t%8.0f\n",
dr, cpi->total / cpi->count, total_psnr,
cpi->totalp / cpi->count, total_psnr2,
total_ssim, total_encode_time);
}
2010-05-18 19:58:33 +04:00
}
if (cpi->b_calculate_ssimg)
{
if (cpi->oxcf.number_of_layers > 1)
{
int i;
fprintf(f, "Layer\tBitRate\tSSIM_Y\tSSIM_U\tSSIM_V\tSSIM_A\t"
"Time(us)\n");
for (i=0; i<(int)cpi->oxcf.number_of_layers; i++)
{
double dr = (double)cpi->bytes_in_layer[i] *
8.0 / 1000.0 / time_encoded;
fprintf(f, "%5d\t%7.3f\t%6.4f\t"
"%6.4f\t%6.4f\t%6.4f\t%8.0f\n",
i, dr,
cpi->total_ssimg_y_in_layer[i] /
cpi->frames_in_layer[i],
cpi->total_ssimg_u_in_layer[i] /
cpi->frames_in_layer[i],
cpi->total_ssimg_v_in_layer[i] /
cpi->frames_in_layer[i],
cpi->total_ssimg_all_in_layer[i] /
cpi->frames_in_layer[i],
total_encode_time);
}
}
else
{
fprintf(f, "BitRate\tSSIM_Y\tSSIM_U\tSSIM_V\tSSIM_A\t"
"Time(us)\n");
fprintf(f, "%7.3f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f\n", dr,
cpi->total_ssimg_y / cpi->count,
cpi->total_ssimg_u / cpi->count,
cpi->total_ssimg_v / cpi->count,
cpi->total_ssimg_all / cpi->count, total_encode_time);
}
2010-05-18 19:58:33 +04:00
}
fclose(f);
#if 0
f = fopen("qskip.stt", "a");
fprintf(f, "minq:%d -maxq:%d skiptrue:skipfalse = %d:%d\n", cpi->oxcf.best_allowed_q, cpi->oxcf.worst_allowed_q, skiptruecount, skipfalsecount);
2010-05-18 19:58:33 +04:00
fclose(f);
#endif
}
#endif
#ifdef SPEEDSTATS
if (cpi->compressor_speed == 2)
{
int i;
FILE *f = fopen("cxspeed.stt", "a");
cnt_pm /= cpi->common.MBs;
for (i = 0; i < 16; i++)
fprintf(f, "%5d", frames_at_speed[i]);
fprintf(f, "\n");
fclose(f);
}
#endif
#ifdef MODE_STATS
{
extern int count_mb_seg[4];
FILE *f = fopen("modes.stt", "a");
double dr = (double)cpi->frame_rate * (double)bytes * (double)8 / (double)count / (double)1000 ;
2010-05-18 19:58:33 +04:00
fprintf(f, "intra_mode in Intra Frames:\n");
fprintf(f, "Y: %8d, %8d, %8d, %8d, %8d\n", y_modes[0], y_modes[1], y_modes[2], y_modes[3], y_modes[4]);
fprintf(f, "UV:%8d, %8d, %8d, %8d\n", uv_modes[0], uv_modes[1], uv_modes[2], uv_modes[3]);
fprintf(f, "B: ");
{
int i;
for (i = 0; i < 10; i++)
fprintf(f, "%8d, ", b_modes[i]);
fprintf(f, "\n");
}
fprintf(f, "Modes in Inter Frames:\n");
fprintf(f, "Y: %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d\n",
inter_y_modes[0], inter_y_modes[1], inter_y_modes[2], inter_y_modes[3], inter_y_modes[4],
inter_y_modes[5], inter_y_modes[6], inter_y_modes[7], inter_y_modes[8], inter_y_modes[9]);
fprintf(f, "UV:%8d, %8d, %8d, %8d\n", inter_uv_modes[0], inter_uv_modes[1], inter_uv_modes[2], inter_uv_modes[3]);
fprintf(f, "B: ");
{
int i;
for (i = 0; i < 15; i++)
fprintf(f, "%8d, ", inter_b_modes[i]);
fprintf(f, "\n");
}
fprintf(f, "P:%8d, %8d, %8d, %8d\n", count_mb_seg[0], count_mb_seg[1], count_mb_seg[2], count_mb_seg[3]);
fprintf(f, "PB:%8d, %8d, %8d, %8d\n", inter_b_modes[LEFT4X4], inter_b_modes[ABOVE4X4], inter_b_modes[ZERO4X4], inter_b_modes[NEW4X4]);
fclose(f);
}
#endif
#ifdef ENTROPY_STATS
{
int i, j, k;
FILE *fmode = fopen("modecontext.c", "w");
fprintf(fmode, "\n#include \"entropymode.h\"\n\n");
fprintf(fmode, "const unsigned int vp8_kf_default_bmode_counts ");
fprintf(fmode, "[VP8_BINTRAMODES] [VP8_BINTRAMODES] [VP8_BINTRAMODES] =\n{\n");
for (i = 0; i < 10; i++)
{
fprintf(fmode, " { /* Above Mode : %d */\n", i);
2010-05-18 19:58:33 +04:00
for (j = 0; j < 10; j++)
{
fprintf(fmode, " {");
for (k = 0; k < 10; k++)
{
if (!intra_mode_stats[i][j][k])
fprintf(fmode, " %5d, ", 1);
else
fprintf(fmode, " %5d, ", intra_mode_stats[i][j][k]);
}
fprintf(fmode, "}, /* left_mode %d */\n", j);
2010-05-18 19:58:33 +04:00
}
fprintf(fmode, " },\n");
}
fprintf(fmode, "};\n");
fclose(fmode);
2010-05-18 19:58:33 +04:00
}
#endif
#if defined(SECTIONBITS_OUTPUT)
if (0)
{
int i;
FILE *f = fopen("tokenbits.stt", "a");
for (i = 0; i < 28; i++)
fprintf(f, "%8d", (int)(Sectionbits[i] / 256));
fprintf(f, "\n");
fclose(f);
}
#endif
#if 0
{
printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000);
printf("\n_frames recive_data encod_mb_row compress_frame Total\n");
printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame, cpi->time_receive_data / 1000, cpi->time_encode_mb_row / 1000, cpi->time_compress_data / 1000, (cpi->time_receive_data + cpi->time_compress_data) / 1000);
}
#endif
}
#if CONFIG_MULTITHREAD
2010-05-18 19:58:33 +04:00
vp8cx_remove_encoder_threads(cpi);
#endif
2010-05-18 19:58:33 +04:00
#if CONFIG_TEMPORAL_DENOISING
vp8_denoiser_free(&cpi->denoiser);
#endif
dealloc_compressor_data(cpi);
2010-05-18 19:58:33 +04:00
vpx_free(cpi->mb.ss);
vpx_free(cpi->tok);
vpx_free(cpi->cyclic_refresh_map);
vp8_remove_common(&cpi->common);
vpx_free(cpi);
*ptr = 0;
#ifdef OUTPUT_YUV_SRC
fclose(yuv_file);
#endif
#if 0
if (keyfile)
fclose(keyfile);
if (framepsnr)
fclose(framepsnr);
if (kf_list)
fclose(kf_list);
#endif
}
static uint64_t calc_plane_error(unsigned char *orig, int orig_stride,
unsigned char *recon, int recon_stride,
unsigned int cols, unsigned int rows)
2010-05-18 19:58:33 +04:00
{
unsigned int row, col;
uint64_t total_sse = 0;
int diff;
for (row = 0; row + 16 <= rows; row += 16)
{
for (col = 0; col + 16 <= cols; col += 16)
{
unsigned int sse;
vp8_mse16x16(orig + col, orig_stride,
2010-05-18 19:58:33 +04:00
recon + col, recon_stride,
&sse);
total_sse += sse;
}
/* Handle odd-sized width */
if (col < cols)
{
unsigned int border_row, border_col;
unsigned char *border_orig = orig;
unsigned char *border_recon = recon;
for (border_row = 0; border_row < 16; border_row++)
{
for (border_col = col; border_col < cols; border_col++)
{
diff = border_orig[border_col] - border_recon[border_col];
total_sse += diff * diff;
}
border_orig += orig_stride;
border_recon += recon_stride;
}
}
orig += orig_stride * 16;
recon += recon_stride * 16;
}
/* Handle odd-sized height */
for (; row < rows; row++)
{
for (col = 0; col < cols; col++)
{
diff = orig[col] - recon[col];
total_sse += diff * diff;
}
orig += orig_stride;
recon += recon_stride;
}
vp8_clear_system_state();
2010-05-18 19:58:33 +04:00
return total_sse;
}
static void generate_psnr_packet(VP8_COMP *cpi)
{
YV12_BUFFER_CONFIG *orig = cpi->Source;
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
struct vpx_codec_cx_pkt pkt;
uint64_t sse;
int i;
unsigned int width = cpi->common.Width;
unsigned int height = cpi->common.Height;
pkt.kind = VPX_CODEC_PSNR_PKT;
sse = calc_plane_error(orig->y_buffer, orig->y_stride,
recon->y_buffer, recon->y_stride,
width, height);
2010-05-18 19:58:33 +04:00
pkt.data.psnr.sse[0] = sse;
pkt.data.psnr.sse[1] = sse;
pkt.data.psnr.samples[0] = width * height;
pkt.data.psnr.samples[1] = width * height;
width = (width + 1) / 2;
height = (height + 1) / 2;
sse = calc_plane_error(orig->u_buffer, orig->uv_stride,
recon->u_buffer, recon->uv_stride,
width, height);
2010-05-18 19:58:33 +04:00
pkt.data.psnr.sse[0] += sse;
pkt.data.psnr.sse[2] = sse;
pkt.data.psnr.samples[0] += width * height;
pkt.data.psnr.samples[2] = width * height;
sse = calc_plane_error(orig->v_buffer, orig->uv_stride,
recon->v_buffer, recon->uv_stride,
width, height);
2010-05-18 19:58:33 +04:00
pkt.data.psnr.sse[0] += sse;
pkt.data.psnr.sse[3] = sse;
pkt.data.psnr.samples[0] += width * height;
pkt.data.psnr.samples[3] = width * height;
for (i = 0; i < 4; i++)
pkt.data.psnr.psnr[i] = vp8_mse2psnr(pkt.data.psnr.samples[i], 255.0,
(double)(pkt.data.psnr.sse[i]));
2010-05-18 19:58:33 +04:00
vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt);
}
int vp8_use_as_reference(VP8_COMP *cpi, int ref_frame_flags)
2010-05-18 19:58:33 +04:00
{
if (ref_frame_flags > 7)
return -1 ;
cpi->ref_frame_flags = ref_frame_flags;
return 0;
}
int vp8_update_reference(VP8_COMP *cpi, int ref_frame_flags)
2010-05-18 19:58:33 +04:00
{
if (ref_frame_flags > 7)
return -1 ;
cpi->common.refresh_golden_frame = 0;
cpi->common.refresh_alt_ref_frame = 0;
cpi->common.refresh_last_frame = 0;
if (ref_frame_flags & VP8_LAST_FRAME)
2010-05-18 19:58:33 +04:00
cpi->common.refresh_last_frame = 1;
if (ref_frame_flags & VP8_GOLD_FRAME)
2010-05-18 19:58:33 +04:00
cpi->common.refresh_golden_frame = 1;
if (ref_frame_flags & VP8_ALTR_FRAME)
2010-05-18 19:58:33 +04:00
cpi->common.refresh_alt_ref_frame = 1;
return 0;
}
int vp8_get_reference(VP8_COMP *cpi, enum vpx_ref_frame_type ref_frame_flag, YV12_BUFFER_CONFIG *sd)
2010-05-18 19:58:33 +04:00
{
VP8_COMMON *cm = &cpi->common;
int ref_fb_idx;
2010-05-18 19:58:33 +04:00
if (ref_frame_flag == VP8_LAST_FRAME)
ref_fb_idx = cm->lst_fb_idx;
else if (ref_frame_flag == VP8_GOLD_FRAME)
ref_fb_idx = cm->gld_fb_idx;
else if (ref_frame_flag == VP8_ALTR_FRAME)
ref_fb_idx = cm->alt_fb_idx;
2010-05-18 19:58:33 +04:00
else
return -1;
vp8_yv12_copy_frame(&cm->yv12_fb[ref_fb_idx], sd);
2010-05-18 19:58:33 +04:00
return 0;
}
int vp8_set_reference(VP8_COMP *cpi, enum vpx_ref_frame_type ref_frame_flag, YV12_BUFFER_CONFIG *sd)
2010-05-18 19:58:33 +04:00
{
VP8_COMMON *cm = &cpi->common;
int ref_fb_idx;
2010-05-18 19:58:33 +04:00
if (ref_frame_flag == VP8_LAST_FRAME)
ref_fb_idx = cm->lst_fb_idx;
else if (ref_frame_flag == VP8_GOLD_FRAME)
ref_fb_idx = cm->gld_fb_idx;
else if (ref_frame_flag == VP8_ALTR_FRAME)
ref_fb_idx = cm->alt_fb_idx;
2010-05-18 19:58:33 +04:00
else
return -1;
vp8_yv12_copy_frame(sd, &cm->yv12_fb[ref_fb_idx]);
2010-05-18 19:58:33 +04:00
return 0;
}
int vp8_update_entropy(VP8_COMP *cpi, int update)
2010-05-18 19:58:33 +04:00
{
VP8_COMMON *cm = &cpi->common;
cm->refresh_entropy_probs = update;
return 0;
}
#if OUTPUT_YUV_SRC
2010-05-18 19:58:33 +04:00
void vp8_write_yuv_frame(const char *name, YV12_BUFFER_CONFIG *s)
{
FILE *yuv_file = fopen(name, "ab");
unsigned char *src = s->y_buffer;
int h = s->y_height;
do
{
fwrite(src, s->y_width, 1, yuv_file);
src += s->y_stride;
}
while (--h);
src = s->u_buffer;
h = s->uv_height;
do
{
fwrite(src, s->uv_width, 1, yuv_file);
src += s->uv_stride;
}
while (--h);
src = s->v_buffer;
h = s->uv_height;
do
{
fwrite(src, s->uv_width, 1, yuv_file);
src += s->uv_stride;
}
while (--h);
fclose(yuv_file);
}
#endif
2010-05-18 19:58:33 +04:00
static void scale_and_extend_source(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi)
{
VP8_COMMON *cm = &cpi->common;
/* are we resizing the image */
2010-05-18 19:58:33 +04:00
if (cm->horiz_scale != 0 || cm->vert_scale != 0)
{
#if CONFIG_SPATIAL_RESAMPLING
int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs);
int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs);
int tmp_height;
if (cm->vert_scale == 3)
tmp_height = 9;
else
tmp_height = 11;
Scale2Ratio(cm->horiz_scale, &hr, &hs);
Scale2Ratio(cm->vert_scale, &vr, &vs);
vp8_scale_frame(sd, &cpi->scaled_source, cm->temp_scale_frame.y_buffer,
tmp_height, hs, hr, vs, vr, 0);
vp8_yv12_extend_frame_borders(&cpi->scaled_source);
2010-05-18 19:58:33 +04:00
cpi->Source = &cpi->scaled_source;
#endif
}
else
cpi->Source = sd;
}
2010-05-18 19:58:33 +04:00
static int resize_key_frame(VP8_COMP *cpi)
2010-05-18 19:58:33 +04:00
{
#if CONFIG_SPATIAL_RESAMPLING
VP8_COMMON *cm = &cpi->common;
/* Do we need to apply resampling for one pass cbr.
* In one pass this is more limited than in two pass cbr
* The test and any change is only made one per key frame sequence
*/
2010-05-18 19:58:33 +04:00
if (cpi->oxcf.allow_spatial_resampling && (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER))
{
int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs);
int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs);
int new_width, new_height;
/* If we are below the resample DOWN watermark then scale down a
* notch.
*/
2010-05-18 19:58:33 +04:00
if (cpi->buffer_level < (cpi->oxcf.resample_down_water_mark * cpi->oxcf.optimal_buffer_level / 100))
{
cm->horiz_scale = (cm->horiz_scale < ONETWO) ? cm->horiz_scale + 1 : ONETWO;
cm->vert_scale = (cm->vert_scale < ONETWO) ? cm->vert_scale + 1 : ONETWO;
}
/* Should we now start scaling back up */
2010-05-18 19:58:33 +04:00
else if (cpi->buffer_level > (cpi->oxcf.resample_up_water_mark * cpi->oxcf.optimal_buffer_level / 100))
{
cm->horiz_scale = (cm->horiz_scale > NORMAL) ? cm->horiz_scale - 1 : NORMAL;
cm->vert_scale = (cm->vert_scale > NORMAL) ? cm->vert_scale - 1 : NORMAL;
}
/* Get the new hieght and width */
2010-05-18 19:58:33 +04:00
Scale2Ratio(cm->horiz_scale, &hr, &hs);
Scale2Ratio(cm->vert_scale, &vr, &vs);
new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs;
new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs;
/* If the image size has changed we need to reallocate the buffers
* and resample the source image
*/
2010-05-18 19:58:33 +04:00
if ((cm->Width != new_width) || (cm->Height != new_height))
{
cm->Width = new_width;
cm->Height = new_height;
vp8_alloc_compressor_data(cpi);
scale_and_extend_source(cpi->un_scaled_source, cpi);
return 1;
2010-05-18 19:58:33 +04:00
}
}
#endif
return 0;
2010-05-18 19:58:33 +04:00
}
static void update_alt_ref_frame_stats(VP8_COMP *cpi)
2010-05-18 19:58:33 +04:00
{
VP8_COMMON *cm = &cpi->common;
/* Select an interval before next GF or altref */
2010-05-18 19:58:33 +04:00
if (!cpi->auto_gold)
cpi->frames_till_gf_update_due = DEFAULT_GF_INTERVAL;
2010-05-18 19:58:33 +04:00
if ((cpi->pass != 2) && cpi->frames_till_gf_update_due)
{
cpi->current_gf_interval = cpi->frames_till_gf_update_due;
/* Set the bits per frame that we should try and recover in
* subsequent inter frames to account for the extra GF spend...
* note that his does not apply for GF updates that occur
* coincident with a key frame as the extra cost of key frames is
* dealt with elsewhere.
*/
2010-05-18 19:58:33 +04:00
cpi->gf_overspend_bits += cpi->projected_frame_size;
cpi->non_gf_bitrate_adjustment = cpi->gf_overspend_bits / cpi->frames_till_gf_update_due;
}
/* Update data structure that monitors level of reference to last GF */
vpx_memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols));
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
2010-05-18 19:58:33 +04:00
/* this frame refreshes means next frames don't unless specified by user */
2010-05-18 19:58:33 +04:00
cpi->common.frames_since_golden = 0;
/* Clear the alternate reference update pending flag. */
cpi->source_alt_ref_pending = 0;
2010-05-18 19:58:33 +04:00
/* Set the alternate refernce frame active flag */
cpi->source_alt_ref_active = 1;
2010-05-18 19:58:33 +04:00
}
static void update_golden_frame_stats(VP8_COMP *cpi)
2010-05-18 19:58:33 +04:00
{
VP8_COMMON *cm = &cpi->common;
/* Update the Golden frame usage counts. */
2010-05-18 19:58:33 +04:00
if (cm->refresh_golden_frame)
{
/* Select an interval before next GF */
2010-05-18 19:58:33 +04:00
if (!cpi->auto_gold)
cpi->frames_till_gf_update_due = DEFAULT_GF_INTERVAL;
2010-05-18 19:58:33 +04:00
if ((cpi->pass != 2) && (cpi->frames_till_gf_update_due > 0))
{
cpi->current_gf_interval = cpi->frames_till_gf_update_due;
/* Set the bits per frame that we should try and recover in
* subsequent inter frames to account for the extra GF spend...
* note that his does not apply for GF updates that occur
* coincident with a key frame as the extra cost of key frames
* is dealt with elsewhere.
*/
2010-05-18 19:58:33 +04:00
if ((cm->frame_type != KEY_FRAME) && !cpi->source_alt_ref_active)
{
/* Calcluate GF bits to be recovered
* Projected size - av frame bits available for inter
* frames for clip as a whole
*/
2010-05-18 19:58:33 +04:00
cpi->gf_overspend_bits += (cpi->projected_frame_size - cpi->inter_frame_target);
}
cpi->non_gf_bitrate_adjustment = cpi->gf_overspend_bits / cpi->frames_till_gf_update_due;
}
/* Update data structure that monitors level of reference to last GF */
vpx_memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols));
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
2010-05-18 19:58:33 +04:00
/* this frame refreshes means next frames don't unless specified by
* user
*/
2010-05-18 19:58:33 +04:00
cm->refresh_golden_frame = 0;
cpi->common.frames_since_golden = 0;
cpi->recent_ref_frame_usage[INTRA_FRAME] = 1;
cpi->recent_ref_frame_usage[LAST_FRAME] = 1;
cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1;
cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1;
/* ******** Fixed Q test code only ************ */
/* If we are going to use the ALT reference for the next group of
* frames set a flag to say so.
*/
2010-05-18 19:58:33 +04:00
if (cpi->oxcf.fixed_q >= 0 &&
cpi->oxcf.play_alternate && !cpi->common.refresh_alt_ref_frame)
{
cpi->source_alt_ref_pending = 1;
2010-05-18 19:58:33 +04:00
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
}
if (!cpi->source_alt_ref_pending)
cpi->source_alt_ref_active = 0;
2010-05-18 19:58:33 +04:00
/* Decrement count down till next gf */
2010-05-18 19:58:33 +04:00
if (cpi->frames_till_gf_update_due > 0)
cpi->frames_till_gf_update_due--;
}
else if (!cpi->common.refresh_alt_ref_frame)
{
/* Decrement count down till next gf */
2010-05-18 19:58:33 +04:00
if (cpi->frames_till_gf_update_due > 0)
cpi->frames_till_gf_update_due--;
if (cpi->common.frames_till_alt_ref_frame)
cpi->common.frames_till_alt_ref_frame --;
cpi->common.frames_since_golden ++;
if (cpi->common.frames_since_golden > 1)
{
cpi->recent_ref_frame_usage[INTRA_FRAME] += cpi->count_mb_ref_frame_usage[INTRA_FRAME];
cpi->recent_ref_frame_usage[LAST_FRAME] += cpi->count_mb_ref_frame_usage[LAST_FRAME];
cpi->recent_ref_frame_usage[GOLDEN_FRAME] += cpi->count_mb_ref_frame_usage[GOLDEN_FRAME];
cpi->recent_ref_frame_usage[ALTREF_FRAME] += cpi->count_mb_ref_frame_usage[ALTREF_FRAME];
}
}
}
/* This function updates the reference frame probability estimates that
* will be used during mode selection
*/
2010-05-18 19:58:33 +04:00
static void update_rd_ref_frame_probs(VP8_COMP *cpi)
{
VP8_COMMON *cm = &cpi->common;
const int *const rfct = cpi->count_mb_ref_frame_usage;
2010-05-18 19:58:33 +04:00
const int rf_intra = rfct[INTRA_FRAME];
const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
if (cm->frame_type == KEY_FRAME)
{
cpi->prob_intra_coded = 255;
cpi->prob_last_coded = 128;
cpi->prob_gf_coded = 128;
}
else if (!(rf_intra + rf_inter))
{
cpi->prob_intra_coded = 63;
cpi->prob_last_coded = 128;
cpi->prob_gf_coded = 128;
}
/* update reference frame costs since we can do better than what we got
* last frame.
*/
if (cpi->oxcf.number_of_layers == 1)
2010-05-18 19:58:33 +04:00
{
if (cpi->common.refresh_alt_ref_frame)
{
cpi->prob_intra_coded += 40;
cpi->prob_last_coded = 200;
cpi->prob_gf_coded = 1;
}
else if (cpi->common.frames_since_golden == 0)
{
cpi->prob_last_coded = 214;
}
else if (cpi->common.frames_since_golden == 1)
{
cpi->prob_last_coded = 192;
cpi->prob_gf_coded = 220;
}
else if (cpi->source_alt_ref_active)
{
cpi->prob_gf_coded -= 20;
2010-05-18 19:58:33 +04:00
if (cpi->prob_gf_coded < 10)
cpi->prob_gf_coded = 10;
}
if (!cpi->source_alt_ref_active)
cpi->prob_gf_coded = 255;
2010-05-18 19:58:33 +04:00
}
}
/* 1 = key, 0 = inter */
2010-05-18 19:58:33 +04:00
static int decide_key_frame(VP8_COMP *cpi)
{
VP8_COMMON *cm = &cpi->common;
int code_key_frame = 0;
2010-05-18 19:58:33 +04:00
cpi->kf_boost = 0;
if (cpi->Speed > 11)
return 0;
2010-05-18 19:58:33 +04:00
/* Clear down mmx registers */
vp8_clear_system_state();
2010-05-18 19:58:33 +04:00
if ((cpi->compressor_speed == 2) && (cpi->Speed >= 5) && (cpi->sf.RD == 0))
{
double change = 1.0 * abs((int)(cpi->intra_error - cpi->last_intra_error)) / (1 + cpi->last_intra_error);
double change2 = 1.0 * abs((int)(cpi->prediction_error - cpi->last_prediction_error)) / (1 + cpi->last_prediction_error);
double minerror = cm->MBs * 256;
#if 0
if (10 * cpi->intra_error / (1 + cpi->prediction_error) < 15
&& cpi->prediction_error > minerror
&& (change > .25 || change2 > .25))
{
FILE *f = fopen("intra_inter.stt", "a");
if (cpi->prediction_error <= 0)
cpi->prediction_error = 1;
fprintf(f, "%d %d %d %d %14.4f\n",
cm->current_video_frame,
(int) cpi->prediction_error,
(int) cpi->intra_error,
(int)((10 * cpi->intra_error) / cpi->prediction_error),
change);
fclose(f);
}
#endif
cpi->last_intra_error = cpi->intra_error;
cpi->last_prediction_error = cpi->prediction_error;
if (10 * cpi->intra_error / (1 + cpi->prediction_error) < 15
&& cpi->prediction_error > minerror
&& (change > .25 || change2 > .25))
{
/*(change > 1.4 || change < .75)&& cpi->this_frame_percent_intra > cpi->last_frame_percent_intra + 3*/
return 1;
2010-05-18 19:58:33 +04:00
}
return 0;
2010-05-18 19:58:33 +04:00
}
/* If the following are true we might as well code a key frame */
2010-05-18 19:58:33 +04:00
if (((cpi->this_frame_percent_intra == 100) &&
(cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra + 2))) ||
((cpi->this_frame_percent_intra > 95) &&
(cpi->this_frame_percent_intra >= (cpi->last_frame_percent_intra + 5))))
{
code_key_frame = 1;
2010-05-18 19:58:33 +04:00
}
/* in addition if the following are true and this is not a golden frame
* then code a key frame Note that on golden frames there often seems
* to be a pop in intra useage anyway hence this restriction is
* designed to prevent spurious key frames. The Intra pop needs to be
* investigated.
*/
2010-05-18 19:58:33 +04:00
else if (((cpi->this_frame_percent_intra > 60) &&
(cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra * 2))) ||
((cpi->this_frame_percent_intra > 75) &&
(cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra * 3 / 2))) ||
((cpi->this_frame_percent_intra > 90) &&
(cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra + 10))))
{
if (!cm->refresh_golden_frame)
code_key_frame = 1;
2010-05-18 19:58:33 +04:00
}
return code_key_frame;
}
#if !(CONFIG_REALTIME_ONLY)
static void Pass1Encode(VP8_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned int *frame_flags)
{
(void) size;
(void) dest;
(void) frame_flags;
vp8_set_quantizer(cpi, 26);
2010-05-18 19:58:33 +04:00
vp8_first_pass(cpi);
}
#endif
#if 0
void write_cx_frame_to_file(YV12_BUFFER_CONFIG *frame, int this_frame)
{
/* write the frame */
2010-05-18 19:58:33 +04:00
FILE *yframe;
int i;
char filename[255];
sprintf(filename, "cx\\y%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->y_height; i++)
fwrite(frame->y_buffer + i * frame->y_stride, frame->y_width, 1, yframe);
fclose(yframe);
sprintf(filename, "cx\\u%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->uv_height; i++)
fwrite(frame->u_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe);
fclose(yframe);
sprintf(filename, "cx\\v%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->uv_height; i++)
fwrite(frame->v_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe);
fclose(yframe);
}
#endif
/* return of 0 means drop frame */
2010-05-18 19:58:33 +04:00
/* Function to test for conditions that indeicate we should loop
* back and recode a frame.
*/
static int recode_loop_test( VP8_COMP *cpi,
int high_limit, int low_limit,
int q, int maxq, int minq )
{
int force_recode = 0;
VP8_COMMON *cm = &cpi->common;
/* Is frame recode allowed at all
* Yes if either recode mode 1 is selected or mode two is selcted
* and the frame is a key frame. golden frame or alt_ref_frame
*/
if ( (cpi->sf.recode_loop == 1) ||
( (cpi->sf.recode_loop == 2) &&
( (cm->frame_type == KEY_FRAME) ||
cm->refresh_golden_frame ||
cm->refresh_alt_ref_frame ) ) )
{
/* General over and under shoot tests */
if ( ((cpi->projected_frame_size > high_limit) && (q < maxq)) ||
((cpi->projected_frame_size < low_limit) && (q > minq)) )
{
force_recode = 1;
}
/* Special Constrained quality tests */
else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY)
{
/* Undershoot and below auto cq level */
if ( (q > cpi->cq_target_quality) &&
(cpi->projected_frame_size <
((cpi->this_frame_target * 7) >> 3)))
{
force_recode = 1;
}
/* Severe undershoot and between auto and user cq level */
else if ( (q > cpi->oxcf.cq_level) &&
(cpi->projected_frame_size < cpi->min_frame_bandwidth) &&
(cpi->active_best_quality > cpi->oxcf.cq_level))
{
force_recode = 1;
cpi->active_best_quality = cpi->oxcf.cq_level;
}
}
}
return force_recode;
}
static void update_reference_frames(VP8_COMP *cpi)
{
VP8_COMMON *cm = &cpi->common;
YV12_BUFFER_CONFIG *yv12_fb = cm->yv12_fb;
/* At this point the new frame has been encoded.
* If any buffer copy / swapping is signaled it should be done here.
*/
if (cm->frame_type == KEY_FRAME)
{
yv12_fb[cm->new_fb_idx].flags |= VP8_GOLD_FRAME | VP8_ALTR_FRAME ;
yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FRAME;
yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALTR_FRAME;
cm->alt_fb_idx = cm->gld_fb_idx = cm->new_fb_idx;
#if CONFIG_MULTI_RES_ENCODING
cpi->current_ref_frames[GOLDEN_FRAME] = cm->current_video_frame;
cpi->current_ref_frames[ALTREF_FRAME] = cm->current_video_frame;
#endif
}
else /* For non key frames */
{
if (cm->refresh_alt_ref_frame)
{
assert(!cm->copy_buffer_to_arf);
cm->yv12_fb[cm->new_fb_idx].flags |= VP8_ALTR_FRAME;
cm->yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALTR_FRAME;
cm->alt_fb_idx = cm->new_fb_idx;
#if CONFIG_MULTI_RES_ENCODING
cpi->current_ref_frames[ALTREF_FRAME] = cm->current_video_frame;
#endif
}
else if (cm->copy_buffer_to_arf)
{
assert(!(cm->copy_buffer_to_arf & ~0x3));
if (cm->copy_buffer_to_arf == 1)
{
if(cm->alt_fb_idx != cm->lst_fb_idx)
{
yv12_fb[cm->lst_fb_idx].flags |= VP8_ALTR_FRAME;
yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALTR_FRAME;
cm->alt_fb_idx = cm->lst_fb_idx;
#if CONFIG_MULTI_RES_ENCODING
cpi->current_ref_frames[ALTREF_FRAME] =
cpi->current_ref_frames[LAST_FRAME];
#endif
}
}
else /* if (cm->copy_buffer_to_arf == 2) */
{
if(cm->alt_fb_idx != cm->gld_fb_idx)
{
yv12_fb[cm->gld_fb_idx].flags |= VP8_ALTR_FRAME;
yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALTR_FRAME;
cm->alt_fb_idx = cm->gld_fb_idx;
#if CONFIG_MULTI_RES_ENCODING
cpi->current_ref_frames[ALTREF_FRAME] =
cpi->current_ref_frames[GOLDEN_FRAME];
#endif
}
}
}
if (cm->refresh_golden_frame)
{
assert(!cm->copy_buffer_to_gf);
cm->yv12_fb[cm->new_fb_idx].flags |= VP8_GOLD_FRAME;
cm->yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FRAME;
cm->gld_fb_idx = cm->new_fb_idx;
#if CONFIG_MULTI_RES_ENCODING
cpi->current_ref_frames[GOLDEN_FRAME] = cm->current_video_frame;
#endif
}
else if (cm->copy_buffer_to_gf)
{
assert(!(cm->copy_buffer_to_arf & ~0x3));
if (cm->copy_buffer_to_gf == 1)
{
if(cm->gld_fb_idx != cm->lst_fb_idx)
{
yv12_fb[cm->lst_fb_idx].flags |= VP8_GOLD_FRAME;
yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FRAME;
cm->gld_fb_idx = cm->lst_fb_idx;
#if CONFIG_MULTI_RES_ENCODING
cpi->current_ref_frames[GOLDEN_FRAME] =
cpi->current_ref_frames[LAST_FRAME];
#endif
}
}
else /* if (cm->copy_buffer_to_gf == 2) */
{
if(cm->alt_fb_idx != cm->gld_fb_idx)
{
yv12_fb[cm->alt_fb_idx].flags |= VP8_GOLD_FRAME;
yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FRAME;
cm->gld_fb_idx = cm->alt_fb_idx;
#if CONFIG_MULTI_RES_ENCODING
cpi->current_ref_frames[GOLDEN_FRAME] =
cpi->current_ref_frames[ALTREF_FRAME];
#endif
}
}
}
}
if (cm->refresh_last_frame)
{
cm->yv12_fb[cm->new_fb_idx].flags |= VP8_LAST_FRAME;
cm->yv12_fb[cm->lst_fb_idx].flags &= ~VP8_LAST_FRAME;
cm->lst_fb_idx = cm->new_fb_idx;
#if CONFIG_MULTI_RES_ENCODING
cpi->current_ref_frames[LAST_FRAME] = cm->current_video_frame;
#endif
}
}
void vp8_loopfilter_frame(VP8_COMP *cpi, VP8_COMMON *cm)
{
const FRAME_TYPE frame_type = cm->frame_type;
if (cm->no_lpf)
{
cm->filter_level = 0;
}
else
{
struct vpx_usec_timer timer;
vp8_clear_system_state();
vpx_usec_timer_start(&timer);
if (cpi->sf.auto_filter == 0)
vp8cx_pick_filter_level_fast(cpi->Source, cpi);
else
vp8cx_pick_filter_level(cpi->Source, cpi);
if (cm->filter_level > 0)
{
vp8cx_set_alt_lf_level(cpi, cm->filter_level);
}
vpx_usec_timer_mark(&timer);
cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer);
}
#if CONFIG_MULTITHREAD
if (cpi->b_multi_threaded)
sem_post(&cpi->h_event_end_lpf); /* signal that we have set filter_level */
#endif
if (cm->filter_level > 0)
{
vp8_loop_filter_frame(cm, &cpi->mb.e_mbd, frame_type);
}
vp8_yv12_extend_frame_borders(cm->frame_to_show);
#if CONFIG_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity)
{
/* we shouldn't have to keep multiple copies as we know in advance which
* buffer we should start - for now to get something up and running
* I've chosen to copy the buffers
*/
if (cm->frame_type == KEY_FRAME)
{
int i;
vp8_yv12_copy_frame(
cpi->Source,
&cpi->denoiser.yv12_running_avg[LAST_FRAME]);
vp8_yv12_extend_frame_borders(
&cpi->denoiser.yv12_running_avg[LAST_FRAME]);
for (i = 2; i < MAX_REF_FRAMES - 1; i++)
vp8_yv12_copy_frame(
cpi->Source,
&cpi->denoiser.yv12_running_avg[i]);
}
else /* For non key frames */
{
vp8_yv12_extend_frame_borders(
&cpi->denoiser.yv12_running_avg[LAST_FRAME]);
if (cm->refresh_alt_ref_frame || cm->copy_buffer_to_arf)
{
vp8_yv12_copy_frame(
&cpi->denoiser.yv12_running_avg[LAST_FRAME],
&cpi->denoiser.yv12_running_avg[ALTREF_FRAME]);
}
if (cm->refresh_golden_frame || cm->copy_buffer_to_gf)
{
vp8_yv12_copy_frame(
&cpi->denoiser.yv12_running_avg[LAST_FRAME],
&cpi->denoiser.yv12_running_avg[GOLDEN_FRAME]);
}
}
}
#endif
}
static void encode_frame_to_data_rate
(
VP8_COMP *cpi,
unsigned long *size,
unsigned char *dest,
unsigned char* dest_end,
unsigned int *frame_flags
)
2010-05-18 19:58:33 +04:00
{
int Q;
int frame_over_shoot_limit;
int frame_under_shoot_limit;
int Loop = 0;
2010-05-18 19:58:33 +04:00
int loop_count;
VP8_COMMON *cm = &cpi->common;
int active_worst_qchanged = 0;
#if !(CONFIG_REALTIME_ONLY)
2010-05-18 19:58:33 +04:00
int q_low;
int q_high;
int zbin_oq_high;
int zbin_oq_low = 0;
int top_index;
int bottom_index;
int overshoot_seen = 0;
int undershoot_seen = 0;
#endif
int drop_mark = (int)(cpi->oxcf.drop_frames_water_mark *
cpi->oxcf.optimal_buffer_level / 100);
2010-05-18 19:58:33 +04:00
int drop_mark75 = drop_mark * 2 / 3;
int drop_mark50 = drop_mark / 4;
int drop_mark25 = drop_mark / 8;
/* Clear down mmx registers to allow floating point in what follows */
2010-05-18 19:58:33 +04:00
vp8_clear_system_state();
#if CONFIG_MULTITHREAD
/* wait for the last picture loopfilter thread done */
if (cpi->b_lpf_running)
{
sem_wait(&cpi->h_event_end_lpf);
cpi->b_lpf_running = 0;
}
#endif
if(cpi->force_next_frame_intra)
{
cm->frame_type = KEY_FRAME; /* delayed intra frame */
cpi->force_next_frame_intra = 0;
}
/* For an alt ref frame in 2 pass we skip the call to the second pass
* function that sets the target bandwidth
*/
2010-05-18 19:58:33 +04:00
#if !(CONFIG_REALTIME_ONLY)
if (cpi->pass == 2)
{
if (cpi->common.refresh_alt_ref_frame)
{
/* Per frame bit target for the alt ref frame */
cpi->per_frame_bandwidth = cpi->twopass.gf_bits;
/* per second target bitrate */
cpi->target_bandwidth = (int)(cpi->twopass.gf_bits *
cpi->output_frame_rate);
2010-05-18 19:58:33 +04:00
}
}
else
#endif
cpi->per_frame_bandwidth = (int)(cpi->target_bandwidth / cpi->output_frame_rate);
/* Default turn off buffer to buffer copying */
2010-05-18 19:58:33 +04:00
cm->copy_buffer_to_gf = 0;
cm->copy_buffer_to_arf = 0;
/* Clear zbin over-quant value and mode boost values. */
2010-05-18 19:58:33 +04:00
cpi->zbin_over_quant = 0;
cpi->zbin_mode_boost = 0;
/* Enable or disable mode based tweaking of the zbin
* For 2 Pass Only used where GF/ARF prediction quality
* is above a threshold
*/
cpi->zbin_mode_boost_enabled = 1;
if (cpi->pass == 2)
{
if ( cpi->gfu_boost <= 400 )
{
cpi->zbin_mode_boost_enabled = 0;
}
}
2010-05-18 19:58:33 +04:00
/* Current default encoder behaviour for the altref sign bias */
2010-05-18 19:58:33 +04:00
if (cpi->source_alt_ref_active)
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1;
else
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 0;
/* Check to see if a key frame is signalled
* For two pass with auto key frame enabled cm->frame_type may already
* be set, but not for one pass.
*/
2010-05-18 19:58:33 +04:00
if ((cm->current_video_frame == 0) ||
(cm->frame_flags & FRAMEFLAGS_KEY) ||
(cpi->oxcf.auto_key && (cpi->frames_since_key % cpi->key_frame_frequency == 0)))
{
/* Key frame from VFW/auto-keyframe/first frame */
2010-05-18 19:58:33 +04:00
cm->frame_type = KEY_FRAME;
}
#if CONFIG_MULTI_RES_ENCODING
/* In multi-resolution encoding, frame_type is decided by lowest-resolution
* encoder. Same frame_type is adopted while encoding at other resolution.
*/
if (cpi->oxcf.mr_encoder_id)
{
LOWER_RES_FRAME_INFO* low_res_frame_info
= (LOWER_RES_FRAME_INFO*)cpi->oxcf.mr_low_res_mode_info;
cm->frame_type = low_res_frame_info->frame_type;
if(cm->frame_type != KEY_FRAME)
{
cpi->mr_low_res_mv_avail = 1;
cpi->mr_low_res_mv_avail &= !(low_res_frame_info->is_frame_dropped);
if (cpi->ref_frame_flags & VP8_LAST_FRAME)
cpi->mr_low_res_mv_avail &= (cpi->current_ref_frames[LAST_FRAME]
== low_res_frame_info->low_res_ref_frames[LAST_FRAME]);
if (cpi->ref_frame_flags & VP8_GOLD_FRAME)
cpi->mr_low_res_mv_avail &= (cpi->current_ref_frames[GOLDEN_FRAME]
== low_res_frame_info->low_res_ref_frames[GOLDEN_FRAME]);
if (cpi->ref_frame_flags & VP8_ALTR_FRAME)
cpi->mr_low_res_mv_avail &= (cpi->current_ref_frames[ALTREF_FRAME]
== low_res_frame_info->low_res_ref_frames[ALTREF_FRAME]);
}
}
#endif
/* Set various flags etc to special state if it is a key frame */
2010-05-18 19:58:33 +04:00
if (cm->frame_type == KEY_FRAME)
{
int i;
// Set the loop filter deltas and segmentation map update
setup_features(cpi);
/* The alternate reference frame cannot be active for a key frame */
cpi->source_alt_ref_active = 0;
2010-05-18 19:58:33 +04:00
/* Reset the RD threshold multipliers to default of * 1 (128) */
2010-05-18 19:58:33 +04:00
for (i = 0; i < MAX_MODES; i++)
{
cpi->rd_thresh_mult[i] = 128;
}
}
#if 0
/* Experimental code for lagged compress and one pass
* Initialise one_pass GF frames stats
* Update stats used for GF selection
*/
2010-05-18 19:58:33 +04:00
{
cpi->one_pass_frame_index = cm->current_video_frame % MAX_LAG_BUFFERS;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frames_so_far = 0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_intra_error = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_coded_error = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_pcnt_inter = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_pcnt_motion = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvr = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvr_abs = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvc = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvc_abs = 0.0;
}
#endif
update_rd_ref_frame_probs(cpi);
if (cpi->drop_frames_allowed)
{
/* The reset to decimation 0 is only done here for one pass.
* Once it is set two pass leaves decimation on till the next kf.
*/
2010-05-18 19:58:33 +04:00
if ((cpi->buffer_level > drop_mark) && (cpi->decimation_factor > 0))
cpi->decimation_factor --;
if (cpi->buffer_level > drop_mark75 && cpi->decimation_factor > 0)
cpi->decimation_factor = 1;
else if (cpi->buffer_level < drop_mark25 && (cpi->decimation_factor == 2 || cpi->decimation_factor == 3))
{
cpi->decimation_factor = 3;
}
else if (cpi->buffer_level < drop_mark50 && (cpi->decimation_factor == 1 || cpi->decimation_factor == 2))
{
cpi->decimation_factor = 2;
}
else if (cpi->buffer_level < drop_mark75 && (cpi->decimation_factor == 0 || cpi->decimation_factor == 1))
{
cpi->decimation_factor = 1;
}
}
/* The following decimates the frame rate according to a regular
* pattern (i.e. to 1/2 or 2/3 frame rate) This can be used to help
* prevent buffer under-run in CBR mode. Alternatively it might be
* desirable in some situations to drop frame rate but throw more bits
* at each frame.
*
* Note that dropping a key frame can be problematic if spatial
* resampling is also active
*/
2010-05-18 19:58:33 +04:00
if (cpi->decimation_factor > 0)
{
switch (cpi->decimation_factor)
{
case 1:
cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 3 / 2;
break;
case 2:
cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 5 / 4;
break;
case 3:
cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 5 / 4;
break;
}
/* Note that we should not throw out a key frame (especially when
* spatial resampling is enabled).
*/
if ((cm->frame_type == KEY_FRAME))
2010-05-18 19:58:33 +04:00
{
cpi->decimation_count = cpi->decimation_factor;
}
else if (cpi->decimation_count > 0)
{
cpi->decimation_count --;
2010-05-18 19:58:33 +04:00
cpi->bits_off_target += cpi->av_per_frame_bandwidth;
if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size)
cpi->bits_off_target = cpi->oxcf.maximum_buffer_size;
#if CONFIG_MULTI_RES_ENCODING
vp8_store_drop_frame_info(cpi);
#endif
2010-05-18 19:58:33 +04:00
cm->current_video_frame++;
cpi->frames_since_key++;
#if CONFIG_INTERNAL_STATS
2010-05-18 19:58:33 +04:00
cpi->count ++;
#endif
cpi->buffer_level = cpi->bits_off_target;
if (cpi->oxcf.number_of_layers > 1)
{
unsigned int i;
/* Propagate bits saved by dropping the frame to higher
* layers
*/
for (i=cpi->current_layer+1; i<cpi->oxcf.number_of_layers; i++)
{
LAYER_CONTEXT *lc = &cpi->layer_context[i];
lc->bits_off_target += cpi->av_per_frame_bandwidth;
if (lc->bits_off_target > lc->maximum_buffer_size)
lc->bits_off_target = lc->maximum_buffer_size;
lc->buffer_level = lc->bits_off_target;
}
}
2010-05-18 19:58:33 +04:00
return;
}
else
cpi->decimation_count = cpi->decimation_factor;
}
else
cpi->decimation_count = 0;
2010-05-18 19:58:33 +04:00
/* Decide how big to make the frame */
if (!vp8_pick_frame_size(cpi))
2010-05-18 19:58:33 +04:00
{
/*TODO: 2 drop_frame and return code could be put together. */
#if CONFIG_MULTI_RES_ENCODING
vp8_store_drop_frame_info(cpi);
#endif
2010-05-18 19:58:33 +04:00
cm->current_video_frame++;
cpi->frames_since_key++;
return;
}
/* Reduce active_worst_allowed_q for CBR if our buffer is getting too full.
* This has a knock on effect on active best quality as well.
* For CBR if the buffer reaches its maximum level then we can no longer
* save up bits for later frames so we might as well use them up
* on the current frame.
*/
if ((cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) &&
2010-05-18 19:58:33 +04:00
(cpi->buffer_level >= cpi->oxcf.optimal_buffer_level) && cpi->buffered_mode)
{
/* Max adjustment is 1/4 */
int Adjustment = cpi->active_worst_quality / 4;
2010-05-18 19:58:33 +04:00
if (Adjustment)
{
int buff_lvl_step;
if (cpi->buffer_level < cpi->oxcf.maximum_buffer_size)
{
buff_lvl_step = (int)
((cpi->oxcf.maximum_buffer_size -
cpi->oxcf.optimal_buffer_level) /
Adjustment);
2010-05-18 19:58:33 +04:00
if (buff_lvl_step)
Adjustment = (int)
((cpi->buffer_level -
cpi->oxcf.optimal_buffer_level) /
buff_lvl_step);
else
Adjustment = 0;
2010-05-18 19:58:33 +04:00
}
cpi->active_worst_quality -= Adjustment;
if(cpi->active_worst_quality < cpi->active_best_quality)
cpi->active_worst_quality = cpi->active_best_quality;
2010-05-18 19:58:33 +04:00
}
}
/* Set an active best quality and if necessary active worst quality
* There is some odd behavior for one pass here that needs attention.
*/
if ( (cpi->pass == 2) || (cpi->ni_frames > 150))
2010-05-18 19:58:33 +04:00
{
vp8_clear_system_state();
2010-05-18 19:58:33 +04:00
Q = cpi->active_worst_quality;
if ( cm->frame_type == KEY_FRAME )
2010-05-18 19:58:33 +04:00
{
if ( cpi->pass == 2 )
2010-05-18 19:58:33 +04:00
{
if (cpi->gfu_boost > 600)
cpi->active_best_quality = kf_low_motion_minq[Q];
else
cpi->active_best_quality = kf_high_motion_minq[Q];
/* Special case for key frames forced because we have reached
* the maximum key frame interval. Here force the Q to a range
* based on the ambient Q to reduce the risk of popping
*/
if ( cpi->this_key_frame_forced )
{
if ( cpi->active_best_quality > cpi->avg_frame_qindex * 7/8)
cpi->active_best_quality = cpi->avg_frame_qindex * 7/8;
else if ( cpi->active_best_quality < cpi->avg_frame_qindex >> 2 )
cpi->active_best_quality = cpi->avg_frame_qindex >> 2;
}
}
/* One pass more conservative */
else
cpi->active_best_quality = kf_high_motion_minq[Q];
}
2010-05-18 19:58:33 +04:00
else if (cpi->oxcf.number_of_layers==1 &&
(cm->refresh_golden_frame || cpi->common.refresh_alt_ref_frame))
{
/* Use the lower of cpi->active_worst_quality and recent
* average Q as basis for GF/ARF Q limit unless last frame was
* a key frame.
*/
if ( (cpi->frames_since_key > 1) &&
(cpi->avg_frame_qindex < cpi->active_worst_quality) )
{
Q = cpi->avg_frame_qindex;
}
/* For constrained quality dont allow Q less than the cq level */
if ( (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
(Q < cpi->cq_target_quality) )
{
Q = cpi->cq_target_quality;
}
if ( cpi->pass == 2 )
{
if ( cpi->gfu_boost > 1000 )
cpi->active_best_quality = gf_low_motion_minq[Q];
else if ( cpi->gfu_boost < 400 )
cpi->active_best_quality = gf_high_motion_minq[Q];
2010-05-18 19:58:33 +04:00
else
cpi->active_best_quality = gf_mid_motion_minq[Q];
/* Constrained quality use slightly lower active best. */
if ( cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY )
{
cpi->active_best_quality =
cpi->active_best_quality * 15/16;
}
}
/* One pass more conservative */
else
cpi->active_best_quality = gf_high_motion_minq[Q];
2010-05-18 19:58:33 +04:00
}
else
{
cpi->active_best_quality = inter_minq[Q];
/* For the constant/constrained quality mode we dont want
* q to fall below the cq level.
*/
if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
(cpi->active_best_quality < cpi->cq_target_quality) )
{
/* If we are strongly undershooting the target rate in the last
* frames then use the user passed in cq value not the auto
* cq value.
*/
if ( cpi->rolling_actual_bits < cpi->min_frame_bandwidth )
cpi->active_best_quality = cpi->oxcf.cq_level;
else
cpi->active_best_quality = cpi->cq_target_quality;
}
2010-05-18 19:58:33 +04:00
}
/* If CBR and the buffer is as full then it is reasonable to allow
* higher quality on the frames to prevent bits just going to waste.
*/
2010-05-18 19:58:33 +04:00
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
{
/* Note that the use of >= here elliminates the risk of a devide
* by 0 error in the else if clause
*/
2010-05-18 19:58:33 +04:00
if (cpi->buffer_level >= cpi->oxcf.maximum_buffer_size)
cpi->active_best_quality = cpi->best_quality;
else if (cpi->buffer_level > cpi->oxcf.optimal_buffer_level)
{
int Fraction = (int)
(((cpi->buffer_level - cpi->oxcf.optimal_buffer_level) * 128)
/ (cpi->oxcf.maximum_buffer_size -
cpi->oxcf.optimal_buffer_level));
int min_qadjustment = ((cpi->active_best_quality -
cpi->best_quality) * Fraction) / 128;
2010-05-18 19:58:33 +04:00
cpi->active_best_quality -= min_qadjustment;
}
}
}
/* Make sure constrained quality mode limits are adhered to for the first
* few frames of one pass encodes
*/
else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY)
{
if ( (cm->frame_type == KEY_FRAME) ||
cm->refresh_golden_frame || cpi->common.refresh_alt_ref_frame )
{
cpi->active_best_quality = cpi->best_quality;
}
else if (cpi->active_best_quality < cpi->cq_target_quality)
{
cpi->active_best_quality = cpi->cq_target_quality;
}
}
2010-05-18 19:58:33 +04:00
/* Clip the active best and worst quality values to limits */
2010-05-18 19:58:33 +04:00
if (cpi->active_worst_quality > cpi->worst_quality)
cpi->active_worst_quality = cpi->worst_quality;
if (cpi->active_best_quality < cpi->best_quality)
cpi->active_best_quality = cpi->best_quality;
if ( cpi->active_worst_quality < cpi->active_best_quality )
cpi->active_worst_quality = cpi->active_best_quality;
2010-05-18 19:58:33 +04:00
/* Determine initial Q to try */
2010-05-18 19:58:33 +04:00
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
#if !(CONFIG_REALTIME_ONLY)
2010-05-18 19:58:33 +04:00
/* Set highest allowed value for Zbin over quant */
2010-05-18 19:58:33 +04:00
if (cm->frame_type == KEY_FRAME)
zbin_oq_high = 0;
else if ((cpi->oxcf.number_of_layers == 1) && ((cm->refresh_alt_ref_frame ||
(cm->refresh_golden_frame && !cpi->source_alt_ref_active))))
{
zbin_oq_high = 16;
}
2010-05-18 19:58:33 +04:00
else
zbin_oq_high = ZBIN_OQ_MAX;
#endif
2010-05-18 19:58:33 +04:00
/* Setup background Q adjustment for error resilient mode.
* For multi-layer encodes only enable this for the base layer.
*/
if (cpi->cyclic_refresh_mode_enabled)
{
if (cpi->current_layer==0)
2010-05-18 19:58:33 +04:00
cyclic_background_refresh(cpi, Q, 0);
else
disable_segmentation(cpi);
}
2010-05-18 19:58:33 +04:00
vp8_compute_frame_size_bounds(cpi, &frame_under_shoot_limit, &frame_over_shoot_limit);
#if !(CONFIG_REALTIME_ONLY)
/* Limit Q range for the adaptive loop. */
2010-05-18 19:58:33 +04:00
bottom_index = cpi->active_best_quality;
top_index = cpi->active_worst_quality;
q_low = cpi->active_best_quality;
q_high = cpi->active_worst_quality;
#endif
2010-05-18 19:58:33 +04:00
vp8_save_coding_context(cpi);
loop_count = 0;
scale_and_extend_source(cpi->un_scaled_source, cpi);
#if !(CONFIG_REALTIME_ONLY) && CONFIG_POSTPROC && !(CONFIG_TEMPORAL_DENOISING)
2010-05-18 19:58:33 +04:00
if (cpi->oxcf.noise_sensitivity > 0)
{
unsigned char *src;
int l = 0;
switch (cpi->oxcf.noise_sensitivity)
{
case 1:
l = 20;
break;
case 2:
l = 40;
break;
case 3:
l = 60;
break;
case 4:
l = 80;
break;
case 5:
l = 100;
break;
case 6:
l = 150;
break;
}
if (cm->frame_type == KEY_FRAME)
{
vp8_de_noise(cpi->Source, cpi->Source, l , 1, 0);
2010-05-18 19:58:33 +04:00
}
else
{
vp8_de_noise(cpi->Source, cpi->Source, l , 1, 0);
2010-05-18 19:58:33 +04:00
src = cpi->Source->y_buffer;
if (cpi->Source->y_stride < 0)
{
src += cpi->Source->y_stride * (cpi->Source->y_height - 1);
}
}
}
#endif
#ifdef OUTPUT_YUV_SRC
vp8_write_yuv_frame(cpi->Source);
#endif
do
{
vp8_clear_system_state();
2010-05-18 19:58:33 +04:00
vp8_set_quantizer(cpi, Q);
2010-05-18 19:58:33 +04:00
/* setup skip prob for costing in mode/mv decision */
2010-05-18 19:58:33 +04:00
if (cpi->common.mb_no_coeff_skip)
{
cpi->prob_skip_false = cpi->base_skip_false_prob[Q];
if (cm->frame_type != KEY_FRAME)
{
if (cpi->common.refresh_alt_ref_frame)
{
if (cpi->last_skip_false_probs[2] != 0)
cpi->prob_skip_false = cpi->last_skip_false_probs[2];
/*
if(cpi->last_skip_false_probs[2]!=0 && abs(Q- cpi->last_skip_probs_q[2])<=16 )
cpi->prob_skip_false = cpi->last_skip_false_probs[2];
else if (cpi->last_skip_false_probs[2]!=0)
cpi->prob_skip_false = (cpi->last_skip_false_probs[2] + cpi->prob_skip_false ) / 2;
*/
}
else if (cpi->common.refresh_golden_frame)
{
if (cpi->last_skip_false_probs[1] != 0)
cpi->prob_skip_false = cpi->last_skip_false_probs[1];
/*
if(cpi->last_skip_false_probs[1]!=0 && abs(Q- cpi->last_skip_probs_q[1])<=16 )
cpi->prob_skip_false = cpi->last_skip_false_probs[1];
else if (cpi->last_skip_false_probs[1]!=0)
cpi->prob_skip_false = (cpi->last_skip_false_probs[1] + cpi->prob_skip_false ) / 2;
*/
}
else
{
if (cpi->last_skip_false_probs[0] != 0)
cpi->prob_skip_false = cpi->last_skip_false_probs[0];
/*
if(cpi->last_skip_false_probs[0]!=0 && abs(Q- cpi->last_skip_probs_q[0])<=16 )
cpi->prob_skip_false = cpi->last_skip_false_probs[0];
else if(cpi->last_skip_false_probs[0]!=0)
cpi->prob_skip_false = (cpi->last_skip_false_probs[0] + cpi->prob_skip_false ) / 2;
*/
}
/* as this is for cost estimate, let's make sure it does not
* go extreme eitehr way
*/
2010-05-18 19:58:33 +04:00
if (cpi->prob_skip_false < 5)
cpi->prob_skip_false = 5;
if (cpi->prob_skip_false > 250)
cpi->prob_skip_false = 250;
if (cpi->oxcf.number_of_layers == 1 && cpi->is_src_frame_alt_ref)
2010-05-18 19:58:33 +04:00
cpi->prob_skip_false = 1;
}
#if 0
if (cpi->pass != 1)
{
FILE *f = fopen("skip.stt", "a");
fprintf(f, "%d, %d, %4d ", cpi->common.refresh_golden_frame, cpi->common.refresh_alt_ref_frame, cpi->prob_skip_false);
fclose(f);
}
#endif
}
if (cm->frame_type == KEY_FRAME)
{
if(resize_key_frame(cpi))
{
/* If the frame size has changed, need to reset Q, quantizer,
* and background refresh.
*/
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
if (cpi->cyclic_refresh_mode_enabled)
{
if (cpi->current_layer==0)
cyclic_background_refresh(cpi, Q, 0);
else
disable_segmentation(cpi);
}
vp8_set_quantizer(cpi, Q);
}
2010-05-18 19:58:33 +04:00
vp8_setup_key_frame(cpi);
}
2010-05-18 19:58:33 +04:00
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
{
if(cpi->oxcf.error_resilient_mode)
cm->refresh_entropy_probs = 0;
if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS)
{
if (cm->frame_type == KEY_FRAME)
cm->refresh_entropy_probs = 1;
}
if (cm->refresh_entropy_probs == 0)
{
/* save a copy for later refresh */
vpx_memcpy(&cm->lfc, &cm->fc, sizeof(cm->fc));
}
vp8_update_coef_context(cpi);
vp8_update_coef_probs(cpi);
/* transform / motion compensation build reconstruction frame
* +pack coef partitions
*/
vp8_encode_frame(cpi);
/* cpi->projected_frame_size is not needed for RT mode */
}
#else
/* transform / motion compensation build reconstruction frame */
2010-05-18 19:58:33 +04:00
vp8_encode_frame(cpi);
2010-05-18 19:58:33 +04:00
cpi->projected_frame_size -= vp8_estimate_entropy_savings(cpi);
cpi->projected_frame_size = (cpi->projected_frame_size > 0) ? cpi->projected_frame_size : 0;
#endif
vp8_clear_system_state();
2010-05-18 19:58:33 +04:00
/* Test to see if the stats generated for this frame indicate that
* we should have coded a key frame (assuming that we didn't)!
*/
2010-05-18 19:58:33 +04:00
if (cpi->pass != 2 && cpi->oxcf.auto_key && cm->frame_type != KEY_FRAME)
{
int key_frame_decision = decide_key_frame(cpi);
if (cpi->compressor_speed == 2)
{
/* we don't do re-encoding in realtime mode
* if key frame is decided then we force it on next frame */
cpi->force_next_frame_intra = key_frame_decision;
}
#if !(CONFIG_REALTIME_ONLY)
else if (key_frame_decision)
2010-05-18 19:58:33 +04:00
{
/* Reset all our sizing numbers and recode */
2010-05-18 19:58:33 +04:00
cm->frame_type = KEY_FRAME;
vp8_pick_frame_size(cpi);
/* Clear the Alt reference frame active flag when we have
* a key frame
*/
cpi->source_alt_ref_active = 0;
2010-05-18 19:58:33 +04:00
// Set the loop filter deltas and segmentation map update
setup_features(cpi);
2010-05-18 19:58:33 +04:00
vp8_restore_coding_context(cpi);
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
vp8_compute_frame_size_bounds(cpi, &frame_under_shoot_limit, &frame_over_shoot_limit);
/* Limit Q range for the adaptive loop. */
2010-05-18 19:58:33 +04:00
bottom_index = cpi->active_best_quality;
top_index = cpi->active_worst_quality;
q_low = cpi->active_best_quality;
q_high = cpi->active_worst_quality;
2010-05-18 19:58:33 +04:00
loop_count++;
Loop = 1;
2010-05-18 19:58:33 +04:00
continue;
}
#endif
2010-05-18 19:58:33 +04:00
}
vp8_clear_system_state();
if (frame_over_shoot_limit == 0)
frame_over_shoot_limit = 1;
/* Are we are overshooting and up against the limit of active max Q. */
2010-05-18 19:58:33 +04:00
if (((cpi->pass != 2) || (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)) &&
(Q == cpi->active_worst_quality) &&
(cpi->active_worst_quality < cpi->worst_quality) &&
(cpi->projected_frame_size > frame_over_shoot_limit))
{
int over_size_percent = ((cpi->projected_frame_size - frame_over_shoot_limit) * 100) / frame_over_shoot_limit;
2010-05-18 19:58:33 +04:00
/* If so is there any scope for relaxing it */
while ((cpi->active_worst_quality < cpi->worst_quality) && (over_size_percent > 0))
{
cpi->active_worst_quality++;
/* Assume 1 qstep = about 4% on frame size. */
over_size_percent = (int)(over_size_percent * 0.96);
}
#if !(CONFIG_REALTIME_ONLY)
top_index = cpi->active_worst_quality;
#endif
/* If we have updated the active max Q do not call
* vp8_update_rate_correction_factors() this loop.
*/
active_worst_qchanged = 1;
2010-05-18 19:58:33 +04:00
}
else
active_worst_qchanged = 0;
2010-05-18 19:58:33 +04:00
#if !(CONFIG_REALTIME_ONLY)
/* Special case handling for forced key frames */
if ( (cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced )
{
int last_q = Q;
int kf_err = vp8_calc_ss_err(cpi->Source,
&cm->yv12_fb[cm->new_fb_idx]);
/* The key frame is not good enough */
if ( kf_err > ((cpi->ambient_err * 7) >> 3) )
{
/* Lower q_high */
q_high = (Q > q_low) ? (Q - 1) : q_low;
/* Adjust Q */
Q = (q_high + q_low) >> 1;
}
/* The key frame is much better than the previous frame */
else if ( kf_err < (cpi->ambient_err >> 1) )
{
/* Raise q_low */
q_low = (Q < q_high) ? (Q + 1) : q_high;
/* Adjust Q */
Q = (q_high + q_low + 1) >> 1;
}
/* Clamp Q to upper and lower limits: */
if (Q > q_high)
Q = q_high;
else if (Q < q_low)
Q = q_low;
Loop = Q != last_q;
}
2010-05-18 19:58:33 +04:00
/* Is the projected frame size out of range and are we allowed
* to attempt to recode.
*/
else if ( recode_loop_test( cpi,
frame_over_shoot_limit, frame_under_shoot_limit,
Q, top_index, bottom_index ) )
2010-05-18 19:58:33 +04:00
{
int last_q = Q;
int Retries = 0;
/* Frame size out of permitted range. Update correction factor
* & compute new Q to try...
*/
/* Frame is too large */
if (cpi->projected_frame_size > cpi->this_frame_target)
2010-05-18 19:58:33 +04:00
{
/* Raise Qlow as to at least the current value */
q_low = (Q < q_high) ? (Q + 1) : q_high;
2010-05-18 19:58:33 +04:00
/* If we are using over quant do the same for zbin_oq_low */
if (cpi->zbin_over_quant > 0)
2010-05-18 19:58:33 +04:00
zbin_oq_low = (cpi->zbin_over_quant < zbin_oq_high) ? (cpi->zbin_over_quant + 1) : zbin_oq_high;
if (undershoot_seen)
{
/* Update rate_correction_factor unless
* cpi->active_worst_quality has changed.
*/
2010-05-18 19:58:33 +04:00
if (!active_worst_qchanged)
vp8_update_rate_correction_factors(cpi, 1);
Q = (q_high + q_low + 1) / 2;
/* Adjust cpi->zbin_over_quant (only allowed when Q
* is max)
*/
2010-05-18 19:58:33 +04:00
if (Q < MAXQ)
cpi->zbin_over_quant = 0;
else
{
zbin_oq_low = (cpi->zbin_over_quant < zbin_oq_high) ? (cpi->zbin_over_quant + 1) : zbin_oq_high;
cpi->zbin_over_quant = (zbin_oq_high + zbin_oq_low) / 2;
}
}
else
{
/* Update rate_correction_factor unless
* cpi->active_worst_quality has changed.
*/
2010-05-18 19:58:33 +04:00
if (!active_worst_qchanged)
vp8_update_rate_correction_factors(cpi, 0);
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
while (((Q < q_low) || (cpi->zbin_over_quant < zbin_oq_low)) && (Retries < 10))
{
vp8_update_rate_correction_factors(cpi, 0);
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
Retries ++;
}
}
overshoot_seen = 1;
2010-05-18 19:58:33 +04:00
}
/* Frame is too small */
2010-05-18 19:58:33 +04:00
else
{
if (cpi->zbin_over_quant == 0)
/* Lower q_high if not using over quant */
q_high = (Q > q_low) ? (Q - 1) : q_low;
else
/* else lower zbin_oq_high */
2010-05-18 19:58:33 +04:00
zbin_oq_high = (cpi->zbin_over_quant > zbin_oq_low) ? (cpi->zbin_over_quant - 1) : zbin_oq_low;
if (overshoot_seen)
{
/* Update rate_correction_factor unless
* cpi->active_worst_quality has changed.
*/
2010-05-18 19:58:33 +04:00
if (!active_worst_qchanged)
vp8_update_rate_correction_factors(cpi, 1);
Q = (q_high + q_low) / 2;
/* Adjust cpi->zbin_over_quant (only allowed when Q
* is max)
*/
2010-05-18 19:58:33 +04:00
if (Q < MAXQ)
cpi->zbin_over_quant = 0;
else
cpi->zbin_over_quant = (zbin_oq_high + zbin_oq_low) / 2;
}
else
{
/* Update rate_correction_factor unless
* cpi->active_worst_quality has changed.
*/
2010-05-18 19:58:33 +04:00
if (!active_worst_qchanged)
vp8_update_rate_correction_factors(cpi, 0);
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
/* Special case reset for qlow for constrained quality.
* This should only trigger where there is very substantial
* undershoot on a frame and the auto cq level is above
* the user passsed in value.
*/
if ( (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
(Q < q_low) )
{
q_low = Q;
}
2010-05-18 19:58:33 +04:00
while (((Q > q_high) || (cpi->zbin_over_quant > zbin_oq_high)) && (Retries < 10))
{
vp8_update_rate_correction_factors(cpi, 0);
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
Retries ++;
}
}
undershoot_seen = 1;
2010-05-18 19:58:33 +04:00
}
/* Clamp Q to upper and lower limits: */
2010-05-18 19:58:33 +04:00
if (Q > q_high)
Q = q_high;
else if (Q < q_low)
Q = q_low;
/* Clamp cpi->zbin_over_quant */
2010-05-18 19:58:33 +04:00
cpi->zbin_over_quant = (cpi->zbin_over_quant < zbin_oq_low) ? zbin_oq_low : (cpi->zbin_over_quant > zbin_oq_high) ? zbin_oq_high : cpi->zbin_over_quant;
Loop = Q != last_q;
2010-05-18 19:58:33 +04:00
}
else
#endif
Loop = 0;
2010-05-18 19:58:33 +04:00
if (cpi->is_src_frame_alt_ref)
Loop = 0;
2010-05-18 19:58:33 +04:00
if (Loop == 1)
2010-05-18 19:58:33 +04:00
{
vp8_restore_coding_context(cpi);
loop_count++;
#if CONFIG_INTERNAL_STATS
2010-05-18 19:58:33 +04:00
cpi->tot_recode_hits++;
#endif
}
}
while (Loop == 1);
2010-05-18 19:58:33 +04:00
#if 0
/* Experimental code for lagged and one pass
* Update stats used for one pass GF selection
*/
{
2010-05-18 19:58:33 +04:00
cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_coded_error = (double)cpi->prediction_error;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_intra_error = (double)cpi->intra_error;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_pcnt_inter = (double)(100 - cpi->this_frame_percent_intra) / 100.0;
}
#endif
/* Special case code to reduce pulsing when key frames are forced at a
* fixed interval. Note the reconstruction error if it is the frame before
* the force key frame
*/
if ( cpi->next_key_frame_forced && (cpi->twopass.frames_to_key == 0) )
{
cpi->ambient_err = vp8_calc_ss_err(cpi->Source,
&cm->yv12_fb[cm->new_fb_idx]);
}
/* This frame's MVs are saved and will be used in next frame's MV predictor.
* Last frame has one more line(add to bottom) and one more column(add to
* right) than cm->mip. The edge elements are initialized to 0.
*/
#if CONFIG_MULTI_RES_ENCODING
if(!cpi->oxcf.mr_encoder_id && cm->show_frame)
#else
if(cm->show_frame) /* do not save for altref frame */
#endif
{
int mb_row;
int mb_col;
/* Point to beginning of allocated MODE_INFO arrays. */
MODE_INFO *tmp = cm->mip;
if(cm->frame_type != KEY_FRAME)
{
for (mb_row = 0; mb_row < cm->mb_rows+1; mb_row ++)
{
for (mb_col = 0; mb_col < cm->mb_cols+1; mb_col ++)
{
if(tmp->mbmi.ref_frame != INTRA_FRAME)
cpi->lfmv[mb_col + mb_row*(cm->mode_info_stride+1)].as_int = tmp->mbmi.mv.as_int;
cpi->lf_ref_frame_sign_bias[mb_col + mb_row*(cm->mode_info_stride+1)] = cm->ref_frame_sign_bias[tmp->mbmi.ref_frame];
cpi->lf_ref_frame[mb_col + mb_row*(cm->mode_info_stride+1)] = tmp->mbmi.ref_frame;
tmp++;
}
}
}
}
/* Count last ref frame 0,0 usage on current encoded frame. */
{
int mb_row;
int mb_col;
/* Point to beginning of MODE_INFO arrays. */
MODE_INFO *tmp = cm->mi;
cpi->inter_zz_count = 0;
cpi->zeromv_count = 0;
if(cm->frame_type != KEY_FRAME)
{
for (mb_row = 0; mb_row < cm->mb_rows; mb_row ++)
{
for (mb_col = 0; mb_col < cm->mb_cols; mb_col ++)
{
if(tmp->mbmi.mode == ZEROMV && tmp->mbmi.ref_frame == LAST_FRAME)
cpi->inter_zz_count++;
if(tmp->mbmi.mode == ZEROMV)
cpi->zeromv_count++;
tmp++;
}
tmp++;
}
}
}
#if CONFIG_MULTI_RES_ENCODING
vp8_cal_dissimilarity(cpi);
#endif
/* Update the GF useage maps.
* This is done after completing the compression of a frame when all
* modes etc. are finalized but before loop filter
*/
if (cpi->oxcf.number_of_layers == 1)
vp8_update_gf_useage_maps(cpi, cm, &cpi->mb);
2010-05-18 19:58:33 +04:00
if (cm->frame_type == KEY_FRAME)
cm->refresh_last_frame = 1;
#if 0
2010-05-18 19:58:33 +04:00
{
FILE *f = fopen("gfactive.stt", "a");
fprintf(f, "%8d %8d %8d %8d %8d\n", cm->current_video_frame, (100 * cpi->gf_active_count) / (cpi->common.mb_rows * cpi->common.mb_cols), cpi->this_iiratio, cpi->next_iiratio, cm->refresh_golden_frame);
2010-05-18 19:58:33 +04:00
fclose(f);
}
#endif
2010-05-18 19:58:33 +04:00
/* For inter frames the current default behavior is that when
* cm->refresh_golden_frame is set we copy the old GF over to the ARF buffer
* This is purely an encoder decision at present.
*/
2010-05-18 19:58:33 +04:00
if (!cpi->oxcf.error_resilient_mode && cm->refresh_golden_frame)
cm->copy_buffer_to_arf = 2;
else
cm->copy_buffer_to_arf = 0;
cm->frame_to_show = &cm->yv12_fb[cm->new_fb_idx];
#if CONFIG_MULTITHREAD
if (cpi->b_multi_threaded)
2010-05-18 19:58:33 +04:00
{
/* start loopfilter in separate thread */
sem_post(&cpi->h_event_start_lpf);
cpi->b_lpf_running = 1;
}
else
#endif
{
vp8_loopfilter_frame(cpi, cm);
}
2010-05-18 19:58:33 +04:00
update_reference_frames(cpi);
#if !(CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
if (cpi->oxcf.error_resilient_mode)
{
cm->refresh_entropy_probs = 0;
2010-05-18 19:58:33 +04:00
}
#endif
2010-05-18 19:58:33 +04:00
#if CONFIG_MULTITHREAD
/* wait that filter_level is picked so that we can continue with stream packing */
if (cpi->b_multi_threaded)
sem_wait(&cpi->h_event_end_lpf);
#endif
/* build the bitstream */
vp8_pack_bitstream(cpi, dest, dest_end, size);
#if CONFIG_MULTITHREAD
/* if PSNR packets are generated we have to wait for the lpf */
if (cpi->b_lpf_running && cpi->b_calculate_psnr)
2010-05-18 19:58:33 +04:00
{
sem_wait(&cpi->h_event_end_lpf);
cpi->b_lpf_running = 0;
2010-05-18 19:58:33 +04:00
}
#endif
/* Move storing frame_type out of the above loop since it is also
* needed in motion search besides loopfilter */
cm->last_frame_type = cm->frame_type;
2010-05-18 19:58:33 +04:00
/* Update rate control heuristics */
2010-05-18 19:58:33 +04:00
cpi->total_byte_count += (*size);
cpi->projected_frame_size = (*size) << 3;
if (cpi->oxcf.number_of_layers > 1)
{
unsigned int i;
for (i=cpi->current_layer+1; i<cpi->oxcf.number_of_layers; i++)
cpi->layer_context[i].total_byte_count += (*size);
}
2010-05-18 19:58:33 +04:00
if (!active_worst_qchanged)
vp8_update_rate_correction_factors(cpi, 2);
cpi->last_q[cm->frame_type] = cm->base_qindex;
if (cm->frame_type == KEY_FRAME)
{
vp8_adjust_key_frame_context(cpi);
}
/* Keep a record of ambient average Q. */
if (cm->frame_type != KEY_FRAME)
2010-05-18 19:58:33 +04:00
cpi->avg_frame_qindex = (2 + 3 * cpi->avg_frame_qindex + cm->base_qindex) >> 2;
/* Keep a record from which we can calculate the average Q excluding
* GF updates and key frames
*/
if ((cm->frame_type != KEY_FRAME) && ((cpi->oxcf.number_of_layers > 1) ||
(!cm->refresh_golden_frame && !cm->refresh_alt_ref_frame)))
2010-05-18 19:58:33 +04:00
{
cpi->ni_frames++;
/* Calculate the average Q for normal inter frames (not key or GFU
* frames).
*/
if ( cpi->pass == 2 )
2010-05-18 19:58:33 +04:00
{
cpi->ni_tot_qi += Q;
cpi->ni_av_qi = (cpi->ni_tot_qi / cpi->ni_frames);
}
else
{
/* Damp value for first few frames */
if (cpi->ni_frames > 150 )
{
cpi->ni_tot_qi += Q;
cpi->ni_av_qi = (cpi->ni_tot_qi / cpi->ni_frames);
}
/* For one pass, early in the clip ... average the current frame Q
* value with the worstq entered by the user as a dampening measure
*/
else
{
cpi->ni_tot_qi += Q;
cpi->ni_av_qi = ((cpi->ni_tot_qi / cpi->ni_frames) + cpi->worst_quality + 1) / 2;
}
2010-05-18 19:58:33 +04:00
/* If the average Q is higher than what was used in the last
* frame (after going through the recode loop to keep the frame
* size within range) then use the last frame value - 1. The -1
* is designed to stop Q and hence the data rate, from
* progressively falling away during difficult sections, but at
* the same time reduce the number of itterations around the
* recode loop.
*/
if (Q > cpi->ni_av_qi)
cpi->ni_av_qi = Q - 1;
}
2010-05-18 19:58:33 +04:00
}
/* Update the buffer level variable. */
/* Non-viewable frames are a special case and are treated as pure overhead. */
if ( !cm->show_frame )
cpi->bits_off_target -= cpi->projected_frame_size;
else
cpi->bits_off_target += cpi->av_per_frame_bandwidth - cpi->projected_frame_size;
2010-05-18 19:58:33 +04:00
/* Clip the buffer level to the maximum specified buffer size */
if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size)
cpi->bits_off_target = cpi->oxcf.maximum_buffer_size;
/* Rolling monitors of whether we are over or underspending used to
* help regulate min and Max Q in two pass.
*/
2010-05-18 19:58:33 +04:00
cpi->rolling_target_bits = ((cpi->rolling_target_bits * 3) + cpi->this_frame_target + 2) / 4;
cpi->rolling_actual_bits = ((cpi->rolling_actual_bits * 3) + cpi->projected_frame_size + 2) / 4;
cpi->long_rolling_target_bits = ((cpi->long_rolling_target_bits * 31) + cpi->this_frame_target + 16) / 32;
cpi->long_rolling_actual_bits = ((cpi->long_rolling_actual_bits * 31) + cpi->projected_frame_size + 16) / 32;
/* Actual bits spent */
cpi->total_actual_bits += cpi->projected_frame_size;
2010-05-18 19:58:33 +04:00
/* Debug stats */
2010-05-18 19:58:33 +04:00
cpi->total_target_vs_actual += (cpi->this_frame_target - cpi->projected_frame_size);
cpi->buffer_level = cpi->bits_off_target;
2010-05-18 19:58:33 +04:00
/* Propagate values to higher temporal layers */
if (cpi->oxcf.number_of_layers > 1)
{
unsigned int i;
for (i=cpi->current_layer+1; i<cpi->oxcf.number_of_layers; i++)
{
LAYER_CONTEXT *lc = &cpi->layer_context[i];
int bits_off_for_this_layer =
(int)(lc->target_bandwidth / lc->frame_rate -
cpi->projected_frame_size);
lc->bits_off_target += bits_off_for_this_layer;
/* Clip buffer level to maximum buffer size for the layer */
if (lc->bits_off_target > lc->maximum_buffer_size)
lc->bits_off_target = lc->maximum_buffer_size;
lc->total_actual_bits += cpi->projected_frame_size;
lc->total_target_vs_actual += bits_off_for_this_layer;
lc->buffer_level = lc->bits_off_target;
}
}
/* Update bits left to the kf and gf groups to account for overshoot
* or undershoot on these frames
*/
2010-05-18 19:58:33 +04:00
if (cm->frame_type == KEY_FRAME)
{
cpi->twopass.kf_group_bits += cpi->this_frame_target - cpi->projected_frame_size;
2010-05-18 19:58:33 +04:00
if (cpi->twopass.kf_group_bits < 0)
cpi->twopass.kf_group_bits = 0 ;
2010-05-18 19:58:33 +04:00
}
else if (cm->refresh_golden_frame || cm->refresh_alt_ref_frame)
{
cpi->twopass.gf_group_bits += cpi->this_frame_target - cpi->projected_frame_size;
2010-05-18 19:58:33 +04:00
if (cpi->twopass.gf_group_bits < 0)
cpi->twopass.gf_group_bits = 0 ;
2010-05-18 19:58:33 +04:00
}
if (cm->frame_type != KEY_FRAME)
{
if (cpi->common.refresh_alt_ref_frame)
{
cpi->last_skip_false_probs[2] = cpi->prob_skip_false;
cpi->last_skip_probs_q[2] = cm->base_qindex;
}
else if (cpi->common.refresh_golden_frame)
{
cpi->last_skip_false_probs[1] = cpi->prob_skip_false;
cpi->last_skip_probs_q[1] = cm->base_qindex;
}
else
{
cpi->last_skip_false_probs[0] = cpi->prob_skip_false;
cpi->last_skip_probs_q[0] = cm->base_qindex;
/* update the baseline */
2010-05-18 19:58:33 +04:00
cpi->base_skip_false_prob[cm->base_qindex] = cpi->prob_skip_false;
}
}
#if 0 && CONFIG_INTERNAL_STATS
2010-05-18 19:58:33 +04:00
{
FILE *f = fopen("tmp.stt", "a");
vp8_clear_system_state();
2010-05-18 19:58:33 +04:00
if (cpi->twopass.total_left_stats.coded_error != 0.0)
fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d %10d %6d %6d"
"%6d %6d %6d %5d %5d %5d %8d %8.2f %10d %10.3f"
"%10.3f %8d\n",
cpi->common.current_video_frame, cpi->this_frame_target,
cpi->projected_frame_size,
(cpi->projected_frame_size - cpi->this_frame_target),
(int)cpi->total_target_vs_actual,
cpi->buffer_level,
(cpi->oxcf.starting_buffer_level-cpi->bits_off_target),
(int)cpi->total_actual_bits, cm->base_qindex,
cpi->active_best_quality, cpi->active_worst_quality,
cpi->ni_av_qi, cpi->cq_target_quality,
cpi->zbin_over_quant,
cm->refresh_golden_frame, cm->refresh_alt_ref_frame,
cm->frame_type, cpi->gfu_boost,
cpi->twopass.est_max_qcorrection_factor,
(int)cpi->twopass.bits_left,
cpi->twopass.total_left_stats.coded_error,
(double)cpi->twopass.bits_left /
cpi->twopass.total_left_stats.coded_error,
cpi->tot_recode_hits);
2010-05-18 19:58:33 +04:00
else
fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d %10d %6d %6d"
"%6d %6d %6d %5d %5d %5d %8d %8.2f %10d %10.3f"
"%8d\n",
cpi->common.current_video_frame,
cpi->this_frame_target, cpi->projected_frame_size,
(cpi->projected_frame_size - cpi->this_frame_target),
(int)cpi->total_target_vs_actual,
cpi->buffer_level,
(cpi->oxcf.starting_buffer_level-cpi->bits_off_target),
(int)cpi->total_actual_bits, cm->base_qindex,
cpi->active_best_quality, cpi->active_worst_quality,
cpi->ni_av_qi, cpi->cq_target_quality,
cpi->zbin_over_quant,
cm->refresh_golden_frame, cm->refresh_alt_ref_frame,
cm->frame_type, cpi->gfu_boost,
cpi->twopass.est_max_qcorrection_factor,
(int)cpi->twopass.bits_left,
cpi->twopass.total_left_stats.coded_error,
cpi->tot_recode_hits);
2010-05-18 19:58:33 +04:00
fclose(f);
{
FILE *fmodes = fopen("Modes.stt", "a");
int i;
fprintf(fmodes, "%6d:%1d:%1d:%1d ",
cpi->common.current_video_frame,
cm->frame_type, cm->refresh_golden_frame,
cm->refresh_alt_ref_frame);
2010-05-18 19:58:33 +04:00
for (i = 0; i < MAX_MODES; i++)
fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]);
fprintf(fmodes, "\n");
fclose(fmodes);
}
}
#endif
if (cm->refresh_golden_frame == 1)
cm->frame_flags = cm->frame_flags | FRAMEFLAGS_GOLDEN;
else
cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_GOLDEN;
if (cm->refresh_alt_ref_frame == 1)
cm->frame_flags = cm->frame_flags | FRAMEFLAGS_ALTREF;
else
cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_ALTREF;
if (cm->refresh_last_frame & cm->refresh_golden_frame)
/* both refreshed */
2010-05-18 19:58:33 +04:00
cpi->gold_is_last = 1;
else if (cm->refresh_last_frame ^ cm->refresh_golden_frame)
/* 1 refreshed but not the other */
2010-05-18 19:58:33 +04:00
cpi->gold_is_last = 0;
if (cm->refresh_last_frame & cm->refresh_alt_ref_frame)
/* both refreshed */
2010-05-18 19:58:33 +04:00
cpi->alt_is_last = 1;
else if (cm->refresh_last_frame ^ cm->refresh_alt_ref_frame)
/* 1 refreshed but not the other */
2010-05-18 19:58:33 +04:00
cpi->alt_is_last = 0;
if (cm->refresh_alt_ref_frame & cm->refresh_golden_frame)
/* both refreshed */
2010-05-18 19:58:33 +04:00
cpi->gold_is_alt = 1;
else if (cm->refresh_alt_ref_frame ^ cm->refresh_golden_frame)
/* 1 refreshed but not the other */
2010-05-18 19:58:33 +04:00
cpi->gold_is_alt = 0;
cpi->ref_frame_flags = VP8_ALTR_FRAME | VP8_GOLD_FRAME | VP8_LAST_FRAME;
2010-05-18 19:58:33 +04:00
if (cpi->gold_is_last)
cpi->ref_frame_flags &= ~VP8_GOLD_FRAME;
2010-05-18 19:58:33 +04:00
if (cpi->alt_is_last)
cpi->ref_frame_flags &= ~VP8_ALTR_FRAME;
2010-05-18 19:58:33 +04:00
if (cpi->gold_is_alt)
cpi->ref_frame_flags &= ~VP8_ALTR_FRAME;
2010-05-18 19:58:33 +04:00
if (!cpi->oxcf.error_resilient_mode)
2010-05-18 19:58:33 +04:00
{
if (cpi->oxcf.play_alternate && cm->refresh_alt_ref_frame && (cm->frame_type != KEY_FRAME))
/* Update the alternate reference frame stats as appropriate. */
update_alt_ref_frame_stats(cpi);
2010-05-18 19:58:33 +04:00
else
/* Update the Golden frame stats as appropriate. */
update_golden_frame_stats(cpi);
2010-05-18 19:58:33 +04:00
}
if (cm->frame_type == KEY_FRAME)
{
/* Tell the caller that the frame was coded as a key frame */
2010-05-18 19:58:33 +04:00
*frame_flags = cm->frame_flags | FRAMEFLAGS_KEY;
/* As this frame is a key frame the next defaults to an inter frame. */
2010-05-18 19:58:33 +04:00
cm->frame_type = INTER_FRAME;
cpi->last_frame_percent_intra = 100;
}
else
{
*frame_flags = cm->frame_flags&~FRAMEFLAGS_KEY;
cpi->last_frame_percent_intra = cpi->this_frame_percent_intra;
}
/* Clear the one shot update flags for segmentation map and mode/ref
* loop filter deltas.
*/
2010-05-18 19:58:33 +04:00
cpi->mb.e_mbd.update_mb_segmentation_map = 0;
cpi->mb.e_mbd.update_mb_segmentation_data = 0;
cpi->mb.e_mbd.mode_ref_lf_delta_update = 0;
/* Dont increment frame counters if this was an altref buffer update
* not a real frame
*/
2010-05-18 19:58:33 +04:00
if (cm->show_frame)
{
cm->current_video_frame++;
cpi->frames_since_key++;
}
/* reset to normal state now that we are done. */
2010-05-18 19:58:33 +04:00
#if 0
2010-05-18 19:58:33 +04:00
{
char filename[512];
FILE *recon_file;
sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame);
recon_file = fopen(filename, "wb");
fwrite(cm->yv12_fb[cm->lst_fb_idx].buffer_alloc,
cm->yv12_fb[cm->lst_fb_idx].frame_size, 1, recon_file);
2010-05-18 19:58:33 +04:00
fclose(recon_file);
}
#endif
2010-05-18 19:58:33 +04:00
/* DEBUG */
/* vp8_write_yuv_frame("encoder_recon.yuv", cm->frame_to_show); */
2010-05-18 19:58:33 +04:00
}
static void check_gf_quality(VP8_COMP *cpi)
2010-05-18 19:58:33 +04:00
{
VP8_COMMON *cm = &cpi->common;
int gf_active_pct = (100 * cpi->gf_active_count) / (cm->mb_rows * cm->mb_cols);
2010-05-18 19:58:33 +04:00
int gf_ref_usage_pct = (cpi->count_mb_ref_frame_usage[GOLDEN_FRAME] * 100) / (cm->mb_rows * cm->mb_cols);
int last_ref_zz_useage = (cpi->inter_zz_count * 100) / (cm->mb_rows * cm->mb_cols);
/* Gf refresh is not currently being signalled */
2010-05-18 19:58:33 +04:00
if (cpi->gf_update_recommended == 0)
{
if (cpi->common.frames_since_golden > 7)
{
/* Low use of gf */
2010-05-18 19:58:33 +04:00
if ((gf_active_pct < 10) || ((gf_active_pct + gf_ref_usage_pct) < 15))
{
/* ...but last frame zero zero usage is reasonbable so a
* new gf might be appropriate
*/
2010-05-18 19:58:33 +04:00
if (last_ref_zz_useage >= 25)
{
cpi->gf_bad_count ++;
/* Check that the condition is stable */
if (cpi->gf_bad_count >= 8)
2010-05-18 19:58:33 +04:00
{
cpi->gf_update_recommended = 1;
cpi->gf_bad_count = 0;
}
}
else
/* Restart count as the background is not stable enough */
cpi->gf_bad_count = 0;
2010-05-18 19:58:33 +04:00
}
else
/* Gf useage has picked up so reset count */
cpi->gf_bad_count = 0;
2010-05-18 19:58:33 +04:00
}
}
/* If the signal is set but has not been read should we cancel it. */
2010-05-18 19:58:33 +04:00
else if (last_ref_zz_useage < 15)
{
cpi->gf_update_recommended = 0;
cpi->gf_bad_count = 0;
}
#if 0
{
FILE *f = fopen("gfneeded.stt", "a");
fprintf(f, "%10d %10d %10d %10d %10ld \n",
cm->current_video_frame,
cpi->common.frames_since_golden,
gf_active_pct, gf_ref_usage_pct,
cpi->gf_update_recommended);
fclose(f);
}
#endif
}
#if !(CONFIG_REALTIME_ONLY)
static void Pass2Encode(VP8_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned char * dest_end, unsigned int *frame_flags)
2010-05-18 19:58:33 +04:00
{
if (!cpi->common.refresh_alt_ref_frame)
vp8_second_pass(cpi);
encode_frame_to_data_rate(cpi, size, dest, dest_end, frame_flags);
cpi->twopass.bits_left -= 8 * *size;
2010-05-18 19:58:33 +04:00
if (!cpi->common.refresh_alt_ref_frame)
{
double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth
*cpi->oxcf.two_pass_vbrmin_section / 100);
cpi->twopass.bits_left += (int64_t)(two_pass_min_rate / cpi->frame_rate);
}
2010-05-18 19:58:33 +04:00
}
#endif
/* For ARM NEON, d8-d15 are callee-saved registers, and need to be saved. */
#if HAVE_NEON
extern void vp8_push_neon(int64_t *store);
extern void vp8_pop_neon(int64_t *store);
2010-05-18 19:58:33 +04:00
#endif
int vp8_receive_raw_frame(VP8_COMP *cpi, unsigned int frame_flags, YV12_BUFFER_CONFIG *sd, int64_t time_stamp, int64_t end_time)
2010-05-18 19:58:33 +04:00
{
#if HAVE_NEON
int64_t store_reg[8];
#endif
VP8_COMMON *cm = &cpi->common;
2010-05-18 19:58:33 +04:00
struct vpx_usec_timer timer;
int res = 0;
2010-05-18 19:58:33 +04:00
#if HAVE_NEON
Add runtime CPU detection support for ARM. The primary goal is to allow a binary to be built which supports NEON, but can fall back to non-NEON routines, since some Android devices do not have NEON, even if they are otherwise ARMv7 (e.g., Tegra). The configure-generated flags HAVE_ARMV7, etc., are used to decide which versions of each function to build, and when CONFIG_RUNTIME_CPU_DETECT is enabled, the correct version is chosen at run time. In order for this to work, the CFLAGS must be set to something appropriate (e.g., without -mfpu=neon for ARMv7, and with appropriate -march and -mcpu for even earlier configurations), or the native C code will not be able to run. The ASFLAGS must remain set for the most advanced instruction set required at build time, since the ARM assembler will refuse to emit them otherwise. I have not attempted to make any changes to configure to do this automatically. Doing so will probably require the addition of new configure options. Many of the hooks for RTCD on ARM were already there, but a lot of the code had bit-rotted, and a good deal of the ARM-specific code is not integrated into the RTCD structs at all. I did not try to resolve the latter, merely to add the minimal amount of protection around them to allow RTCD to work. Those functions that were called based on an ifdef at the calling site were expanded to check the RTCD flags at that site, but they should be added to an RTCD struct somewhere in the future. The functions invoked with global function pointers still are, but these should be moved into an RTCD struct for thread safety (I believe every platform currently supported has atomic pointer stores, but this is not guaranteed). The encoder's boolhuff functions did not even have _c and armv7 suffixes, and the correct version was resolved at link time. The token packing functions did have appropriate suffixes, but the version was selected with a define, with no associated RTCD struct. However, for both of these, the only armv7 instruction they actually used was rbit, and this was completely superfluous, so I reworked them to avoid it. The only non-ARMv4 instruction remaining in them is clz, which is ARMv5 (not even ARMv5TE is required). Considering that there are no ARM-specific configs which are not at least ARMv5TE, I did not try to detect these at runtime, and simply enable them for ARMv5 and above. Finally, the NEON register saving code was completely non-reentrant, since it saved the registers to a global, static variable. I moved the storage for this onto the stack. A single binary built with this code was tested on an ARM11 (ARMv6) and a Cortex A8 (ARMv7 w/NEON), for both the encoder and decoder, and produced identical output, while using the correct accelerated functions on each. I did not test on any earlier processors. Change-Id: I45cbd63a614f4554c3b325c45d46c0806f009eaa
2010-10-21 02:39:11 +04:00
#if CONFIG_RUNTIME_CPU_DETECT
if (cm->cpu_caps & HAS_NEON)
Add runtime CPU detection support for ARM. The primary goal is to allow a binary to be built which supports NEON, but can fall back to non-NEON routines, since some Android devices do not have NEON, even if they are otherwise ARMv7 (e.g., Tegra). The configure-generated flags HAVE_ARMV7, etc., are used to decide which versions of each function to build, and when CONFIG_RUNTIME_CPU_DETECT is enabled, the correct version is chosen at run time. In order for this to work, the CFLAGS must be set to something appropriate (e.g., without -mfpu=neon for ARMv7, and with appropriate -march and -mcpu for even earlier configurations), or the native C code will not be able to run. The ASFLAGS must remain set for the most advanced instruction set required at build time, since the ARM assembler will refuse to emit them otherwise. I have not attempted to make any changes to configure to do this automatically. Doing so will probably require the addition of new configure options. Many of the hooks for RTCD on ARM were already there, but a lot of the code had bit-rotted, and a good deal of the ARM-specific code is not integrated into the RTCD structs at all. I did not try to resolve the latter, merely to add the minimal amount of protection around them to allow RTCD to work. Those functions that were called based on an ifdef at the calling site were expanded to check the RTCD flags at that site, but they should be added to an RTCD struct somewhere in the future. The functions invoked with global function pointers still are, but these should be moved into an RTCD struct for thread safety (I believe every platform currently supported has atomic pointer stores, but this is not guaranteed). The encoder's boolhuff functions did not even have _c and armv7 suffixes, and the correct version was resolved at link time. The token packing functions did have appropriate suffixes, but the version was selected with a define, with no associated RTCD struct. However, for both of these, the only armv7 instruction they actually used was rbit, and this was completely superfluous, so I reworked them to avoid it. The only non-ARMv4 instruction remaining in them is clz, which is ARMv5 (not even ARMv5TE is required). Considering that there are no ARM-specific configs which are not at least ARMv5TE, I did not try to detect these at runtime, and simply enable them for ARMv5 and above. Finally, the NEON register saving code was completely non-reentrant, since it saved the registers to a global, static variable. I moved the storage for this onto the stack. A single binary built with this code was tested on an ARM11 (ARMv6) and a Cortex A8 (ARMv7 w/NEON), for both the encoder and decoder, and produced identical output, while using the correct accelerated functions on each. I did not test on any earlier processors. Change-Id: I45cbd63a614f4554c3b325c45d46c0806f009eaa
2010-10-21 02:39:11 +04:00
#endif
{
vp8_push_neon(store_reg);
}
2010-05-18 19:58:33 +04:00
#endif
vpx_usec_timer_start(&timer);
/* Reinit the lookahead buffer if the frame size changes */
if (sd->y_width != cpi->oxcf.Width || sd->y_height != cpi->oxcf.Height)
{
assert(cpi->oxcf.lag_in_frames < 2);
dealloc_raw_frame_buffers(cpi);
alloc_raw_frame_buffers(cpi);
}
if(vp8_lookahead_push(cpi->lookahead, sd, time_stamp, end_time,
frame_flags, cpi->active_map_enabled ? cpi->active_map : NULL))
res = -1;
2010-05-18 19:58:33 +04:00
cm->clr_type = sd->clrtype;
vpx_usec_timer_mark(&timer);
cpi->time_receive_data += vpx_usec_timer_elapsed(&timer);
#if HAVE_NEON
Add runtime CPU detection support for ARM. The primary goal is to allow a binary to be built which supports NEON, but can fall back to non-NEON routines, since some Android devices do not have NEON, even if they are otherwise ARMv7 (e.g., Tegra). The configure-generated flags HAVE_ARMV7, etc., are used to decide which versions of each function to build, and when CONFIG_RUNTIME_CPU_DETECT is enabled, the correct version is chosen at run time. In order for this to work, the CFLAGS must be set to something appropriate (e.g., without -mfpu=neon for ARMv7, and with appropriate -march and -mcpu for even earlier configurations), or the native C code will not be able to run. The ASFLAGS must remain set for the most advanced instruction set required at build time, since the ARM assembler will refuse to emit them otherwise. I have not attempted to make any changes to configure to do this automatically. Doing so will probably require the addition of new configure options. Many of the hooks for RTCD on ARM were already there, but a lot of the code had bit-rotted, and a good deal of the ARM-specific code is not integrated into the RTCD structs at all. I did not try to resolve the latter, merely to add the minimal amount of protection around them to allow RTCD to work. Those functions that were called based on an ifdef at the calling site were expanded to check the RTCD flags at that site, but they should be added to an RTCD struct somewhere in the future. The functions invoked with global function pointers still are, but these should be moved into an RTCD struct for thread safety (I believe every platform currently supported has atomic pointer stores, but this is not guaranteed). The encoder's boolhuff functions did not even have _c and armv7 suffixes, and the correct version was resolved at link time. The token packing functions did have appropriate suffixes, but the version was selected with a define, with no associated RTCD struct. However, for both of these, the only armv7 instruction they actually used was rbit, and this was completely superfluous, so I reworked them to avoid it. The only non-ARMv4 instruction remaining in them is clz, which is ARMv5 (not even ARMv5TE is required). Considering that there are no ARM-specific configs which are not at least ARMv5TE, I did not try to detect these at runtime, and simply enable them for ARMv5 and above. Finally, the NEON register saving code was completely non-reentrant, since it saved the registers to a global, static variable. I moved the storage for this onto the stack. A single binary built with this code was tested on an ARM11 (ARMv6) and a Cortex A8 (ARMv7 w/NEON), for both the encoder and decoder, and produced identical output, while using the correct accelerated functions on each. I did not test on any earlier processors. Change-Id: I45cbd63a614f4554c3b325c45d46c0806f009eaa
2010-10-21 02:39:11 +04:00
#if CONFIG_RUNTIME_CPU_DETECT
if (cm->cpu_caps & HAS_NEON)
Add runtime CPU detection support for ARM. The primary goal is to allow a binary to be built which supports NEON, but can fall back to non-NEON routines, since some Android devices do not have NEON, even if they are otherwise ARMv7 (e.g., Tegra). The configure-generated flags HAVE_ARMV7, etc., are used to decide which versions of each function to build, and when CONFIG_RUNTIME_CPU_DETECT is enabled, the correct version is chosen at run time. In order for this to work, the CFLAGS must be set to something appropriate (e.g., without -mfpu=neon for ARMv7, and with appropriate -march and -mcpu for even earlier configurations), or the native C code will not be able to run. The ASFLAGS must remain set for the most advanced instruction set required at build time, since the ARM assembler will refuse to emit them otherwise. I have not attempted to make any changes to configure to do this automatically. Doing so will probably require the addition of new configure options. Many of the hooks for RTCD on ARM were already there, but a lot of the code had bit-rotted, and a good deal of the ARM-specific code is not integrated into the RTCD structs at all. I did not try to resolve the latter, merely to add the minimal amount of protection around them to allow RTCD to work. Those functions that were called based on an ifdef at the calling site were expanded to check the RTCD flags at that site, but they should be added to an RTCD struct somewhere in the future. The functions invoked with global function pointers still are, but these should be moved into an RTCD struct for thread safety (I believe every platform currently supported has atomic pointer stores, but this is not guaranteed). The encoder's boolhuff functions did not even have _c and armv7 suffixes, and the correct version was resolved at link time. The token packing functions did have appropriate suffixes, but the version was selected with a define, with no associated RTCD struct. However, for both of these, the only armv7 instruction they actually used was rbit, and this was completely superfluous, so I reworked them to avoid it. The only non-ARMv4 instruction remaining in them is clz, which is ARMv5 (not even ARMv5TE is required). Considering that there are no ARM-specific configs which are not at least ARMv5TE, I did not try to detect these at runtime, and simply enable them for ARMv5 and above. Finally, the NEON register saving code was completely non-reentrant, since it saved the registers to a global, static variable. I moved the storage for this onto the stack. A single binary built with this code was tested on an ARM11 (ARMv6) and a Cortex A8 (ARMv7 w/NEON), for both the encoder and decoder, and produced identical output, while using the correct accelerated functions on each. I did not test on any earlier processors. Change-Id: I45cbd63a614f4554c3b325c45d46c0806f009eaa
2010-10-21 02:39:11 +04:00
#endif
{
vp8_pop_neon(store_reg);
}
2010-05-18 19:58:33 +04:00
#endif
return res;
2010-05-18 19:58:33 +04:00
}
static int frame_is_reference(const VP8_COMP *cpi)
{
const VP8_COMMON *cm = &cpi->common;
const MACROBLOCKD *xd = &cpi->mb.e_mbd;
return cm->frame_type == KEY_FRAME || cm->refresh_last_frame
|| cm->refresh_golden_frame || cm->refresh_alt_ref_frame
|| cm->copy_buffer_to_gf || cm->copy_buffer_to_arf
|| cm->refresh_entropy_probs
|| xd->mode_ref_lf_delta_update
|| xd->update_mb_segmentation_map || xd->update_mb_segmentation_data;
}
int vp8_get_compressed_data(VP8_COMP *cpi, unsigned int *frame_flags, unsigned long *size, unsigned char *dest, unsigned char *dest_end, int64_t *time_stamp, int64_t *time_end, int flush)
2010-05-18 19:58:33 +04:00
{
#if HAVE_NEON
int64_t store_reg[8];
#endif
VP8_COMMON *cm;
2010-05-18 19:58:33 +04:00
struct vpx_usec_timer tsctimer;
struct vpx_usec_timer ticktimer;
struct vpx_usec_timer cmptimer;
YV12_BUFFER_CONFIG *force_src_buffer = NULL;
2010-05-18 19:58:33 +04:00
if (!cpi)
return -1;
cm = &cpi->common;
if (setjmp(cpi->common.error.jmp))
{
cpi->common.error.setjmp = 0;
return VPX_CODEC_CORRUPT_FRAME;
}
cpi->common.error.setjmp = 1;
#if HAVE_NEON
Add runtime CPU detection support for ARM. The primary goal is to allow a binary to be built which supports NEON, but can fall back to non-NEON routines, since some Android devices do not have NEON, even if they are otherwise ARMv7 (e.g., Tegra). The configure-generated flags HAVE_ARMV7, etc., are used to decide which versions of each function to build, and when CONFIG_RUNTIME_CPU_DETECT is enabled, the correct version is chosen at run time. In order for this to work, the CFLAGS must be set to something appropriate (e.g., without -mfpu=neon for ARMv7, and with appropriate -march and -mcpu for even earlier configurations), or the native C code will not be able to run. The ASFLAGS must remain set for the most advanced instruction set required at build time, since the ARM assembler will refuse to emit them otherwise. I have not attempted to make any changes to configure to do this automatically. Doing so will probably require the addition of new configure options. Many of the hooks for RTCD on ARM were already there, but a lot of the code had bit-rotted, and a good deal of the ARM-specific code is not integrated into the RTCD structs at all. I did not try to resolve the latter, merely to add the minimal amount of protection around them to allow RTCD to work. Those functions that were called based on an ifdef at the calling site were expanded to check the RTCD flags at that site, but they should be added to an RTCD struct somewhere in the future. The functions invoked with global function pointers still are, but these should be moved into an RTCD struct for thread safety (I believe every platform currently supported has atomic pointer stores, but this is not guaranteed). The encoder's boolhuff functions did not even have _c and armv7 suffixes, and the correct version was resolved at link time. The token packing functions did have appropriate suffixes, but the version was selected with a define, with no associated RTCD struct. However, for both of these, the only armv7 instruction they actually used was rbit, and this was completely superfluous, so I reworked them to avoid it. The only non-ARMv4 instruction remaining in them is clz, which is ARMv5 (not even ARMv5TE is required). Considering that there are no ARM-specific configs which are not at least ARMv5TE, I did not try to detect these at runtime, and simply enable them for ARMv5 and above. Finally, the NEON register saving code was completely non-reentrant, since it saved the registers to a global, static variable. I moved the storage for this onto the stack. A single binary built with this code was tested on an ARM11 (ARMv6) and a Cortex A8 (ARMv7 w/NEON), for both the encoder and decoder, and produced identical output, while using the correct accelerated functions on each. I did not test on any earlier processors. Change-Id: I45cbd63a614f4554c3b325c45d46c0806f009eaa
2010-10-21 02:39:11 +04:00
#if CONFIG_RUNTIME_CPU_DETECT
if (cm->cpu_caps & HAS_NEON)
Add runtime CPU detection support for ARM. The primary goal is to allow a binary to be built which supports NEON, but can fall back to non-NEON routines, since some Android devices do not have NEON, even if they are otherwise ARMv7 (e.g., Tegra). The configure-generated flags HAVE_ARMV7, etc., are used to decide which versions of each function to build, and when CONFIG_RUNTIME_CPU_DETECT is enabled, the correct version is chosen at run time. In order for this to work, the CFLAGS must be set to something appropriate (e.g., without -mfpu=neon for ARMv7, and with appropriate -march and -mcpu for even earlier configurations), or the native C code will not be able to run. The ASFLAGS must remain set for the most advanced instruction set required at build time, since the ARM assembler will refuse to emit them otherwise. I have not attempted to make any changes to configure to do this automatically. Doing so will probably require the addition of new configure options. Many of the hooks for RTCD on ARM were already there, but a lot of the code had bit-rotted, and a good deal of the ARM-specific code is not integrated into the RTCD structs at all. I did not try to resolve the latter, merely to add the minimal amount of protection around them to allow RTCD to work. Those functions that were called based on an ifdef at the calling site were expanded to check the RTCD flags at that site, but they should be added to an RTCD struct somewhere in the future. The functions invoked with global function pointers still are, but these should be moved into an RTCD struct for thread safety (I believe every platform currently supported has atomic pointer stores, but this is not guaranteed). The encoder's boolhuff functions did not even have _c and armv7 suffixes, and the correct version was resolved at link time. The token packing functions did have appropriate suffixes, but the version was selected with a define, with no associated RTCD struct. However, for both of these, the only armv7 instruction they actually used was rbit, and this was completely superfluous, so I reworked them to avoid it. The only non-ARMv4 instruction remaining in them is clz, which is ARMv5 (not even ARMv5TE is required). Considering that there are no ARM-specific configs which are not at least ARMv5TE, I did not try to detect these at runtime, and simply enable them for ARMv5 and above. Finally, the NEON register saving code was completely non-reentrant, since it saved the registers to a global, static variable. I moved the storage for this onto the stack. A single binary built with this code was tested on an ARM11 (ARMv6) and a Cortex A8 (ARMv7 w/NEON), for both the encoder and decoder, and produced identical output, while using the correct accelerated functions on each. I did not test on any earlier processors. Change-Id: I45cbd63a614f4554c3b325c45d46c0806f009eaa
2010-10-21 02:39:11 +04:00
#endif
{
vp8_push_neon(store_reg);
}
2010-05-18 19:58:33 +04:00
#endif
vpx_usec_timer_start(&cmptimer);
cpi->source = NULL;
2010-05-18 19:58:33 +04:00
#if !(CONFIG_REALTIME_ONLY)
/* Should we code an alternate reference frame */
if (cpi->oxcf.error_resilient_mode == 0 &&
cpi->oxcf.play_alternate &&
cpi->source_alt_ref_pending)
{
if ((cpi->source = vp8_lookahead_peek(cpi->lookahead,
cpi->frames_till_gf_update_due,
PEEK_FORWARD)))
2010-05-18 19:58:33 +04:00
{
cpi->alt_ref_source = cpi->source;
2010-05-18 19:58:33 +04:00
if (cpi->oxcf.arnr_max_frames > 0)
{
vp8_temporal_filter_prepare_c(cpi,
cpi->frames_till_gf_update_due);
force_src_buffer = &cpi->alt_ref_buffer;
2010-05-18 19:58:33 +04:00
}
cm->frames_till_alt_ref_frame = cpi->frames_till_gf_update_due;
cm->refresh_alt_ref_frame = 1;
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 0;
cm->show_frame = 0;
/* Clear Pending alt Ref flag. */
cpi->source_alt_ref_pending = 0;
2010-05-18 19:58:33 +04:00
cpi->is_src_frame_alt_ref = 0;
}
}
2010-05-18 19:58:33 +04:00
#endif
if (!cpi->source)
{
/* Read last frame source if we are encoding first pass. */
if (cpi->pass == 1 && cm->current_video_frame > 0)
{
if((cpi->last_source = vp8_lookahead_peek(cpi->lookahead, 1,
PEEK_BACKWARD)) == NULL)
return -1;
}
if ((cpi->source = vp8_lookahead_pop(cpi->lookahead, flush)))
2010-05-18 19:58:33 +04:00
{
cm->show_frame = 1;
cpi->is_src_frame_alt_ref = cpi->alt_ref_source
&& (cpi->source == cpi->alt_ref_source);
if(cpi->is_src_frame_alt_ref)
cpi->alt_ref_source = NULL;
2010-05-18 19:58:33 +04:00
}
}
2010-05-18 19:58:33 +04:00
if (cpi->source)
{
cpi->Source = force_src_buffer ? force_src_buffer : &cpi->source->img;
cpi->un_scaled_source = cpi->Source;
*time_stamp = cpi->source->ts_start;
*time_end = cpi->source->ts_end;
*frame_flags = cpi->source->flags;
if (cpi->pass == 1 && cm->current_video_frame > 0)
{
cpi->last_frame_unscaled_source = &cpi->last_source->img;
}
2010-05-18 19:58:33 +04:00
}
else
{
*size = 0;
#if !(CONFIG_REALTIME_ONLY)
if (flush && cpi->pass == 1 && !cpi->twopass.first_pass_done)
2010-05-18 19:58:33 +04:00
{
vp8_end_first_pass(cpi); /* get last stats packet */
cpi->twopass.first_pass_done = 1;
2010-05-18 19:58:33 +04:00
}
#endif
#if HAVE_NEON
Add runtime CPU detection support for ARM. The primary goal is to allow a binary to be built which supports NEON, but can fall back to non-NEON routines, since some Android devices do not have NEON, even if they are otherwise ARMv7 (e.g., Tegra). The configure-generated flags HAVE_ARMV7, etc., are used to decide which versions of each function to build, and when CONFIG_RUNTIME_CPU_DETECT is enabled, the correct version is chosen at run time. In order for this to work, the CFLAGS must be set to something appropriate (e.g., without -mfpu=neon for ARMv7, and with appropriate -march and -mcpu for even earlier configurations), or the native C code will not be able to run. The ASFLAGS must remain set for the most advanced instruction set required at build time, since the ARM assembler will refuse to emit them otherwise. I have not attempted to make any changes to configure to do this automatically. Doing so will probably require the addition of new configure options. Many of the hooks for RTCD on ARM were already there, but a lot of the code had bit-rotted, and a good deal of the ARM-specific code is not integrated into the RTCD structs at all. I did not try to resolve the latter, merely to add the minimal amount of protection around them to allow RTCD to work. Those functions that were called based on an ifdef at the calling site were expanded to check the RTCD flags at that site, but they should be added to an RTCD struct somewhere in the future. The functions invoked with global function pointers still are, but these should be moved into an RTCD struct for thread safety (I believe every platform currently supported has atomic pointer stores, but this is not guaranteed). The encoder's boolhuff functions did not even have _c and armv7 suffixes, and the correct version was resolved at link time. The token packing functions did have appropriate suffixes, but the version was selected with a define, with no associated RTCD struct. However, for both of these, the only armv7 instruction they actually used was rbit, and this was completely superfluous, so I reworked them to avoid it. The only non-ARMv4 instruction remaining in them is clz, which is ARMv5 (not even ARMv5TE is required). Considering that there are no ARM-specific configs which are not at least ARMv5TE, I did not try to detect these at runtime, and simply enable them for ARMv5 and above. Finally, the NEON register saving code was completely non-reentrant, since it saved the registers to a global, static variable. I moved the storage for this onto the stack. A single binary built with this code was tested on an ARM11 (ARMv6) and a Cortex A8 (ARMv7 w/NEON), for both the encoder and decoder, and produced identical output, while using the correct accelerated functions on each. I did not test on any earlier processors. Change-Id: I45cbd63a614f4554c3b325c45d46c0806f009eaa
2010-10-21 02:39:11 +04:00
#if CONFIG_RUNTIME_CPU_DETECT
if (cm->cpu_caps & HAS_NEON)
Add runtime CPU detection support for ARM. The primary goal is to allow a binary to be built which supports NEON, but can fall back to non-NEON routines, since some Android devices do not have NEON, even if they are otherwise ARMv7 (e.g., Tegra). The configure-generated flags HAVE_ARMV7, etc., are used to decide which versions of each function to build, and when CONFIG_RUNTIME_CPU_DETECT is enabled, the correct version is chosen at run time. In order for this to work, the CFLAGS must be set to something appropriate (e.g., without -mfpu=neon for ARMv7, and with appropriate -march and -mcpu for even earlier configurations), or the native C code will not be able to run. The ASFLAGS must remain set for the most advanced instruction set required at build time, since the ARM assembler will refuse to emit them otherwise. I have not attempted to make any changes to configure to do this automatically. Doing so will probably require the addition of new configure options. Many of the hooks for RTCD on ARM were already there, but a lot of the code had bit-rotted, and a good deal of the ARM-specific code is not integrated into the RTCD structs at all. I did not try to resolve the latter, merely to add the minimal amount of protection around them to allow RTCD to work. Those functions that were called based on an ifdef at the calling site were expanded to check the RTCD flags at that site, but they should be added to an RTCD struct somewhere in the future. The functions invoked with global function pointers still are, but these should be moved into an RTCD struct for thread safety (I believe every platform currently supported has atomic pointer stores, but this is not guaranteed). The encoder's boolhuff functions did not even have _c and armv7 suffixes, and the correct version was resolved at link time. The token packing functions did have appropriate suffixes, but the version was selected with a define, with no associated RTCD struct. However, for both of these, the only armv7 instruction they actually used was rbit, and this was completely superfluous, so I reworked them to avoid it. The only non-ARMv4 instruction remaining in them is clz, which is ARMv5 (not even ARMv5TE is required). Considering that there are no ARM-specific configs which are not at least ARMv5TE, I did not try to detect these at runtime, and simply enable them for ARMv5 and above. Finally, the NEON register saving code was completely non-reentrant, since it saved the registers to a global, static variable. I moved the storage for this onto the stack. A single binary built with this code was tested on an ARM11 (ARMv6) and a Cortex A8 (ARMv7 w/NEON), for both the encoder and decoder, and produced identical output, while using the correct accelerated functions on each. I did not test on any earlier processors. Change-Id: I45cbd63a614f4554c3b325c45d46c0806f009eaa
2010-10-21 02:39:11 +04:00
#endif
{
vp8_pop_neon(store_reg);
}
2010-05-18 19:58:33 +04:00
#endif
return -1;
}
if (cpi->source->ts_start < cpi->first_time_stamp_ever)
{
cpi->first_time_stamp_ever = cpi->source->ts_start;
cpi->last_end_time_stamp_seen = cpi->source->ts_start;
}
2010-05-18 19:58:33 +04:00
/* adjust frame rates based on timestamps given */
if (cm->show_frame)
2010-05-18 19:58:33 +04:00
{
int64_t this_duration;
int step = 0;
if (cpi->source->ts_start == cpi->first_time_stamp_ever)
2010-05-18 19:58:33 +04:00
{
this_duration = cpi->source->ts_end - cpi->source->ts_start;
step = 1;
2010-05-18 19:58:33 +04:00
}
else
{
int64_t last_duration;
this_duration = cpi->source->ts_end - cpi->last_end_time_stamp_seen;
last_duration = cpi->last_end_time_stamp_seen
- cpi->last_time_stamp_seen;
/* do a step update if the duration changes by 10% */
if (last_duration)
step = (int)(((this_duration - last_duration) *
10 / last_duration));
}
2010-05-18 19:58:33 +04:00
if (this_duration)
{
if (step)
cpi->ref_frame_rate = 10000000.0 / this_duration;
else
{
double avg_duration, interval;
/* Average this frame's rate into the last second's average
* frame rate. If we haven't seen 1 second yet, then average
* over the whole interval seen.
*/
interval = (double)(cpi->source->ts_end -
cpi->first_time_stamp_ever);
if(interval > 10000000.0)
interval = 10000000;
2010-05-18 19:58:33 +04:00
avg_duration = 10000000.0 / cpi->ref_frame_rate;
avg_duration *= (interval - avg_duration + this_duration);
avg_duration /= interval;
cpi->ref_frame_rate = 10000000.0 / avg_duration;
}
if (cpi->oxcf.number_of_layers > 1)
{
unsigned int i;
/* Update frame rates for each layer */
for (i=0; i<cpi->oxcf.number_of_layers; i++)
{
LAYER_CONTEXT *lc = &cpi->layer_context[i];
lc->frame_rate = cpi->ref_frame_rate /
cpi->oxcf.rate_decimator[i];
}
}
else
vp8_new_frame_rate(cpi, cpi->ref_frame_rate);
2010-05-18 19:58:33 +04:00
}
cpi->last_time_stamp_seen = cpi->source->ts_start;
cpi->last_end_time_stamp_seen = cpi->source->ts_end;
2010-05-18 19:58:33 +04:00
}
if (cpi->oxcf.number_of_layers > 1)
{
int layer;
update_layer_contexts (cpi);
/* Restore layer specific context & set frame rate */
layer = cpi->oxcf.layer_id[
cm->current_video_frame % cpi->oxcf.periodicity];
restore_layer_context (cpi, layer);
vp8_new_frame_rate (cpi, cpi->layer_context[layer].frame_rate);
}
2010-05-18 19:58:33 +04:00
if (cpi->compressor_speed == 2)
{
if (cpi->oxcf.number_of_layers == 1)
check_gf_quality(cpi);
2010-05-18 19:58:33 +04:00
vpx_usec_timer_start(&tsctimer);
vpx_usec_timer_start(&ticktimer);
}
cpi->lf_zeromv_pct = (cpi->zeromv_count * 100)/cm->MBs;
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
{
int i;
const int num_part = (1 << cm->multi_token_partition);
/* the available bytes in dest */
const unsigned long dest_size = dest_end - dest;
const int tok_part_buff_size = (dest_size * 9) / (10 * num_part);
unsigned char *dp = dest;
cpi->partition_d[0] = dp;
dp += dest_size/10; /* reserve 1/10 for control partition */
cpi->partition_d_end[0] = dp;
for(i = 0; i < num_part; i++)
{
cpi->partition_d[i + 1] = dp;
dp += tok_part_buff_size;
cpi->partition_d_end[i + 1] = dp;
}
}
#endif
/* start with a 0 size frame */
2010-05-18 19:58:33 +04:00
*size = 0;
/* Clear down mmx registers */
vp8_clear_system_state();
2010-05-18 19:58:33 +04:00
cm->frame_type = INTER_FRAME;
cm->frame_flags = *frame_flags;
#if 0
if (cm->refresh_alt_ref_frame)
{
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 0;
}
else
{
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 1;
}
#endif
/* find a free buffer for the new frame */
{
int i = 0;
for(; i < NUM_YV12_BUFFERS; i++)
{
if(!cm->yv12_fb[i].flags)
{
cm->new_fb_idx = i;
break;
}
}
2010-05-18 19:58:33 +04:00
assert(i < NUM_YV12_BUFFERS );
}
2010-05-18 19:58:33 +04:00
#if !(CONFIG_REALTIME_ONLY)
if (cpi->pass == 1)
{
Pass1Encode(cpi, size, dest, frame_flags);
}
else if (cpi->pass == 2)
{
Pass2Encode(cpi, size, dest, dest_end, frame_flags);
2010-05-18 19:58:33 +04:00
}
else
#endif
encode_frame_to_data_rate(cpi, size, dest, dest_end, frame_flags);
2010-05-18 19:58:33 +04:00
if (cpi->compressor_speed == 2)
{
unsigned int duration, duration2;
vpx_usec_timer_mark(&tsctimer);
vpx_usec_timer_mark(&ticktimer);
duration = (int)(vpx_usec_timer_elapsed(&ticktimer));
2010-05-18 19:58:33 +04:00
duration2 = (unsigned int)((double)duration / 2);
if (cm->frame_type != KEY_FRAME)
{
if (cpi->avg_encode_time == 0)
cpi->avg_encode_time = duration;
else
cpi->avg_encode_time = (7 * cpi->avg_encode_time + duration) >> 3;
}
if (duration2)
{
{
if (cpi->avg_pick_mode_time == 0)
cpi->avg_pick_mode_time = duration2;
else
cpi->avg_pick_mode_time = (7 * cpi->avg_pick_mode_time + duration2) >> 3;
}
}
}
if (cm->refresh_entropy_probs == 0)
{
vpx_memcpy(&cm->fc, &cm->lfc, sizeof(cm->fc));
}
/* Save the contexts separately for alt ref, gold and last. */
/* (TODO jbb -> Optimize this with pointers to avoid extra copies. ) */
if(cm->refresh_alt_ref_frame)
vpx_memcpy(&cpi->lfc_a, &cm->fc, sizeof(cm->fc));
if(cm->refresh_golden_frame)
vpx_memcpy(&cpi->lfc_g, &cm->fc, sizeof(cm->fc));
if(cm->refresh_last_frame)
vpx_memcpy(&cpi->lfc_n, &cm->fc, sizeof(cm->fc));
/* if its a dropped frame honor the requests on subsequent frames */
2010-05-18 19:58:33 +04:00
if (*size > 0)
{
cpi->droppable = !frame_is_reference(cpi);
2010-05-18 19:58:33 +04:00
/* return to normal state */
2010-05-18 19:58:33 +04:00
cm->refresh_entropy_probs = 1;
cm->refresh_alt_ref_frame = 0;
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 1;
cm->frame_type = INTER_FRAME;
}
/* Save layer specific state */
if (cpi->oxcf.number_of_layers > 1)
save_layer_context (cpi);
2010-05-18 19:58:33 +04:00
vpx_usec_timer_mark(&cmptimer);
cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer);
if (cpi->b_calculate_psnr && cpi->pass != 1 && cm->show_frame)
{
2010-05-18 19:58:33 +04:00
generate_psnr_packet(cpi);
}
2010-05-18 19:58:33 +04:00
#if CONFIG_INTERNAL_STATS
2010-05-18 19:58:33 +04:00
if (cpi->pass != 1)
{
cpi->bytes += *size;
if (cm->show_frame)
{
cpi->count ++;
if (cpi->b_calculate_psnr)
{
uint64_t ye,ue,ve;
double frame_psnr;
YV12_BUFFER_CONFIG *orig = cpi->Source;
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
int y_samples = orig->y_height * orig->y_width ;
int uv_samples = orig->uv_height * orig->uv_width ;
int t_samples = y_samples + 2 * uv_samples;
double sq_error, sq_error2;
ye = calc_plane_error(orig->y_buffer, orig->y_stride,
recon->y_buffer, recon->y_stride, orig->y_width, orig->y_height);
ue = calc_plane_error(orig->u_buffer, orig->uv_stride,
recon->u_buffer, recon->uv_stride, orig->uv_width, orig->uv_height);
ve = calc_plane_error(orig->v_buffer, orig->uv_stride,
recon->v_buffer, recon->uv_stride, orig->uv_width, orig->uv_height);
sq_error = (double)(ye + ue + ve);
frame_psnr = vp8_mse2psnr(t_samples, 255.0, sq_error);
cpi->total_y += vp8_mse2psnr(y_samples, 255.0, (double)ye);
cpi->total_u += vp8_mse2psnr(uv_samples, 255.0, (double)ue);
cpi->total_v += vp8_mse2psnr(uv_samples, 255.0, (double)ve);
2010-05-18 19:58:33 +04:00
cpi->total_sq_error += sq_error;
cpi->total += frame_psnr;
#if CONFIG_POSTPROC
2010-05-18 19:58:33 +04:00
{
YV12_BUFFER_CONFIG *pp = &cm->post_proc_buffer;
double frame_psnr2, frame_ssim2 = 0;
2010-05-18 19:58:33 +04:00
double weight = 0;
vp8_deblock(cm->frame_to_show, &cm->post_proc_buffer, cm->filter_level * 10 / 6, 1, 0);
2010-05-18 19:58:33 +04:00
vp8_clear_system_state();
ye = calc_plane_error(orig->y_buffer, orig->y_stride,
pp->y_buffer, pp->y_stride, orig->y_width, orig->y_height);
ue = calc_plane_error(orig->u_buffer, orig->uv_stride,
pp->u_buffer, pp->uv_stride, orig->uv_width, orig->uv_height);
ve = calc_plane_error(orig->v_buffer, orig->uv_stride,
pp->v_buffer, pp->uv_stride, orig->uv_width, orig->uv_height);
sq_error2 = (double)(ye + ue + ve);
frame_psnr2 = vp8_mse2psnr(t_samples, 255.0, sq_error2);
cpi->totalp_y += vp8_mse2psnr(y_samples,
255.0, (double)ye);
cpi->totalp_u += vp8_mse2psnr(uv_samples,
255.0, (double)ue);
cpi->totalp_v += vp8_mse2psnr(uv_samples,
255.0, (double)ve);
cpi->total_sq_error2 += sq_error2;
cpi->totalp += frame_psnr2;
frame_ssim2 = vp8_calc_ssim(cpi->Source,
&cm->post_proc_buffer, 1, &weight);
2010-05-18 19:58:33 +04:00
cpi->summed_quality += frame_ssim2 * weight;
cpi->summed_weights += weight;
if (cpi->oxcf.number_of_layers > 1)
{
unsigned int i;
for (i=cpi->current_layer;
i<cpi->oxcf.number_of_layers; i++)
{
cpi->frames_in_layer[i]++;
cpi->bytes_in_layer[i] += *size;
cpi->sum_psnr[i] += frame_psnr;
cpi->sum_psnr_p[i] += frame_psnr2;
cpi->total_error2[i] += sq_error;
cpi->total_error2_p[i] += sq_error2;
cpi->sum_ssim[i] += frame_ssim2 * weight;
cpi->sum_weights[i] += weight;
}
}
2010-05-18 19:58:33 +04:00
}
#endif
2010-05-18 19:58:33 +04:00
}
if (cpi->b_calculate_ssimg)
{
double y, u, v, frame_all;
frame_all = vp8_calc_ssimg(cpi->Source, cm->frame_to_show,
&y, &u, &v);
if (cpi->oxcf.number_of_layers > 1)
{
unsigned int i;
for (i=cpi->current_layer;
i<cpi->oxcf.number_of_layers; i++)
{
if (!cpi->b_calculate_psnr)
cpi->frames_in_layer[i]++;
cpi->total_ssimg_y_in_layer[i] += y;
cpi->total_ssimg_u_in_layer[i] += u;
cpi->total_ssimg_v_in_layer[i] += v;
cpi->total_ssimg_all_in_layer[i] += frame_all;
}
}
else
{
cpi->total_ssimg_y += y;
cpi->total_ssimg_u += u;
cpi->total_ssimg_v += v;
cpi->total_ssimg_all += frame_all;
}
2010-05-18 19:58:33 +04:00
}
}
}
#if 0
if (cpi->common.frame_type != 0 && cpi->common.base_qindex == cpi->oxcf.worst_allowed_q)
{
skiptruecount += cpi->skip_true_count;
skipfalsecount += cpi->skip_false_count;
}
#endif
#if 0
if (cpi->pass != 1)
{
FILE *f = fopen("skip.stt", "a");
fprintf(f, "frame:%4d flags:%4x Q:%4d P:%4d Size:%5d\n", cpi->common.current_video_frame, *frame_flags, cpi->common.base_qindex, cpi->prob_skip_false, *size);
if (cpi->is_src_frame_alt_ref == 1)
fprintf(f, "skipcount: %4d framesize: %d\n", cpi->skip_true_count , *size);
fclose(f);
}
#endif
#endif
#if HAVE_NEON
Add runtime CPU detection support for ARM. The primary goal is to allow a binary to be built which supports NEON, but can fall back to non-NEON routines, since some Android devices do not have NEON, even if they are otherwise ARMv7 (e.g., Tegra). The configure-generated flags HAVE_ARMV7, etc., are used to decide which versions of each function to build, and when CONFIG_RUNTIME_CPU_DETECT is enabled, the correct version is chosen at run time. In order for this to work, the CFLAGS must be set to something appropriate (e.g., without -mfpu=neon for ARMv7, and with appropriate -march and -mcpu for even earlier configurations), or the native C code will not be able to run. The ASFLAGS must remain set for the most advanced instruction set required at build time, since the ARM assembler will refuse to emit them otherwise. I have not attempted to make any changes to configure to do this automatically. Doing so will probably require the addition of new configure options. Many of the hooks for RTCD on ARM were already there, but a lot of the code had bit-rotted, and a good deal of the ARM-specific code is not integrated into the RTCD structs at all. I did not try to resolve the latter, merely to add the minimal amount of protection around them to allow RTCD to work. Those functions that were called based on an ifdef at the calling site were expanded to check the RTCD flags at that site, but they should be added to an RTCD struct somewhere in the future. The functions invoked with global function pointers still are, but these should be moved into an RTCD struct for thread safety (I believe every platform currently supported has atomic pointer stores, but this is not guaranteed). The encoder's boolhuff functions did not even have _c and armv7 suffixes, and the correct version was resolved at link time. The token packing functions did have appropriate suffixes, but the version was selected with a define, with no associated RTCD struct. However, for both of these, the only armv7 instruction they actually used was rbit, and this was completely superfluous, so I reworked them to avoid it. The only non-ARMv4 instruction remaining in them is clz, which is ARMv5 (not even ARMv5TE is required). Considering that there are no ARM-specific configs which are not at least ARMv5TE, I did not try to detect these at runtime, and simply enable them for ARMv5 and above. Finally, the NEON register saving code was completely non-reentrant, since it saved the registers to a global, static variable. I moved the storage for this onto the stack. A single binary built with this code was tested on an ARM11 (ARMv6) and a Cortex A8 (ARMv7 w/NEON), for both the encoder and decoder, and produced identical output, while using the correct accelerated functions on each. I did not test on any earlier processors. Change-Id: I45cbd63a614f4554c3b325c45d46c0806f009eaa
2010-10-21 02:39:11 +04:00
#if CONFIG_RUNTIME_CPU_DETECT
if (cm->cpu_caps & HAS_NEON)
Add runtime CPU detection support for ARM. The primary goal is to allow a binary to be built which supports NEON, but can fall back to non-NEON routines, since some Android devices do not have NEON, even if they are otherwise ARMv7 (e.g., Tegra). The configure-generated flags HAVE_ARMV7, etc., are used to decide which versions of each function to build, and when CONFIG_RUNTIME_CPU_DETECT is enabled, the correct version is chosen at run time. In order for this to work, the CFLAGS must be set to something appropriate (e.g., without -mfpu=neon for ARMv7, and with appropriate -march and -mcpu for even earlier configurations), or the native C code will not be able to run. The ASFLAGS must remain set for the most advanced instruction set required at build time, since the ARM assembler will refuse to emit them otherwise. I have not attempted to make any changes to configure to do this automatically. Doing so will probably require the addition of new configure options. Many of the hooks for RTCD on ARM were already there, but a lot of the code had bit-rotted, and a good deal of the ARM-specific code is not integrated into the RTCD structs at all. I did not try to resolve the latter, merely to add the minimal amount of protection around them to allow RTCD to work. Those functions that were called based on an ifdef at the calling site were expanded to check the RTCD flags at that site, but they should be added to an RTCD struct somewhere in the future. The functions invoked with global function pointers still are, but these should be moved into an RTCD struct for thread safety (I believe every platform currently supported has atomic pointer stores, but this is not guaranteed). The encoder's boolhuff functions did not even have _c and armv7 suffixes, and the correct version was resolved at link time. The token packing functions did have appropriate suffixes, but the version was selected with a define, with no associated RTCD struct. However, for both of these, the only armv7 instruction they actually used was rbit, and this was completely superfluous, so I reworked them to avoid it. The only non-ARMv4 instruction remaining in them is clz, which is ARMv5 (not even ARMv5TE is required). Considering that there are no ARM-specific configs which are not at least ARMv5TE, I did not try to detect these at runtime, and simply enable them for ARMv5 and above. Finally, the NEON register saving code was completely non-reentrant, since it saved the registers to a global, static variable. I moved the storage for this onto the stack. A single binary built with this code was tested on an ARM11 (ARMv6) and a Cortex A8 (ARMv7 w/NEON), for both the encoder and decoder, and produced identical output, while using the correct accelerated functions on each. I did not test on any earlier processors. Change-Id: I45cbd63a614f4554c3b325c45d46c0806f009eaa
2010-10-21 02:39:11 +04:00
#endif
{
vp8_pop_neon(store_reg);
}
2010-05-18 19:58:33 +04:00
#endif
cpi->common.error.setjmp = 0;
2010-05-18 19:58:33 +04:00
return 0;
}
int vp8_get_preview_raw_frame(VP8_COMP *cpi, YV12_BUFFER_CONFIG *dest, vp8_ppflags_t *flags)
2010-05-18 19:58:33 +04:00
{
if (cpi->common.refresh_alt_ref_frame)
return -1;
else
{
int ret;
#if CONFIG_MULTITHREAD
if(cpi->b_lpf_running)
{
sem_wait(&cpi->h_event_end_lpf);
cpi->b_lpf_running = 0;
}
#endif
2010-05-18 19:58:33 +04:00
#if CONFIG_POSTPROC
ret = vp8_post_proc_frame(&cpi->common, dest, flags);
2010-05-18 19:58:33 +04:00
#else
if (cpi->common.frame_to_show)
{
*dest = *cpi->common.frame_to_show;
dest->y_width = cpi->common.Width;
dest->y_height = cpi->common.Height;
dest->uv_height = cpi->common.Height / 2;
ret = 0;
}
else
{
ret = -1;
}
#endif
2010-05-18 19:58:33 +04:00
vp8_clear_system_state();
return ret;
}
}
int vp8_set_roimap(VP8_COMP *cpi, unsigned char *map, unsigned int rows, unsigned int cols, int delta_q[4], int delta_lf[4], unsigned int threshold[4])
2010-05-18 19:58:33 +04:00
{
signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS];
int internal_delta_q[MAX_MB_SEGMENTS];
const int range = 63;
int i;
2010-05-18 19:58:33 +04:00
// This method is currently incompatible with the cyclic refresh method
if ( cpi->cyclic_refresh_mode_enabled )
return -1;
// Check number of rows and columns match
2010-05-18 19:58:33 +04:00
if (cpi->common.mb_rows != rows || cpi->common.mb_cols != cols)
return -1;
// Range check the delta Q values and convert the external Q range values
// to internal ones.
if ( (abs(delta_q[0]) > range) || (abs(delta_q[1]) > range) ||
(abs(delta_q[2]) > range) || (abs(delta_q[3]) > range) )
return -1;
// Range check the delta lf values
if ( (abs(delta_lf[0]) > range) || (abs(delta_lf[1]) > range) ||
(abs(delta_lf[2]) > range) || (abs(delta_lf[3]) > range) )
return -1;
2010-05-18 19:58:33 +04:00
if (!map)
{
disable_segmentation(cpi);
2010-05-18 19:58:33 +04:00
return 0;
}
// Translate the external delta q values to internal values.
for ( i = 0; i < MAX_MB_SEGMENTS; i++ )
internal_delta_q[i] =
( delta_q[i] >= 0 ) ? q_trans[delta_q[i]] : -q_trans[-delta_q[i]];
/* Set the segmentation Map */
set_segmentation_map(cpi, map);
2010-05-18 19:58:33 +04:00
/* Activate segmentation. */
enable_segmentation(cpi);
2010-05-18 19:58:33 +04:00
/* Set up the quant segment data */
feature_data[MB_LVL_ALT_Q][0] = internal_delta_q[0];
feature_data[MB_LVL_ALT_Q][1] = internal_delta_q[1];
feature_data[MB_LVL_ALT_Q][2] = internal_delta_q[2];
feature_data[MB_LVL_ALT_Q][3] = internal_delta_q[3];
2010-05-18 19:58:33 +04:00
/* Set up the loop segment data s */
2010-05-18 19:58:33 +04:00
feature_data[MB_LVL_ALT_LF][0] = delta_lf[0];
feature_data[MB_LVL_ALT_LF][1] = delta_lf[1];
feature_data[MB_LVL_ALT_LF][2] = delta_lf[2];
feature_data[MB_LVL_ALT_LF][3] = delta_lf[3];
cpi->segment_encode_breakout[0] = threshold[0];
cpi->segment_encode_breakout[1] = threshold[1];
cpi->segment_encode_breakout[2] = threshold[2];
cpi->segment_encode_breakout[3] = threshold[3];
/* Initialise the feature data structure */
set_segment_data(cpi, &feature_data[0][0], SEGMENT_DELTADATA);
2010-05-18 19:58:33 +04:00
return 0;
}
int vp8_set_active_map(VP8_COMP *cpi, unsigned char *map, unsigned int rows, unsigned int cols)
2010-05-18 19:58:33 +04:00
{
if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols)
{
if (map)
{
vpx_memcpy(cpi->active_map, map, rows * cols);
cpi->active_map_enabled = 1;
}
else
cpi->active_map_enabled = 0;
return 0;
}
else
{
return -1 ;
}
}
int vp8_set_internal_size(VP8_COMP *cpi, VPX_SCALING horiz_mode, VPX_SCALING vert_mode)
2010-05-18 19:58:33 +04:00
{
if (horiz_mode <= ONETWO)
2010-05-18 19:58:33 +04:00
cpi->common.horiz_scale = horiz_mode;
else
return -1;
if (vert_mode <= ONETWO)
2010-05-18 19:58:33 +04:00
cpi->common.vert_scale = vert_mode;
else
return -1;
return 0;
}
int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest)
2010-05-18 19:58:33 +04:00
{
int i, j;
int Total = 0;
unsigned char *src = source->y_buffer;
unsigned char *dst = dest->y_buffer;
/* Loop through the Y plane raw and reconstruction data summing
* (square differences)
*/
2010-05-18 19:58:33 +04:00
for (i = 0; i < source->y_height; i += 16)
{
for (j = 0; j < source->y_width; j += 16)
{
unsigned int sse;
Total += vp8_mse16x16(src + j, source->y_stride, dst + j, dest->y_stride, &sse);
2010-05-18 19:58:33 +04:00
}
src += 16 * source->y_stride;
dst += 16 * dest->y_stride;
}
return Total;
}
int vp8_get_quantizer(VP8_COMP *cpi)
2010-05-18 19:58:33 +04:00
{
return cpi->common.base_qindex;
}