Speed up global motion determination

When global-motion is enabled, a considerable amount
of encoder time is spent in the functions in corner_match.c.
This patch optimizes those functions to be 3.5-4x as fast,
leading to an end-to-end encoder speed improvement
(on 20 frames of tempete_cif.y4m) of:

 200kbps: ~26% faster
 800kbps: ~19% faster
2800kbps: ~12% faster

Change-Id: I04d3f87484c36c41eb5a1e86e814f2accbe86297
This commit is contained in:
David Barker 2017-02-13 15:30:59 +00:00 коммит произвёл Debargha Mukherjee
Родитель 24f1a90441
Коммит 15338d5f40
5 изменённых файлов: 81 добавлений и 103 удалений

Просмотреть файл

@ -24,11 +24,13 @@
#define THRESHOLD_NCC 0.75
static double compute_variance(unsigned char *im, int stride, int x, int y,
double *mean) {
double sum = 0.0;
double sumsq = 0.0;
double var;
/* Compute var(im) * MATCH_SZ_SQ over a MATCH_SZ by MATCH_SZ window of im,
centered at (x, y).
*/
static double compute_variance(unsigned char *im, int stride, int x, int y) {
int sum = 0.0;
int sumsq = 0.0;
int var;
int i, j;
for (i = 0; i < MATCH_SZ; ++i)
for (j = 0; j < MATCH_SZ; ++j) {
@ -36,39 +38,45 @@ static double compute_variance(unsigned char *im, int stride, int x, int y,
sumsq += im[(i + y - MATCH_SZ_BY2) * stride + (j + x - MATCH_SZ_BY2)] *
im[(i + y - MATCH_SZ_BY2) * stride + (j + x - MATCH_SZ_BY2)];
}
var = (sumsq * MATCH_SZ_SQ - sum * sum) / (MATCH_SZ_SQ * MATCH_SZ_SQ);
if (mean) *mean = sum / MATCH_SZ_SQ;
return var;
var = sumsq * MATCH_SZ_SQ - sum * sum;
return (double)var;
}
/* Compute corr(im1, im2) * MATCH_SZ * stddev(im1), where the
correlation/standard deviation are taken over MATCH_SZ by MATCH_SZ windows
of each image, centered at (x1, y1) and (x2, y2) respectively.
*/
static double compute_cross_correlation(unsigned char *im1, int stride1, int x1,
int y1, unsigned char *im2, int stride2,
int x2, int y2) {
double sum1 = 0;
double sum2 = 0;
double cross = 0;
double corr;
int v1, v2;
int sum1 = 0;
int sum2 = 0;
int sumsq2 = 0;
int cross = 0;
int var2, cov;
int i, j;
for (i = 0; i < MATCH_SZ; ++i)
for (j = 0; j < MATCH_SZ; ++j) {
sum1 += im1[(i + y1 - MATCH_SZ_BY2) * stride1 + (j + x1 - MATCH_SZ_BY2)];
sum2 += im2[(i + y2 - MATCH_SZ_BY2) * stride2 + (j + x2 - MATCH_SZ_BY2)];
cross +=
im1[(i + y1 - MATCH_SZ_BY2) * stride1 + (j + x1 - MATCH_SZ_BY2)] *
im2[(i + y2 - MATCH_SZ_BY2) * stride2 + (j + x2 - MATCH_SZ_BY2)];
v1 = im1[(i + y1 - MATCH_SZ_BY2) * stride1 + (j + x1 - MATCH_SZ_BY2)];
v2 = im2[(i + y2 - MATCH_SZ_BY2) * stride2 + (j + x2 - MATCH_SZ_BY2)];
sum1 += v1;
sum2 += v2;
sumsq2 += v2 * v2;
cross += v1 * v2;
}
corr = (cross * MATCH_SZ_SQ - sum1 * sum2) / (MATCH_SZ_SQ * MATCH_SZ_SQ);
return corr;
var2 = sumsq2 * MATCH_SZ_SQ - sum2 * sum2;
cov = cross * MATCH_SZ_SQ - sum1 * sum2;
return cov / sqrt((double)var2);
}
static int is_eligible_point(double pointx, double pointy, int width,
int height) {
static int is_eligible_point(int pointx, int pointy, int width, int height) {
return (pointx >= MATCH_SZ_BY2 && pointy >= MATCH_SZ_BY2 &&
pointx + MATCH_SZ_BY2 < width && pointy + MATCH_SZ_BY2 < height);
}
static int is_eligible_distance(double point1x, double point1y, double point2x,
double point2y, int width, int height) {
static int is_eligible_distance(int point1x, int point1y, int point2x,
int point2y, int width, int height) {
const int thresh = (width < height ? height : width) >> 4;
return ((point1x - point2x) * (point1x - point2x) +
(point1y - point2y) * (point1y - point2y)) <= thresh * thresh;
@ -81,32 +89,21 @@ static void improve_correspondence(unsigned char *frm, unsigned char *ref,
int num_correspondences) {
int i;
for (i = 0; i < num_correspondences; ++i) {
double template_norm =
compute_variance(frm, frm_stride, (int)correspondences[i].x,
(int)correspondences[i].y, NULL);
int x, y, best_x = 0, best_y = 0;
double best_match_ncc = 0.0;
for (y = -SEARCH_SZ_BY2; y <= SEARCH_SZ_BY2; ++y) {
for (x = -SEARCH_SZ_BY2; x <= SEARCH_SZ_BY2; ++x) {
double match_ncc;
double subimage_norm;
if (!is_eligible_point((int)correspondences[i].rx + x,
(int)correspondences[i].ry + y, width, height))
if (!is_eligible_point(correspondences[i].rx + x,
correspondences[i].ry + y, width, height))
continue;
if (!is_eligible_distance(
(int)correspondences[i].x, (int)correspondences[i].y,
(int)correspondences[i].rx + x, (int)correspondences[i].ry + y,
width, height))
if (!is_eligible_distance(correspondences[i].x, correspondences[i].y,
correspondences[i].rx + x,
correspondences[i].ry + y, width, height))
continue;
subimage_norm =
compute_variance(ref, ref_stride, (int)correspondences[i].rx + x,
(int)correspondences[i].ry + y, NULL);
match_ncc = compute_cross_correlation(
frm, frm_stride, (int)correspondences[i].x,
(int)correspondences[i].y, ref, ref_stride,
(int)correspondences[i].rx + x,
(int)correspondences[i].ry + y) /
sqrt(template_norm * subimage_norm);
frm, frm_stride, correspondences[i].x, correspondences[i].y, ref,
ref_stride, correspondences[i].rx + x, correspondences[i].ry + y);
if (match_ncc > best_match_ncc) {
best_match_ncc = match_ncc;
best_y = y;
@ -114,36 +111,25 @@ static void improve_correspondence(unsigned char *frm, unsigned char *ref,
}
}
}
correspondences[i].rx += (double)best_x;
correspondences[i].ry += (double)best_y;
correspondences[i].rx += best_x;
correspondences[i].ry += best_y;
}
for (i = 0; i < num_correspondences; ++i) {
double template_norm =
compute_variance(ref, ref_stride, (int)correspondences[i].rx,
(int)correspondences[i].ry, NULL);
int x, y, best_x = 0, best_y = 0;
double best_match_ncc = 0.0;
for (y = -SEARCH_SZ_BY2; y <= SEARCH_SZ_BY2; ++y)
for (x = -SEARCH_SZ_BY2; x <= SEARCH_SZ_BY2; ++x) {
double match_ncc;
double subimage_norm;
if (!is_eligible_point((int)correspondences[i].x + x,
(int)correspondences[i].y + y, width, height))
if (!is_eligible_point(correspondences[i].x + x,
correspondences[i].y + y, width, height))
continue;
if (!is_eligible_distance((int)correspondences[i].x + x,
(int)correspondences[i].y + y,
(int)correspondences[i].rx,
(int)correspondences[i].ry, width, height))
if (!is_eligible_distance(
correspondences[i].x + x, correspondences[i].y + y,
correspondences[i].rx, correspondences[i].ry, width, height))
continue;
subimage_norm =
compute_variance(frm, frm_stride, (int)correspondences[i].x + x,
(int)correspondences[i].y + y, NULL);
match_ncc =
compute_cross_correlation(
frm, frm_stride, (int)correspondences[i].x + x,
(int)correspondences[i].y + y, ref, ref_stride,
(int)correspondences[i].rx, (int)correspondences[i].ry) /
sqrt(template_norm * subimage_norm);
match_ncc = compute_cross_correlation(
ref, ref_stride, correspondences[i].rx, correspondences[i].ry, frm,
frm_stride, correspondences[i].x + x, correspondences[i].y + y);
if (match_ncc > best_match_ncc) {
best_match_ncc = match_ncc;
best_y = y;
@ -159,7 +145,7 @@ int determine_correspondence(unsigned char *frm, int *frm_corners,
int num_frm_corners, unsigned char *ref,
int *ref_corners, int num_ref_corners, int width,
int height, int frm_stride, int ref_stride,
double *correspondence_pts) {
int *correspondence_pts) {
// TODO(sarahparker) Improve this to include 2-way match
int i, j;
Correspondence *correspondences = (Correspondence *)correspondence_pts;
@ -171,11 +157,8 @@ int determine_correspondence(unsigned char *frm, int *frm_corners,
if (!is_eligible_point(frm_corners[2 * i], frm_corners[2 * i + 1], width,
height))
continue;
template_norm = compute_variance(frm, frm_stride, frm_corners[2 * i],
frm_corners[2 * i + 1], NULL);
for (j = 0; j < num_ref_corners; ++j) {
double match_ncc;
double subimage_norm;
if (!is_eligible_point(ref_corners[2 * j], ref_corners[2 * j + 1], width,
height))
continue;
@ -183,25 +166,24 @@ int determine_correspondence(unsigned char *frm, int *frm_corners,
ref_corners[2 * j], ref_corners[2 * j + 1],
width, height))
continue;
subimage_norm = compute_variance(ref, ref_stride, ref_corners[2 * j],
ref_corners[2 * j + 1], NULL);
match_ncc = compute_cross_correlation(frm, frm_stride, frm_corners[2 * i],
frm_corners[2 * i + 1], ref,
ref_stride, ref_corners[2 * j],
ref_corners[2 * j + 1]) /
sqrt(template_norm * subimage_norm);
match_ncc = compute_cross_correlation(
frm, frm_stride, frm_corners[2 * i], frm_corners[2 * i + 1], ref,
ref_stride, ref_corners[2 * j], ref_corners[2 * j + 1]);
if (match_ncc > best_match_ncc) {
best_match_ncc = match_ncc;
best_match_j = j;
}
}
if (best_match_ncc > THRESHOLD_NCC) {
correspondences[num_correspondences].x = (double)frm_corners[2 * i];
correspondences[num_correspondences].y = (double)frm_corners[2 * i + 1];
correspondences[num_correspondences].rx =
(double)ref_corners[2 * best_match_j];
// Note: We want to test if the best correlation is >= THRESHOLD_NCC,
// but need to account for the normalization in compute_cross_correlation.
template_norm = compute_variance(frm, frm_stride, frm_corners[2 * i],
frm_corners[2 * i + 1]);
if (best_match_ncc > THRESHOLD_NCC * sqrt(template_norm)) {
correspondences[num_correspondences].x = frm_corners[2 * i];
correspondences[num_correspondences].y = frm_corners[2 * i + 1];
correspondences[num_correspondences].rx = ref_corners[2 * best_match_j];
correspondences[num_correspondences].ry =
(double)ref_corners[2 * best_match_j + 1];
ref_corners[2 * best_match_j + 1];
num_correspondences++;
}
}

Просмотреть файл

@ -16,14 +16,14 @@
#include <memory.h>
typedef struct {
double x, y;
double rx, ry;
int x, y;
int rx, ry;
} Correspondence;
int determine_correspondence(unsigned char *frm, int *frm_corners,
int num_frm_corners, unsigned char *ref,
int *ref_corners, int num_ref_corners, int width,
int height, int frm_stride, int ref_stride,
double *correspondence_pts);
int *correspondence_pts);
#endif // AV1_ENCODER_CORNER_MATCH_H_

Просмотреть файл

@ -218,7 +218,7 @@ static INLINE RansacFunc get_ransac_type(TransformationType type) {
// computes global motion parameters by fitting a model using RANSAC
static int compute_global_motion_params(TransformationType type,
double *correspondences,
int *correspondences,
int num_correspondences, double *params,
int *inlier_map) {
int result;
@ -259,7 +259,7 @@ int compute_global_motion_feature_based(TransformationType type,
double *params) {
int num_frm_corners, num_ref_corners;
int num_correspondences;
double *correspondences;
int *correspondences;
int num_inliers;
int frm_corners[2 * MAX_CORNERS], ref_corners[2 * MAX_CORNERS];
int *inlier_map = NULL;
@ -291,7 +291,7 @@ int compute_global_motion_feature_based(TransformationType type,
// find correspondences between the two images
correspondences =
(double *)malloc(num_frm_corners * 4 * sizeof(*correspondences));
(int *)malloc(num_frm_corners * 4 * sizeof(*correspondences));
num_correspondences = determine_correspondence(
frm_buffer, (int *)frm_corners, num_frm_corners, ref_buffer,
(int *)ref_corners, num_ref_corners, frm->y_width, frm->y_height,

Просмотреть файл

@ -116,7 +116,7 @@ static int get_rand_indices(int npoints, int minpts, int *indices,
return 1;
}
static int ransac(double *matched_points, int npoints, int *number_of_inliers,
static int ransac(int *matched_points, int npoints, int *number_of_inliers,
int *best_inlier_mask, double *best_params, const int minpts,
IsDegenerateFunc is_degenerate,
FindTransformationFunc find_transformation,
@ -305,31 +305,29 @@ static int is_degenerate_homography(double *p) {
is_collinear3(p, p + 4, p + 6) || is_collinear3(p + 2, p + 4, p + 6);
}
int ransac_translation(double *matched_points, int npoints,
int *number_of_inliers, int *best_inlier_mask,
double *best_params) {
int ransac_translation(int *matched_points, int npoints, int *number_of_inliers,
int *best_inlier_mask, double *best_params) {
return ransac(matched_points, npoints, number_of_inliers, best_inlier_mask,
best_params, 3, is_degenerate_translation, find_translation,
project_points_double_translation);
}
int ransac_rotzoom(double *matched_points, int npoints, int *number_of_inliers,
int ransac_rotzoom(int *matched_points, int npoints, int *number_of_inliers,
int *best_inlier_mask, double *best_params) {
return ransac(matched_points, npoints, number_of_inliers, best_inlier_mask,
best_params, 3, is_degenerate_affine, find_rotzoom,
project_points_double_rotzoom);
}
int ransac_affine(double *matched_points, int npoints, int *number_of_inliers,
int ransac_affine(int *matched_points, int npoints, int *number_of_inliers,
int *best_inlier_mask, double *best_params) {
return ransac(matched_points, npoints, number_of_inliers, best_inlier_mask,
best_params, 3, is_degenerate_affine, find_affine,
project_points_double_affine);
}
int ransac_homography(double *matched_points, int npoints,
int *number_of_inliers, int *best_inlier_mask,
double *best_params) {
int ransac_homography(int *matched_points, int npoints, int *number_of_inliers,
int *best_inlier_mask, double *best_params) {
return ransac(matched_points, npoints, number_of_inliers, best_inlier_mask,
best_params, 4, is_degenerate_homography, find_homography,
project_points_double_homography);

Просмотреть файл

@ -19,20 +19,18 @@
#include "av1/common/warped_motion.h"
typedef int (*RansacFunc)(double *matched_points, int npoints,
typedef int (*RansacFunc)(int *matched_points, int npoints,
int *number_of_inliers, int *best_inlier_mask,
double *best_params);
/* Each of these functions fits a motion model from a set of
corresponding points in 2 frames using RANSAC.*/
int ransac_homography(double *matched_points, int npoints,
int *number_of_inliers, int *best_inlier_indices,
double *best_params);
int ransac_affine(double *matched_points, int npoints, int *number_of_inliers,
int ransac_homography(int *matched_points, int npoints, int *number_of_inliers,
int *best_inlier_indices, double *best_params);
int ransac_affine(int *matched_points, int npoints, int *number_of_inliers,
int *best_inlier_indices, double *best_params);
int ransac_rotzoom(double *matched_points, int npoints, int *number_of_inliers,
int ransac_rotzoom(int *matched_points, int npoints, int *number_of_inliers,
int *best_inlier_indices, double *best_params);
int ransac_translation(double *matched_points, int npoints,
int *number_of_inliers, int *best_inlier_indices,
double *best_params);
int ransac_translation(int *matched_points, int npoints, int *number_of_inliers,
int *best_inlier_indices, double *best_params);
#endif // AV1_ENCODER_RANSAC_H_