aom/vp10/common/alloccommon.c

194 строки
5.4 KiB
C
Исходник Обычный вид История

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "./vpx_config.h"
#include "vpx_mem/vpx_mem.h"
#include "vp10/common/alloccommon.h"
#include "vp10/common/blockd.h"
#include "vp10/common/entropymode.h"
#include "vp10/common/entropymv.h"
#include "vp10/common/onyxc_int.h"
void vp10_set_mb_mi(VP10_COMMON *cm, int width, int height) {
const int aligned_width = ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2);
const int aligned_height = ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2);
cm->mi_cols = aligned_width >> MI_SIZE_LOG2;
cm->mi_rows = aligned_height >> MI_SIZE_LOG2;
cm->mi_stride = calc_mi_size(cm->mi_cols);
cm->mb_cols = (cm->mi_cols + 1) >> 1;
cm->mb_rows = (cm->mi_rows + 1) >> 1;
cm->MBs = cm->mb_rows * cm->mb_cols;
}
static int alloc_seg_map(VP10_COMMON *cm, int seg_map_size) {
int i;
for (i = 0; i < NUM_PING_PONG_BUFFERS; ++i) {
cm->seg_map_array[i] = (uint8_t *)vpx_calloc(seg_map_size, 1);
if (cm->seg_map_array[i] == NULL)
return 1;
}
cm->seg_map_alloc_size = seg_map_size;
// Init the index.
cm->seg_map_idx = 0;
cm->prev_seg_map_idx = 1;
cm->current_frame_seg_map = cm->seg_map_array[cm->seg_map_idx];
if (!cm->frame_parallel_decode)
cm->last_frame_seg_map = cm->seg_map_array[cm->prev_seg_map_idx];
return 0;
}
static void free_seg_map(VP10_COMMON *cm) {
int i;
for (i = 0; i < NUM_PING_PONG_BUFFERS; ++i) {
vpx_free(cm->seg_map_array[i]);
cm->seg_map_array[i] = NULL;
}
cm->current_frame_seg_map = NULL;
if (!cm->frame_parallel_decode) {
cm->last_frame_seg_map = NULL;
}
}
void vp10_free_ref_frame_buffers(BufferPool *pool) {
int i;
for (i = 0; i < FRAME_BUFFERS; ++i) {
if (pool->frame_bufs[i].ref_count > 0 &&
pool->frame_bufs[i].raw_frame_buffer.data != NULL) {
pool->release_fb_cb(pool->cb_priv, &pool->frame_bufs[i].raw_frame_buffer);
pool->frame_bufs[i].ref_count = 0;
}
vpx_free(pool->frame_bufs[i].mvs);
pool->frame_bufs[i].mvs = NULL;
vpx_free_frame_buffer(&pool->frame_bufs[i].buf);
}
}
#if CONFIG_LOOP_RESTORATION
void vp10_free_restoration_buffers(VP10_COMMON *cm) {
vpx_free_frame_buffer(&cm->tmp_loop_buf);
}
#endif // CONFIG_LOOP_RESTORATION
void vp10_free_postproc_buffers(VP10_COMMON *cm) {
#if CONFIG_VP9_POSTPROC
vpx_free_frame_buffer(&cm->post_proc_buffer);
vpx_free_frame_buffer(&cm->post_proc_buffer_int);
#else
(void)cm;
#endif
}
void vp10_free_context_buffers(VP10_COMMON *cm) {
int i;
cm->free_mi(cm);
free_seg_map(cm);
for (i = 0 ; i < MAX_MB_PLANE ; i++) {
vpx_free(cm->above_context[i]);
cm->above_context[i] = NULL;
}
vpx_free(cm->above_seg_context);
cm->above_seg_context = NULL;
#if CONFIG_VAR_TX
vpx_free(cm->above_txfm_context);
cm->above_txfm_context = NULL;
#endif
}
int vp10_alloc_context_buffers(VP10_COMMON *cm, int width, int height) {
int new_mi_size;
vp10_set_mb_mi(cm, width, height);
new_mi_size = cm->mi_stride * calc_mi_size(cm->mi_rows);
if (cm->mi_alloc_size < new_mi_size) {
cm->free_mi(cm);
if (cm->alloc_mi(cm, new_mi_size))
goto fail;
}
if (cm->seg_map_alloc_size < cm->mi_rows * cm->mi_cols) {
// Create the segmentation map structure and set to 0.
free_seg_map(cm);
if (alloc_seg_map(cm, cm->mi_rows * cm->mi_cols))
goto fail;
}
if (cm->above_context_alloc_cols < cm->mi_cols) {
// TODO(geza.lore): These are bigger than they need to be.
// cm->tile_width would be enough but it complicates indexing a
// little elsewhere.
Make superblock size variable at the frame level. The uncompressed frame header contains a bit to signal whether the frame is encoded using 64x64 or 128x128 superblocks. This can vary between any 2 frames. vpxenc gained the --sb-size={64,128,dynamic} option, which allows the configuration of the superblock size used (default is dynamic). 64/128 will force the encoder to always use the specified superblock size. Dynamic would enable the encoder to choose the sb size for each frame, but this is not implemented yet (dynamic does the same as 128 for now). Constraints on tile sizes depend on the superblock size, the following is a summary of the current bitstream syntax and semantics: If both --enable-ext-tile is OFF and --enable-ext-partition is OFF: The tile coding in this case is the same as VP9. In particular, tiles have a minimum width of 256 pixels and a maximum width of 4096 pixels. The tile width must be multiples of 64 pixels (except for the rightmost tile column). There can be a maximum of 64 tile columns and 4 tile rows. If --enable-ext-tile is OFF and --enable-ext-partition is ON: Same constraints as above, except that tile width must be multiples of 128 pixels (except for the rightmost tile column). There is no change in the bitstream syntax used for coding the tile configuration if --enable-ext-tile is OFF. If --enable-ext-tile is ON and --enable-ext-partition is ON: This is the new large scale tile coding configuration. The minimum/maximum tile width and height are 64/4096 pixels. Tile width and height must be multiples of 64 pixels. The uncompressed header contains two 6 bit fields that hold the tile width/heigh in units of 64 pixels. The maximum number of tile rows/columns is only limited by the maximum frame size of 65536x65536 pixels that can be coded in the bitstream. This yields a maximum of 1024x1024 tile rows and columns (of 64x64 tiles in a 65536x65536 frame). If both --enable-ext-tile is ON and --enable-ext-partition is ON: Same applies as above, except that in the bitstream the 2 fields containing the tile width/height are in units of the superblock size, and the superblock size itself is also coded in the bitstream. If the uncompressed header signals the use of 64x64 superblocks, then the tile width/height fields are 6 bits wide and are in units of 64 pixels. If the uncompressed header signals the use of 128x128 superblocks, then the tile width/height fields are 5 bits wide and are in units of 128 pixels. The above is a summary of the bitstream. The user interface to vpxenc (and the equivalent encoder API) behaves a follows: If --enable-ext-tile is OFF: No change in the user interface. --tile-columns and --tile-rows specify the base 2 logarithm of the desired number of tile columns and tile rows. The actual number of tile rows and tile columns, and the particular tile width and tile height are computed by the codec ensuring all of the above constraints are respected. If --enable-ext-tile is ON, but --enable-ext-partition is OFF: No change in the user interface. --tile-columns and --tile-rows specify the WIDTH and HEIGHT of the tiles in unit of 64 pixels. The valid values are in the range [1, 64] (which corresponds to [64, 4096] pixels in increments of 64. If both --enable-ext-tile is ON and --enable-ext-partition is ON: If --sb-size=64 (default): The user interface is the same as in the previous point. --tile-columns and --tile-rows specify tile WIDTH and HEIGHT, in units of 64 pixels, in the range [1, 64] (which corresponds to [64, 4096] pixels in increments of 64). If --sb-size=128 or --sb-size=dynamic: --tile-columns and --tile-rows specify tile WIDTH and HEIGHT, in units of 128 pixels in the range [1, 32] (which corresponds to [128, 4096] pixels in increments of 128). Change-Id: Idc9beee1ad12ff1634e83671985d14c680f9179a
2016-03-24 16:56:05 +03:00
const int aligned_mi_cols =
ALIGN_POWER_OF_TWO(cm->mi_cols, MAX_MIB_SIZE_LOG2);
int i;
for (i = 0 ; i < MAX_MB_PLANE ; i++) {
vpx_free(cm->above_context[i]);
cm->above_context[i] = (ENTROPY_CONTEXT *)vpx_calloc(
2 * aligned_mi_cols, sizeof(*cm->above_context[0]));
if (!cm->above_context[i]) goto fail;
}
vpx_free(cm->above_seg_context);
cm->above_seg_context = (PARTITION_CONTEXT *)vpx_calloc(
aligned_mi_cols, sizeof(*cm->above_seg_context));
if (!cm->above_seg_context) goto fail;
#if CONFIG_VAR_TX
vpx_free(cm->above_txfm_context);
cm->above_txfm_context = (TXFM_CONTEXT *)vpx_calloc(
aligned_mi_cols, sizeof(*cm->above_txfm_context));
if (!cm->above_txfm_context) goto fail;
#endif
cm->above_context_alloc_cols = aligned_mi_cols;
}
return 0;
fail:
vp10_free_context_buffers(cm);
return 1;
}
void vp10_remove_common(VP10_COMMON *cm) {
vp10_free_context_buffers(cm);
vpx_free(cm->fc);
cm->fc = NULL;
vpx_free(cm->frame_contexts);
cm->frame_contexts = NULL;
}
void vp10_init_context_buffers(VP10_COMMON *cm) {
cm->setup_mi(cm);
if (cm->last_frame_seg_map && !cm->frame_parallel_decode)
memset(cm->last_frame_seg_map, 0, cm->mi_rows * cm->mi_cols);
}
void vp10_swap_current_and_last_seg_map(VP10_COMMON *cm) {
// Swap indices.
const int tmp = cm->seg_map_idx;
cm->seg_map_idx = cm->prev_seg_map_idx;
cm->prev_seg_map_idx = tmp;
cm->current_frame_seg_map = cm->seg_map_array[cm->seg_map_idx];
cm->last_frame_seg_map = cm->seg_map_array[cm->prev_seg_map_idx];
}