aom/av1/encoder/pickrst.c

992 строки
38 KiB
C
Исходник Обычный вид История

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <float.h>
#include <limits.h>
#include <math.h>
#include "./aom_scale_rtcd.h"
#include "aom_dsp/psnr.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "av1/common/onyxc_int.h"
#include "av1/common/quant_common.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/picklpf.h"
#include "av1/encoder/pickrst.h"
#include "av1/encoder/quantize.h"
const int frame_level_restore_bits[RESTORE_TYPES] = { 2, 2, 2, 2 };
static int64_t sse_restoration_tile(const YV12_BUFFER_CONFIG *src,
AV1_COMMON *const cm, int h_start,
int width, int v_start, int height) {
int64_t filt_err;
#if CONFIG_AOM_HIGHBITDEPTH
if (cm->use_highbitdepth) {
filt_err = aom_highbd_get_y_sse_part(src, cm->frame_to_show, h_start, width,
v_start, height);
} else {
filt_err = aom_get_y_sse_part(src, cm->frame_to_show, h_start, width,
v_start, height);
}
#else
filt_err = aom_get_y_sse_part(src, cm->frame_to_show, h_start, width, v_start,
height);
#endif // CONFIG_AOM_HIGHBITDEPTH
return filt_err;
}
static int64_t try_restoration_tile(const YV12_BUFFER_CONFIG *src,
AV1_COMP *const cpi, RestorationInfo *rsi,
int partial_frame, int tile_idx,
int subtile_idx, int subtile_bits) {
AV1_COMMON *const cm = &cpi->common;
int64_t filt_err;
int tile_width, tile_height, nhtiles, nvtiles;
int h_start, h_end, v_start, v_end;
const int ntiles = av1_get_rest_ntiles(cm->width, cm->height, &tile_width,
&tile_height, &nhtiles, &nvtiles);
(void)ntiles;
av1_loop_restoration_frame(cm->frame_to_show, cm, rsi, 1, partial_frame);
av1_get_rest_tile_limits(tile_idx, subtile_idx, subtile_bits, nhtiles,
nvtiles, tile_width, tile_height, cm->width,
cm->height, 0, 0, &h_start, &h_end, &v_start,
&v_end);
filt_err = sse_restoration_tile(src, cm, h_start, h_end - h_start, v_start,
v_end - v_start);
// Re-instate the unfiltered frame
aom_yv12_copy_y(&cpi->last_frame_db, cm->frame_to_show);
return filt_err;
}
static int64_t try_restoration_frame(const YV12_BUFFER_CONFIG *src,
AV1_COMP *const cpi, RestorationInfo *rsi,
int partial_frame) {
AV1_COMMON *const cm = &cpi->common;
int64_t filt_err;
av1_loop_restoration_frame(cm->frame_to_show, cm, rsi, 1, partial_frame);
#if CONFIG_AOM_HIGHBITDEPTH
if (cm->use_highbitdepth) {
filt_err = aom_highbd_get_y_sse(src, cm->frame_to_show);
} else {
filt_err = aom_get_y_sse(src, cm->frame_to_show);
}
#else
filt_err = aom_get_y_sse(src, cm->frame_to_show);
#endif // CONFIG_AOM_HIGHBITDEPTH
// Re-instate the unfiltered frame
aom_yv12_copy_y(&cpi->last_frame_db, cm->frame_to_show);
return filt_err;
}
static int search_bilateral_level(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi,
int filter_level, int partial_frame,
int *bilateral_level, double *best_cost_ret,
double *best_tile_cost) {
AV1_COMMON *const cm = &cpi->common;
int i, j, tile_idx;
int64_t err;
int bits;
double cost, best_cost, cost_norestore, cost_bilateral,
cost_norestore_subtile;
const int bilateral_level_bits = av1_bilateral_level_bits(&cpi->common);
const int bilateral_levels = 1 << bilateral_level_bits;
MACROBLOCK *x = &cpi->td.mb;
RestorationInfo rsi;
int tile_width, tile_height, nhtiles, nvtiles;
int h_start, h_end, v_start, v_end;
const int ntiles = av1_get_rest_ntiles(cm->width, cm->height, &tile_width,
&tile_height, &nhtiles, &nvtiles);
// Make a copy of the unfiltered / processed recon buffer
aom_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_uf);
av1_loop_filter_frame(cm->frame_to_show, cm, &cpi->td.mb.e_mbd, filter_level,
1, partial_frame);
aom_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_db);
// RD cost associated with no restoration
rsi.frame_restoration_type = RESTORE_NONE;
err = try_restoration_frame(src, cpi, &rsi, partial_frame);
// err = sse_restoration_tile(src, cm, 0, cm->width, 0, cm->height);
bits = frame_level_restore_bits[rsi.frame_restoration_type]
<< AV1_PROB_COST_SHIFT;
cost_norestore = RDCOST_DBL(x->rdmult, x->rddiv, (bits >> 4), err);
// RD cost associated with bilateral filtering
rsi.frame_restoration_type = RESTORE_BILATERAL;
rsi.bilateral_level = (int *)aom_malloc(sizeof(*rsi.bilateral_level) *
ntiles * BILATERAL_SUBTILES);
assert(rsi.bilateral_level != NULL);
for (j = 0; j < ntiles * BILATERAL_SUBTILES; ++j) bilateral_level[j] = -1;
// TODO(debargha): This is a pretty inefficient way to find the best
// parameters per tile. Needs fixing.
// Find best filter for each tile
for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) {
int subtile_idx;
for (subtile_idx = 0; subtile_idx < BILATERAL_SUBTILES; ++subtile_idx) {
const int fulltile_idx = tile_idx * BILATERAL_SUBTILES + subtile_idx;
av1_get_rest_tile_limits(tile_idx, subtile_idx, BILATERAL_SUBTILE_BITS,
nhtiles, nvtiles, tile_width, tile_height,
cm->width, cm->height, 0, 0, &h_start, &h_end,
&v_start, &v_end);
err = sse_restoration_tile(src, cm, h_start, h_end - h_start, v_start,
v_end - v_start);
#if BILATERAL_SUBTILES
// #bits when a subtile is not restored
bits = av1_cost_bit(RESTORE_NONE_BILATERAL_PROB, 0);
#else
bits = 0;
#endif
cost_norestore_subtile =
RDCOST_DBL(x->rdmult, x->rddiv, (bits >> 4), err);
best_cost = cost_norestore_subtile;
for (j = 0; j < ntiles * BILATERAL_SUBTILES; ++j)
rsi.bilateral_level[j] = -1;
for (i = 0; i < bilateral_levels; ++i) {
rsi.bilateral_level[fulltile_idx] = i;
err = try_restoration_tile(src, cpi, &rsi, partial_frame, tile_idx,
subtile_idx, BILATERAL_SUBTILE_BITS);
bits = bilateral_level_bits << AV1_PROB_COST_SHIFT;
bits += av1_cost_bit(RESTORE_NONE_BILATERAL_PROB, 1);
cost = RDCOST_DBL(x->rdmult, x->rddiv, (bits >> 4), err);
if (cost < best_cost) {
bilateral_level[fulltile_idx] = i;
best_cost = cost;
}
}
}
if (best_tile_cost) {
bits = 0;
for (j = 0; j < ntiles * BILATERAL_SUBTILES; ++j)
rsi.bilateral_level[j] = -1;
for (subtile_idx = 0; subtile_idx < BILATERAL_SUBTILES; ++subtile_idx) {
const int fulltile_idx = tile_idx * BILATERAL_SUBTILES + subtile_idx;
rsi.bilateral_level[fulltile_idx] = bilateral_level[fulltile_idx];
if (rsi.bilateral_level[fulltile_idx] >= 0)
bits += bilateral_level_bits << AV1_PROB_COST_SHIFT;
#if BILATERAL_SUBTILES
bits += av1_cost_bit(RESTORE_NONE_BILATERAL_PROB,
rsi.bilateral_level[fulltile_idx] >= 0);
#endif
}
err = try_restoration_tile(src, cpi, &rsi, partial_frame, tile_idx, 0, 0);
best_tile_cost[tile_idx] = RDCOST_DBL(
x->rdmult, x->rddiv,
(bits + cpi->switchable_restore_cost[RESTORE_BILATERAL]) >> 4, err);
}
}
// Find cost for combined configuration
bits = frame_level_restore_bits[rsi.frame_restoration_type]
<< AV1_PROB_COST_SHIFT;
for (j = 0; j < ntiles * BILATERAL_SUBTILES; ++j) {
rsi.bilateral_level[j] = bilateral_level[j];
if (rsi.bilateral_level[j] >= 0) {
bits += bilateral_level_bits << AV1_PROB_COST_SHIFT;
}
#if BILATERAL_SUBTILES
bits +=
av1_cost_bit(RESTORE_NONE_BILATERAL_PROB, rsi.bilateral_level[j] >= 0);
#endif
}
err = try_restoration_frame(src, cpi, &rsi, partial_frame);
cost_bilateral = RDCOST_DBL(x->rdmult, x->rddiv, (bits >> 4), err);
aom_free(rsi.bilateral_level);
aom_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show);
if (cost_bilateral < cost_norestore) {
if (best_cost_ret) *best_cost_ret = cost_bilateral;
return 1;
} else {
if (best_cost_ret) *best_cost_ret = cost_norestore;
return 0;
}
}
static int search_filter_bilateral_level(const YV12_BUFFER_CONFIG *src,
AV1_COMP *cpi, int partial_frame,
int *filter_best, int *bilateral_level,
double *best_cost_ret,
double *best_tile_cost) {
const AV1_COMMON *const cm = &cpi->common;
const struct loopfilter *const lf = &cm->lf;
const int min_filter_level = 0;
const int max_filter_level = av1_get_max_filter_level(cpi);
int filt_direction = 0;
int filt_best;
double best_err;
int i, j;
int *tmp_level;
int bilateral_success[MAX_LOOP_FILTER + 1];
const int ntiles =
av1_get_rest_ntiles(cm->width, cm->height, NULL, NULL, NULL, NULL);
double *tile_cost = (double *)aom_malloc(sizeof(*tile_cost) * ntiles);
// Start the search at the previous frame filter level unless it is now out of
// range.
int filt_mid = clamp(lf->filter_level, min_filter_level, max_filter_level);
int filter_step = filt_mid < 16 ? 4 : filt_mid / 4;
double ss_err[MAX_LOOP_FILTER + 1];
// Set each entry to -1
for (i = 0; i <= MAX_LOOP_FILTER; ++i) ss_err[i] = -1.0;
tmp_level =
(int *)aom_malloc(sizeof(*tmp_level) * ntiles * BILATERAL_SUBTILES);
bilateral_success[filt_mid] = search_bilateral_level(
src, cpi, filt_mid, partial_frame, tmp_level, &best_err, best_tile_cost);
filt_best = filt_mid;
ss_err[filt_mid] = best_err;
for (j = 0; j < ntiles * BILATERAL_SUBTILES; ++j) {
bilateral_level[j] = tmp_level[j];
}
while (filter_step > 0) {
const int filt_high = AOMMIN(filt_mid + filter_step, max_filter_level);
const int filt_low = AOMMAX(filt_mid - filter_step, min_filter_level);
// Bias against raising loop filter in favor of lowering it.
double bias = (best_err / (1 << (15 - (filt_mid / 8)))) * filter_step;
if ((cpi->oxcf.pass == 2) && (cpi->twopass.section_intra_rating < 20))
bias = (bias * cpi->twopass.section_intra_rating) / 20;
// yx, bias less for large block size
if (cm->tx_mode != ONLY_4X4) bias /= 2;
if (filt_direction <= 0 && filt_low != filt_mid) {
// Get Low filter error score
if (ss_err[filt_low] < 0) {
bilateral_success[filt_low] =
search_bilateral_level(src, cpi, filt_low, partial_frame, tmp_level,
&ss_err[filt_low], tile_cost);
}
// If value is close to the best so far then bias towards a lower loop
// filter value.
if (ss_err[filt_low] < (best_err + bias)) {
// Was it actually better than the previous best?
if (ss_err[filt_low] < best_err) {
best_err = ss_err[filt_low];
}
filt_best = filt_low;
for (j = 0; j < ntiles * BILATERAL_SUBTILES; ++j) {
bilateral_level[j] = tmp_level[j];
}
memcpy(best_tile_cost, tile_cost, sizeof(*tile_cost) * ntiles);
}
}
// Now look at filt_high
if (filt_direction >= 0 && filt_high != filt_mid) {
if (ss_err[filt_high] < 0) {
bilateral_success[filt_high] =
search_bilateral_level(src, cpi, filt_high, partial_frame,
tmp_level, &ss_err[filt_high], tile_cost);
}
// If value is significantly better than previous best, bias added against
// raising filter value
if (ss_err[filt_high] < (best_err - bias)) {
best_err = ss_err[filt_high];
filt_best = filt_high;
for (j = 0; j < ntiles * BILATERAL_SUBTILES; ++j) {
bilateral_level[j] = tmp_level[j];
}
memcpy(best_tile_cost, tile_cost, sizeof(*tile_cost) * ntiles);
}
}
// Half the step distance if the best filter value was the same as last time
if (filt_best == filt_mid) {
filter_step /= 2;
filt_direction = 0;
} else {
filt_direction = (filt_best < filt_mid) ? -1 : 1;
filt_mid = filt_best;
}
}
aom_free(tmp_level);
aom_free(tile_cost);
// Update best error
best_err = ss_err[filt_best];
if (best_cost_ret) *best_cost_ret = best_err;
if (filter_best) *filter_best = filt_best;
return bilateral_success[filt_best];
}
static double find_average(uint8_t *src, int h_start, int h_end, int v_start,
int v_end, int stride) {
uint64_t sum = 0;
double avg = 0;
int i, j;
for (i = v_start; i < v_end; i++)
for (j = h_start; j < h_end; j++) sum += src[i * stride + j];
avg = (double)sum / ((v_end - v_start) * (h_end - h_start));
return avg;
}
static void compute_stats(uint8_t *dgd, uint8_t *src, int h_start, int h_end,
int v_start, int v_end, int dgd_stride,
int src_stride, double *M, double *H) {
int i, j, k, l;
double Y[RESTORATION_WIN2];
const double avg =
find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride);
memset(M, 0, sizeof(*M) * RESTORATION_WIN2);
memset(H, 0, sizeof(*H) * RESTORATION_WIN2 * RESTORATION_WIN2);
for (i = v_start; i < v_end; i++) {
for (j = h_start; j < h_end; j++) {
const double X = (double)src[i * src_stride + j] - avg;
int idx = 0;
for (k = -RESTORATION_HALFWIN; k <= RESTORATION_HALFWIN; k++) {
for (l = -RESTORATION_HALFWIN; l <= RESTORATION_HALFWIN; l++) {
Y[idx] = (double)dgd[(i + l) * dgd_stride + (j + k)] - avg;
idx++;
}
}
for (k = 0; k < RESTORATION_WIN2; ++k) {
M[k] += Y[k] * X;
H[k * RESTORATION_WIN2 + k] += Y[k] * Y[k];
for (l = k + 1; l < RESTORATION_WIN2; ++l) {
double value = Y[k] * Y[l];
H[k * RESTORATION_WIN2 + l] += value;
H[l * RESTORATION_WIN2 + k] += value;
}
}
}
}
}
#if CONFIG_AOM_HIGHBITDEPTH
static double find_average_highbd(uint16_t *src, int h_start, int h_end,
int v_start, int v_end, int stride) {
uint64_t sum = 0;
double avg = 0;
int i, j;
for (i = v_start; i < v_end; i++)
for (j = h_start; j < h_end; j++) sum += src[i * stride + j];
avg = (double)sum / ((v_end - v_start) * (h_end - h_start));
return avg;
}
static void compute_stats_highbd(uint8_t *dgd8, uint8_t *src8, int h_start,
int h_end, int v_start, int v_end,
int dgd_stride, int src_stride, double *M,
double *H) {
int i, j, k, l;
double Y[RESTORATION_WIN2];
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
const double avg =
find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);
memset(M, 0, sizeof(*M) * RESTORATION_WIN2);
memset(H, 0, sizeof(*H) * RESTORATION_WIN2 * RESTORATION_WIN2);
for (i = v_start; i < v_end; i++) {
for (j = h_start; j < h_end; j++) {
const double X = (double)src[i * src_stride + j] - avg;
int idx = 0;
for (k = -RESTORATION_HALFWIN; k <= RESTORATION_HALFWIN; k++) {
for (l = -RESTORATION_HALFWIN; l <= RESTORATION_HALFWIN; l++) {
Y[idx] = (double)dgd[(i + l) * dgd_stride + (j + k)] - avg;
idx++;
}
}
for (k = 0; k < RESTORATION_WIN2; ++k) {
M[k] += Y[k] * X;
H[k * RESTORATION_WIN2 + k] += Y[k] * Y[k];
for (l = k + 1; l < RESTORATION_WIN2; ++l) {
double value = Y[k] * Y[l];
H[k * RESTORATION_WIN2 + l] += value;
H[l * RESTORATION_WIN2 + k] += value;
}
}
}
}
}
#endif // CONFIG_AOM_HIGHBITDEPTH
// Solves Ax = b, where x and b are column vectors
static int linsolve(int n, double *A, int stride, double *b, double *x) {
int i, j, k;
double c;
// Partial pivoting
for (i = n - 1; i > 0; i--) {
if (A[(i - 1) * stride] < A[i * stride]) {
for (j = 0; j < n; j++) {
c = A[i * stride + j];
A[i * stride + j] = A[(i - 1) * stride + j];
A[(i - 1) * stride + j] = c;
}
c = b[i];
b[i] = b[i - 1];
b[i - 1] = c;
}
}
// Forward elimination
for (k = 0; k < n - 1; k++) {
for (i = k; i < n - 1; i++) {
c = A[(i + 1) * stride + k] / A[k * stride + k];
for (j = 0; j < n; j++) A[(i + 1) * stride + j] -= c * A[k * stride + j];
b[i + 1] -= c * b[k];
}
}
// Backward substitution
for (i = n - 1; i >= 0; i--) {
if (fabs(A[i * stride + i]) < 1e-10) return 0;
c = 0;
for (j = i + 1; j <= n - 1; j++) c += A[i * stride + j] * x[j];
x[i] = (b[i] - c) / A[i * stride + i];
}
return 1;
}
static INLINE int wrap_index(int i) {
return (i >= RESTORATION_HALFWIN1 ? RESTORATION_WIN - 1 - i : i);
}
// Fix vector b, update vector a
static void update_a_sep_sym(double **Mc, double **Hc, double *a, double *b) {
int i, j;
double S[RESTORATION_WIN];
double A[RESTORATION_WIN], B[RESTORATION_WIN2];
int w, w2;
memset(A, 0, sizeof(A));
memset(B, 0, sizeof(B));
for (i = 0; i < RESTORATION_WIN; i++) {
int j;
for (j = 0; j < RESTORATION_WIN; ++j) {
const int jj = wrap_index(j);
A[jj] += Mc[i][j] * b[i];
}
}
for (i = 0; i < RESTORATION_WIN; i++) {
for (j = 0; j < RESTORATION_WIN; j++) {
int k, l;
for (k = 0; k < RESTORATION_WIN; ++k)
for (l = 0; l < RESTORATION_WIN; ++l) {
const int kk = wrap_index(k);
const int ll = wrap_index(l);
B[ll * RESTORATION_HALFWIN1 + kk] +=
Hc[j * RESTORATION_WIN + i][k * RESTORATION_WIN2 + l] * b[i] *
b[j];
}
}
}
// Normalization enforcement in the system of equations itself
w = RESTORATION_WIN;
w2 = (w >> 1) + 1;
for (i = 0; i < w2 - 1; ++i)
A[i] -=
A[w2 - 1] * 2 + B[i * w2 + w2 - 1] - 2 * B[(w2 - 1) * w2 + (w2 - 1)];
for (i = 0; i < w2 - 1; ++i)
for (j = 0; j < w2 - 1; ++j)
B[i * w2 + j] -= 2 * (B[i * w2 + (w2 - 1)] + B[(w2 - 1) * w2 + j] -
2 * B[(w2 - 1) * w2 + (w2 - 1)]);
if (linsolve(w2 - 1, B, w2, A, S)) {
S[w2 - 1] = 1.0;
for (i = w2; i < w; ++i) {
S[i] = S[w - 1 - i];
S[w2 - 1] -= 2 * S[i];
}
memcpy(a, S, w * sizeof(*a));
}
}
// Fix vector a, update vector b
static void update_b_sep_sym(double **Mc, double **Hc, double *a, double *b) {
int i, j;
double S[RESTORATION_WIN];
double A[RESTORATION_WIN], B[RESTORATION_WIN2];
int w, w2;
memset(A, 0, sizeof(A));
memset(B, 0, sizeof(B));
for (i = 0; i < RESTORATION_WIN; i++) {
int j;
const int ii = wrap_index(i);
for (j = 0; j < RESTORATION_WIN; j++) A[ii] += Mc[i][j] * a[j];
}
for (i = 0; i < RESTORATION_WIN; i++) {
for (j = 0; j < RESTORATION_WIN; j++) {
const int ii = wrap_index(i);
const int jj = wrap_index(j);
int k, l;
for (k = 0; k < RESTORATION_WIN; ++k)
for (l = 0; l < RESTORATION_WIN; ++l)
B[jj * RESTORATION_HALFWIN1 + ii] +=
Hc[i * RESTORATION_WIN + j][k * RESTORATION_WIN2 + l] * a[k] *
a[l];
}
}
// Normalization enforcement in the system of equations itself
w = RESTORATION_WIN;
w2 = RESTORATION_HALFWIN1;
for (i = 0; i < w2 - 1; ++i)
A[i] -=
A[w2 - 1] * 2 + B[i * w2 + w2 - 1] - 2 * B[(w2 - 1) * w2 + (w2 - 1)];
for (i = 0; i < w2 - 1; ++i)
for (j = 0; j < w2 - 1; ++j)
B[i * w2 + j] -= 2 * (B[i * w2 + (w2 - 1)] + B[(w2 - 1) * w2 + j] -
2 * B[(w2 - 1) * w2 + (w2 - 1)]);
if (linsolve(w2 - 1, B, w2, A, S)) {
S[w2 - 1] = 1.0;
for (i = w2; i < w; ++i) {
S[i] = S[w - 1 - i];
S[w2 - 1] -= 2 * S[i];
}
memcpy(b, S, w * sizeof(*b));
}
}
static int wiener_decompose_sep_sym(double *M, double *H, double *a,
double *b) {
static const double init_filt[RESTORATION_WIN] = {
0.035623, -0.127154, 0.211436, 0.760190, 0.211436, -0.127154, 0.035623,
};
int i, j, iter;
double *Hc[RESTORATION_WIN2];
double *Mc[RESTORATION_WIN];
for (i = 0; i < RESTORATION_WIN; i++) {
Mc[i] = M + i * RESTORATION_WIN;
for (j = 0; j < RESTORATION_WIN; j++) {
Hc[i * RESTORATION_WIN + j] =
H + i * RESTORATION_WIN * RESTORATION_WIN2 + j * RESTORATION_WIN;
}
}
memcpy(a, init_filt, sizeof(*a) * RESTORATION_WIN);
memcpy(b, init_filt, sizeof(*b) * RESTORATION_WIN);
iter = 1;
while (iter < 10) {
update_a_sep_sym(Mc, Hc, a, b);
update_b_sep_sym(Mc, Hc, a, b);
iter++;
}
return 1;
}
// Computes the function x'*A*x - x'*b for the learned filters, and compares
// against identity filters; Final score is defined as the difference between
// the function values
static double compute_score(double *M, double *H, int *vfilt, int *hfilt) {
double ab[RESTORATION_WIN * RESTORATION_WIN];
int i, k, l;
double P = 0, Q = 0;
double iP = 0, iQ = 0;
double Score, iScore;
int w;
double a[RESTORATION_WIN], b[RESTORATION_WIN];
w = RESTORATION_WIN;
a[RESTORATION_HALFWIN] = b[RESTORATION_HALFWIN] = 1.0;
for (i = 0; i < RESTORATION_HALFWIN; ++i) {
a[i] = a[RESTORATION_WIN - i - 1] =
(double)vfilt[i] / RESTORATION_FILT_STEP;
b[i] = b[RESTORATION_WIN - i - 1] =
(double)hfilt[i] / RESTORATION_FILT_STEP;
a[RESTORATION_HALFWIN] -= 2 * a[i];
b[RESTORATION_HALFWIN] -= 2 * b[i];
}
for (k = 0; k < w; ++k) {
for (l = 0; l < w; ++l) {
ab[k * w + l] = a[l] * b[k];
}
}
for (k = 0; k < w * w; ++k) {
P += ab[k] * M[k];
for (l = 0; l < w * w; ++l) Q += ab[k] * H[k * w * w + l] * ab[l];
}
Score = Q - 2 * P;
iP = M[(w * w) >> 1];
iQ = H[((w * w) >> 1) * w * w + ((w * w) >> 1)];
iScore = iQ - 2 * iP;
return Score - iScore;
}
#define CLIP(x, lo, hi) ((x) < (lo) ? (lo) : (x) > (hi) ? (hi) : (x))
#define RINT(x) ((x) < 0 ? (int)((x)-0.5) : (int)((x) + 0.5))
static void quantize_sym_filter(double *f, int *fi) {
int i;
for (i = 0; i < RESTORATION_HALFWIN; ++i) {
fi[i] = RINT(f[i] * RESTORATION_FILT_STEP);
}
// Specialize for 7-tap filter
fi[0] = CLIP(fi[0], WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP0_MAXV);
fi[1] = CLIP(fi[1], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV);
fi[2] = CLIP(fi[2], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV);
}
static int search_wiener_filter(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi,
int filter_level, int partial_frame,
int (*vfilter)[RESTORATION_WIN],
int (*hfilter)[RESTORATION_WIN],
int *wiener_level, double *best_cost_ret,
double *best_tile_cost) {
AV1_COMMON *const cm = &cpi->common;
RestorationInfo rsi;
int64_t err;
int bits;
double cost_wiener, cost_norestore, cost_norestore_tile;
MACROBLOCK *x = &cpi->td.mb;
double M[RESTORATION_WIN2];
double H[RESTORATION_WIN2 * RESTORATION_WIN2];
double vfilterd[RESTORATION_WIN], hfilterd[RESTORATION_WIN];
const YV12_BUFFER_CONFIG *dgd = cm->frame_to_show;
const int width = cm->width;
const int height = cm->height;
const int src_stride = src->y_stride;
const int dgd_stride = dgd->y_stride;
double score;
int tile_idx, tile_width, tile_height, nhtiles, nvtiles;
int h_start, h_end, v_start, v_end;
int i, j;
const int ntiles = av1_get_rest_ntiles(width, height, &tile_width,
&tile_height, &nhtiles, &nvtiles);
assert(width == dgd->y_crop_width);
assert(height == dgd->y_crop_height);
assert(width == src->y_crop_width);
assert(height == src->y_crop_height);
// Make a copy of the unfiltered / processed recon buffer
aom_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_uf);
av1_loop_filter_frame(cm->frame_to_show, cm, &cpi->td.mb.e_mbd, filter_level,
1, partial_frame);
aom_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_db);
rsi.frame_restoration_type = RESTORE_NONE;
err = sse_restoration_tile(src, cm, 0, cm->width, 0, cm->height);
bits = frame_level_restore_bits[rsi.frame_restoration_type]
<< AV1_PROB_COST_SHIFT;
cost_norestore = RDCOST_DBL(x->rdmult, x->rddiv, (bits >> 4), err);
rsi.frame_restoration_type = RESTORE_WIENER;
rsi.vfilter =
(int(*)[RESTORATION_WIN])aom_malloc(sizeof(*rsi.vfilter) * ntiles);
assert(rsi.vfilter != NULL);
rsi.hfilter =
(int(*)[RESTORATION_WIN])aom_malloc(sizeof(*rsi.hfilter) * ntiles);
assert(rsi.hfilter != NULL);
rsi.wiener_level = (int *)aom_malloc(sizeof(*rsi.wiener_level) * ntiles);
assert(rsi.wiener_level != NULL);
// Compute best Wiener filters for each tile
for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) {
wiener_level[tile_idx] = 0;
av1_get_rest_tile_limits(tile_idx, 0, 0, nhtiles, nvtiles, tile_width,
tile_height, width, height, 0, 0, &h_start, &h_end,
&v_start, &v_end);
err = sse_restoration_tile(src, cm, h_start, h_end - h_start, v_start,
v_end - v_start);
// #bits when a tile is not restored
bits = av1_cost_bit(RESTORE_NONE_WIENER_PROB, 0);
cost_norestore_tile = RDCOST_DBL(x->rdmult, x->rddiv, (bits >> 4), err);
if (best_tile_cost) best_tile_cost[tile_idx] = cost_norestore_tile;
av1_get_rest_tile_limits(tile_idx, 0, 0, nhtiles, nvtiles, tile_width,
tile_height, width, height, 1, 1, &h_start, &h_end,
&v_start, &v_end);
#if CONFIG_AOM_HIGHBITDEPTH
if (cm->use_highbitdepth)
compute_stats_highbd(dgd->y_buffer, src->y_buffer, h_start, h_end,
v_start, v_end, dgd_stride, src_stride, M, H);
else
#endif // CONFIG_AOM_HIGHBITDEPTH
compute_stats(dgd->y_buffer, src->y_buffer, h_start, h_end, v_start,
v_end, dgd_stride, src_stride, M, H);
if (!wiener_decompose_sep_sym(M, H, vfilterd, hfilterd)) {
for (i = 0; i < RESTORATION_HALFWIN; ++i)
rsi.vfilter[tile_idx][i] = rsi.hfilter[tile_idx][i] = 0;
wiener_level[tile_idx] = 0;
continue;
}
quantize_sym_filter(vfilterd, rsi.vfilter[tile_idx]);
quantize_sym_filter(hfilterd, rsi.hfilter[tile_idx]);
wiener_level[tile_idx] = 1;
// Filter score computes the value of the function x'*A*x - x'*b for the
// learned filter and compares it against identity filer. If there is no
// reduction in the function, the filter is reverted back to identity
score = compute_score(M, H, rsi.vfilter[tile_idx], rsi.hfilter[tile_idx]);
if (score > 0.0) {
for (i = 0; i < RESTORATION_HALFWIN; ++i)
rsi.vfilter[tile_idx][i] = rsi.hfilter[tile_idx][i] = 0;
wiener_level[tile_idx] = 0;
continue;
}
for (j = 0; j < ntiles; ++j) rsi.wiener_level[j] = 0;
rsi.wiener_level[tile_idx] = 1;
err = try_restoration_tile(src, cpi, &rsi, partial_frame, tile_idx, 0, 0);
bits = WIENER_FILT_BITS << AV1_PROB_COST_SHIFT;
bits += av1_cost_bit(RESTORE_NONE_WIENER_PROB, 1);
cost_wiener = RDCOST_DBL(x->rdmult, x->rddiv, (bits >> 4), err);
if (cost_wiener >= cost_norestore_tile) wiener_level[tile_idx] = 0;
if (best_tile_cost) {
bits = WIENER_FILT_BITS << AV1_PROB_COST_SHIFT;
best_tile_cost[tile_idx] = RDCOST_DBL(
x->rdmult, x->rddiv,
(bits + cpi->switchable_restore_cost[RESTORE_WIENER]) >> 4, err);
}
}
// Cost for Wiener filtering
bits = frame_level_restore_bits[rsi.frame_restoration_type]
<< AV1_PROB_COST_SHIFT;
for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) {
bits += av1_cost_bit(RESTORE_NONE_WIENER_PROB, wiener_level[tile_idx]);
if (wiener_level[tile_idx])
bits += (WIENER_FILT_BITS << AV1_PROB_COST_SHIFT);
rsi.wiener_level[tile_idx] = wiener_level[tile_idx];
}
// TODO(debargha): This is a pretty inefficient way to find the error
// for the whole frame. Specialize for a specific tile.
err = try_restoration_frame(src, cpi, &rsi, partial_frame);
cost_wiener = RDCOST_DBL(x->rdmult, x->rddiv, (bits >> 4), err);
for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) {
if (wiener_level[tile_idx] == 0) continue;
for (i = 0; i < RESTORATION_HALFWIN; ++i) {
vfilter[tile_idx][i] = rsi.vfilter[tile_idx][i];
hfilter[tile_idx][i] = rsi.hfilter[tile_idx][i];
}
}
aom_free(rsi.vfilter);
aom_free(rsi.hfilter);
aom_free(rsi.wiener_level);
aom_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show);
if (cost_wiener < cost_norestore) {
if (best_cost_ret) *best_cost_ret = cost_wiener;
return 1;
} else {
if (best_cost_ret) *best_cost_ret = cost_norestore;
return 0;
}
}
static int search_switchable_restoration(
const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi, int filter_level,
int partial_frame, RestorationInfo *rsi, double *tile_cost_bilateral,
double *tile_cost_wiener, double *best_cost_ret) {
AV1_COMMON *const cm = &cpi->common;
const int bilateral_level_bits = av1_bilateral_level_bits(&cpi->common);
MACROBLOCK *x = &cpi->td.mb;
double err, cost_norestore, cost_norestore_tile, cost_switchable;
int bits, tile_idx;
int tile_width, tile_height, nhtiles, nvtiles;
int h_start, h_end, v_start, v_end;
const int ntiles = av1_get_rest_ntiles(cm->width, cm->height, &tile_width,
&tile_height, &nhtiles, &nvtiles);
// Make a copy of the unfiltered / processed recon buffer
aom_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_uf);
av1_loop_filter_frame(cm->frame_to_show, cm, &cpi->td.mb.e_mbd, filter_level,
1, partial_frame);
aom_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_db);
// RD cost associated with no restoration
rsi->frame_restoration_type = RESTORE_NONE;
err = sse_restoration_tile(src, cm, 0, cm->width, 0, cm->height);
bits = frame_level_restore_bits[rsi->frame_restoration_type]
<< AV1_PROB_COST_SHIFT;
cost_norestore = RDCOST_DBL(x->rdmult, x->rddiv, (bits >> 4), err);
rsi->frame_restoration_type = RESTORE_SWITCHABLE;
bits = frame_level_restore_bits[rsi->frame_restoration_type]
<< AV1_PROB_COST_SHIFT;
for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) {
av1_get_rest_tile_limits(tile_idx, 0, 0, nhtiles, nvtiles, tile_width,
tile_height, cm->width, cm->height, 0, 0, &h_start,
&h_end, &v_start, &v_end);
err = sse_restoration_tile(src, cm, h_start, h_end - h_start, v_start,
v_end - v_start);
cost_norestore_tile =
RDCOST_DBL(x->rdmult, x->rddiv,
(cpi->switchable_restore_cost[RESTORE_NONE] >> 4), err);
if (tile_cost_wiener[tile_idx] > cost_norestore_tile &&
tile_cost_bilateral[tile_idx] > cost_norestore_tile) {
rsi->restoration_type[tile_idx] = RESTORE_NONE;
} else {
rsi->restoration_type[tile_idx] =
tile_cost_wiener[tile_idx] < tile_cost_bilateral[tile_idx]
? RESTORE_WIENER
: RESTORE_BILATERAL;
if (rsi->restoration_type[tile_idx] == RESTORE_WIENER) {
if (rsi->wiener_level[tile_idx]) {
bits += (WIENER_FILT_BITS << AV1_PROB_COST_SHIFT);
} else {
rsi->restoration_type[tile_idx] = RESTORE_NONE;
}
} else {
int s;
for (s = 0; s < BILATERAL_SUBTILES; ++s) {
#if BILATERAL_SUBTILES
bits += av1_cost_bit(
RESTORE_NONE_BILATERAL_PROB,
rsi->bilateral_level[tile_idx * BILATERAL_SUBTILES + s] >= 0);
#endif
if (rsi->bilateral_level[tile_idx * BILATERAL_SUBTILES + s] >= 0)
bits += bilateral_level_bits << AV1_PROB_COST_SHIFT;
}
}
}
bits += cpi->switchable_restore_cost[rsi->restoration_type[tile_idx]];
}
err = try_restoration_frame(src, cpi, rsi, partial_frame);
cost_switchable = RDCOST_DBL(x->rdmult, x->rddiv, (bits >> 4), err);
aom_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show);
if (cost_switchable < cost_norestore) {
*best_cost_ret = cost_switchable;
return 1;
} else {
*best_cost_ret = cost_norestore;
return 0;
}
}
void av1_pick_filter_restoration(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi,
LPF_PICK_METHOD method) {
AV1_COMMON *const cm = &cpi->common;
struct loopfilter *const lf = &cm->lf;
int wiener_success = 0;
int bilateral_success = 0;
int switchable_success = 0;
double cost_bilateral = DBL_MAX;
double cost_wiener = DBL_MAX;
// double cost_norestore = DBL_MAX;
double cost_switchable = DBL_MAX;
double *tile_cost_bilateral, *tile_cost_wiener;
const int ntiles =
av1_get_rest_ntiles(cm->width, cm->height, NULL, NULL, NULL, NULL);
cm->rst_info.restoration_type = (RestorationType *)aom_realloc(
cm->rst_info.restoration_type,
sizeof(*cm->rst_info.restoration_type) * ntiles);
cm->rst_info.bilateral_level = (int *)aom_realloc(
cm->rst_info.bilateral_level,
sizeof(*cm->rst_info.bilateral_level) * ntiles * BILATERAL_SUBTILES);
assert(cm->rst_info.bilateral_level != NULL);
cm->rst_info.wiener_level = (int *)aom_realloc(
cm->rst_info.wiener_level, sizeof(*cm->rst_info.wiener_level) * ntiles);
assert(cm->rst_info.wiener_level != NULL);
cm->rst_info.vfilter = (int(*)[RESTORATION_WIN])aom_realloc(
cm->rst_info.vfilter, sizeof(*cm->rst_info.vfilter) * ntiles);
assert(cm->rst_info.vfilter != NULL);
cm->rst_info.hfilter = (int(*)[RESTORATION_WIN])aom_realloc(
cm->rst_info.hfilter, sizeof(*cm->rst_info.hfilter) * ntiles);
assert(cm->rst_info.hfilter != NULL);
tile_cost_wiener = (double *)aom_malloc(sizeof(cost_wiener) * ntiles);
tile_cost_bilateral = (double *)aom_malloc(sizeof(cost_bilateral) * ntiles);
lf->sharpness_level = cm->frame_type == KEY_FRAME ? 0 : cpi->oxcf.sharpness;
if (method == LPF_PICK_MINIMAL_LPF && lf->filter_level) {
lf->filter_level = 0;
cm->rst_info.frame_restoration_type = RESTORE_NONE;
} else if (method >= LPF_PICK_FROM_Q) {
const int min_filter_level = 0;
const int max_filter_level = av1_get_max_filter_level(cpi);
const int q = av1_ac_quant(cm->base_qindex, 0, cm->bit_depth);
// These values were determined by linear fitting the result of the
// searched level, filt_guess = q * 0.316206 + 3.87252
#if CONFIG_AOM_HIGHBITDEPTH
int filt_guess;
switch (cm->bit_depth) {
case AOM_BITS_8:
filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 1015158, 18);
break;
case AOM_BITS_10:
filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 4060632, 20);
break;
case AOM_BITS_12:
filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 16242526, 22);
break;
default:
assert(0 &&
"bit_depth should be AOM_BITS_8, AOM_BITS_10 "
"or AOM_BITS_12");
return;
}
#else
int filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 1015158, 18);
#endif // CONFIG_AOM_HIGHBITDEPTH
if (cm->frame_type == KEY_FRAME) filt_guess -= 4;
lf->filter_level = clamp(filt_guess, min_filter_level, max_filter_level);
bilateral_success = search_bilateral_level(
src, cpi, lf->filter_level, method == LPF_PICK_FROM_SUBIMAGE,
cm->rst_info.bilateral_level, &cost_bilateral, tile_cost_bilateral);
wiener_success = search_wiener_filter(
src, cpi, lf->filter_level, method == LPF_PICK_FROM_SUBIMAGE,
cm->rst_info.vfilter, cm->rst_info.hfilter, cm->rst_info.wiener_level,
&cost_wiener, tile_cost_wiener);
switchable_success = search_switchable_restoration(
src, cpi, lf->filter_level, method == LPF_PICK_FROM_SUBIMAGE,
&cm->rst_info, tile_cost_bilateral, tile_cost_wiener, &cost_switchable);
} else {
// lf->filter_level = av1_search_filter_level(
// src, cpi, method == LPF_PICK_FROM_SUBIMAGE, &cost_norestore);
// bilateral_success = search_bilateral_level(
// src, cpi, lf->filter_level, method == LPF_PICK_FROM_SUBIMAGE,
// cm->rst_info.bilateral_level, &cost_bilateral, tile_cost_bilateral);
bilateral_success = search_filter_bilateral_level(
src, cpi, method == LPF_PICK_FROM_SUBIMAGE, &lf->filter_level,
cm->rst_info.bilateral_level, &cost_bilateral, tile_cost_bilateral);
wiener_success = search_wiener_filter(
src, cpi, lf->filter_level, method == LPF_PICK_FROM_SUBIMAGE,
cm->rst_info.vfilter, cm->rst_info.hfilter, cm->rst_info.wiener_level,
&cost_wiener, tile_cost_wiener);
switchable_success = search_switchable_restoration(
src, cpi, lf->filter_level, method == LPF_PICK_FROM_SUBIMAGE,
&cm->rst_info, tile_cost_bilateral, tile_cost_wiener, &cost_switchable);
}
if (cost_bilateral < AOMMIN(cost_wiener, cost_switchable)) {
if (bilateral_success)
cm->rst_info.frame_restoration_type = RESTORE_BILATERAL;
else
cm->rst_info.frame_restoration_type = RESTORE_NONE;
} else if (cost_wiener < AOMMIN(cost_bilateral, cost_switchable)) {
if (wiener_success)
cm->rst_info.frame_restoration_type = RESTORE_WIENER;
else
cm->rst_info.frame_restoration_type = RESTORE_NONE;
} else {
if (switchable_success)
cm->rst_info.frame_restoration_type = RESTORE_SWITCHABLE;
else
cm->rst_info.frame_restoration_type = RESTORE_NONE;
}
printf("Frame %d frame_restore_type %d [%d]: %f %f %f\n",
cm->current_video_frame, cm->rst_info.frame_restoration_type, ntiles,
cost_bilateral, cost_wiener, cost_switchable);
aom_free(tile_cost_bilateral);
aom_free(tile_cost_wiener);
}