Minor refactor of decode_block for supertx.

Exit early from function when supertx is used, rather than putting
the bulk of the function body in a single conditional.

Change-Id: I41f388a45bd46e4a6ee1c51f26782ed9bddff4e5
This commit is contained in:
Geza Lore 2016-06-09 17:02:10 +01:00
Родитель 9e95919414
Коммит 32992fa0b1
1 изменённых файлов: 122 добавлений и 121 удалений

Просмотреть файл

@ -1280,26 +1280,130 @@ static void decode_block(VP10Decoder *const pbi, MACROBLOCKD *const xd,
} }
#if CONFIG_SUPERTX #if CONFIG_SUPERTX
if (!supertx_enabled) { if (supertx_enabled) {
#endif xd->corrupted |= vp10_reader_has_error(r);
if (mbmi->skip) { return;
dec_reset_skip_context(xd); }
#endif // CONFIG_SUPERTX
if (mbmi->skip) {
dec_reset_skip_context(xd);
}
if (!is_inter_block(mbmi)) {
int plane;
for (plane = 0; plane <= 1; ++plane) {
if (mbmi->palette_mode_info.palette_size[plane])
vp10_decode_palette_tokens(xd, plane, r);
} }
if (!is_inter_block(mbmi)) { for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
int plane; const struct macroblockd_plane *const pd = &xd->plane[plane];
for (plane = 0; plane <= 1; ++plane) { const TX_SIZE tx_size =
if (mbmi->palette_mode_info.palette_size[plane]) plane ? dec_get_uv_tx_size(mbmi, pd->n4_wl, pd->n4_hl)
vp10_decode_palette_tokens(xd, plane, r); : mbmi->tx_size;
const int num_4x4_w = pd->n4_w;
const int num_4x4_h = pd->n4_h;
const int step = (1 << tx_size);
int row, col;
const int max_blocks_wide = num_4x4_w +
(xd->mb_to_right_edge >= 0 ?
0 : xd->mb_to_right_edge >> (5 + pd->subsampling_x));
const int max_blocks_high = num_4x4_h +
(xd->mb_to_bottom_edge >= 0 ?
0 : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
for (row = 0; row < max_blocks_high; row += step)
for (col = 0; col < max_blocks_wide; col += step)
predict_and_reconstruct_intra_block(xd,
r,
mbmi, plane,
row, col, tx_size);
}
} else {
// Prediction
vp10_build_inter_predictors_sb(xd, mi_row, mi_col,
VPXMAX(bsize, BLOCK_8X8));
#if CONFIG_OBMC
if (mbmi->motion_variation == OBMC_CAUSAL) {
#if CONFIG_VP9_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint8_t,
tmp_buf1[2 * MAX_MB_PLANE * MAX_SB_SQUARE]);
DECLARE_ALIGNED(16, uint8_t,
tmp_buf2[2 * MAX_MB_PLANE * MAX_SB_SQUARE]);
#else
DECLARE_ALIGNED(16, uint8_t,
tmp_buf1[MAX_MB_PLANE * MAX_SB_SQUARE]);
DECLARE_ALIGNED(16, uint8_t,
tmp_buf2[MAX_MB_PLANE * MAX_SB_SQUARE]);
#endif // CONFIG_VP9_HIGHBITDEPTH
uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE];
int dst_stride1[MAX_MB_PLANE] = {MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE};
int dst_stride2[MAX_MB_PLANE] = {MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE};
assert(mbmi->sb_type >= BLOCK_8X8);
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
int len = sizeof(uint16_t);
dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1);
dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * len);
dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * 2 * len);
dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2);
dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * len);
dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * 2 * len);
} else {
#endif // CONFIG_VP9_HIGHBITDEPTH
dst_buf1[0] = tmp_buf1;
dst_buf1[1] = tmp_buf1 + MAX_SB_SQUARE;
dst_buf1[2] = tmp_buf1 + MAX_SB_SQUARE * 2;
dst_buf2[0] = tmp_buf2;
dst_buf2[1] = tmp_buf2 + MAX_SB_SQUARE;
dst_buf2[2] = tmp_buf2 + MAX_SB_SQUARE * 2;
#if CONFIG_VP9_HIGHBITDEPTH
} }
#endif // CONFIG_VP9_HIGHBITDEPTH
vp10_build_prediction_by_above_preds(cm, xd, mi_row, mi_col,
dst_buf1, dst_stride1);
vp10_build_prediction_by_left_preds(cm, xd, mi_row, mi_col,
dst_buf2, dst_stride2);
vp10_setup_dst_planes(xd->plane, get_frame_new_buffer(cm),
mi_row, mi_col);
vp10_build_obmc_inter_prediction(cm, xd, mi_row, mi_col, 0, NULL, NULL,
dst_buf1, dst_stride1,
dst_buf2, dst_stride2);
}
#endif // CONFIG_OBMC
// Reconstruction
if (!mbmi->skip) {
int eobtotal = 0;
int plane;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) { for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const struct macroblockd_plane *const pd = &xd->plane[plane]; const struct macroblockd_plane *const pd = &xd->plane[plane];
const int num_4x4_w = pd->n4_w;
const int num_4x4_h = pd->n4_h;
int row, col;
#if CONFIG_VAR_TX
// TODO(jingning): This can be simplified for decoder performance.
const BLOCK_SIZE plane_bsize =
get_plane_block_size(VPXMAX(bsize, BLOCK_8X8), pd);
const TX_SIZE max_tx_size = max_txsize_lookup[plane_bsize];
const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size];
int bw = num_4x4_blocks_wide_lookup[txb_size];
int block = 0;
const int step = 1 << (max_tx_size << 1);
for (row = 0; row < num_4x4_h; row += bw) {
for (col = 0; col < num_4x4_w; col += bw) {
decode_reconstruct_tx(xd, r, mbmi, plane, plane_bsize,
block, row, col, max_tx_size, &eobtotal);
block += step;
}
}
#else
const TX_SIZE tx_size = const TX_SIZE tx_size =
plane ? dec_get_uv_tx_size(mbmi, pd->n4_wl, pd->n4_hl) plane ? dec_get_uv_tx_size(mbmi, pd->n4_wl, pd->n4_hl)
: mbmi->tx_size; : mbmi->tx_size;
const int num_4x4_w = pd->n4_w;
const int num_4x4_h = pd->n4_h;
const int step = (1 << tx_size); const int step = (1 << tx_size);
int row, col;
const int max_blocks_wide = num_4x4_w + const int max_blocks_wide = num_4x4_w +
(xd->mb_to_right_edge >= 0 ? (xd->mb_to_right_edge >= 0 ?
0 : xd->mb_to_right_edge >> (5 + pd->subsampling_x)); 0 : xd->mb_to_right_edge >> (5 + pd->subsampling_x));
@ -1309,120 +1413,17 @@ static void decode_block(VP10Decoder *const pbi, MACROBLOCKD *const xd,
for (row = 0; row < max_blocks_high; row += step) for (row = 0; row < max_blocks_high; row += step)
for (col = 0; col < max_blocks_wide; col += step) for (col = 0; col < max_blocks_wide; col += step)
predict_and_reconstruct_intra_block(xd, eobtotal += reconstruct_inter_block(xd,
r, r,
mbmi, plane, mbmi, plane, row, col,
row, col, tx_size); tx_size);
}
} else {
// Prediction
vp10_build_inter_predictors_sb(xd, mi_row, mi_col,
VPXMAX(bsize, BLOCK_8X8));
#if CONFIG_OBMC
if (mbmi->motion_variation == OBMC_CAUSAL) {
#if CONFIG_VP9_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint8_t,
tmp_buf1[2 * MAX_MB_PLANE * MAX_SB_SQUARE]);
DECLARE_ALIGNED(16, uint8_t,
tmp_buf2[2 * MAX_MB_PLANE * MAX_SB_SQUARE]);
#else
DECLARE_ALIGNED(16, uint8_t,
tmp_buf1[MAX_MB_PLANE * MAX_SB_SQUARE]);
DECLARE_ALIGNED(16, uint8_t,
tmp_buf2[MAX_MB_PLANE * MAX_SB_SQUARE]);
#endif // CONFIG_VP9_HIGHBITDEPTH
uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE];
int dst_stride1[MAX_MB_PLANE] = {MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE};
int dst_stride2[MAX_MB_PLANE] = {MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE};
assert(mbmi->sb_type >= BLOCK_8X8);
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
int len = sizeof(uint16_t);
dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1);
dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * len);
dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * 2 * len);
dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2);
dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * len);
dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * 2 * len);
} else {
#endif // CONFIG_VP9_HIGHBITDEPTH
dst_buf1[0] = tmp_buf1;
dst_buf1[1] = tmp_buf1 + MAX_SB_SQUARE;
dst_buf1[2] = tmp_buf1 + MAX_SB_SQUARE * 2;
dst_buf2[0] = tmp_buf2;
dst_buf2[1] = tmp_buf2 + MAX_SB_SQUARE;
dst_buf2[2] = tmp_buf2 + MAX_SB_SQUARE * 2;
#if CONFIG_VP9_HIGHBITDEPTH
}
#endif // CONFIG_VP9_HIGHBITDEPTH
vp10_build_prediction_by_above_preds(cm, xd, mi_row, mi_col,
dst_buf1, dst_stride1);
vp10_build_prediction_by_left_preds(cm, xd, mi_row, mi_col,
dst_buf2, dst_stride2);
vp10_setup_dst_planes(xd->plane, get_frame_new_buffer(cm),
mi_row, mi_col);
vp10_build_obmc_inter_prediction(cm, xd, mi_row, mi_col, 0, NULL, NULL,
dst_buf1, dst_stride1,
dst_buf2, dst_stride2);
}
#endif // CONFIG_OBMC
// Reconstruction
if (!mbmi->skip) {
int eobtotal = 0;
int plane;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int num_4x4_w = pd->n4_w;
const int num_4x4_h = pd->n4_h;
int row, col;
#if CONFIG_VAR_TX
// TODO(jingning): This can be simplified for decoder performance.
const BLOCK_SIZE plane_bsize =
get_plane_block_size(VPXMAX(bsize, BLOCK_8X8), pd);
const TX_SIZE max_tx_size = max_txsize_lookup[plane_bsize];
const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size];
int bw = num_4x4_blocks_wide_lookup[txb_size];
int block = 0;
const int step = 1 << (max_tx_size << 1);
for (row = 0; row < num_4x4_h; row += bw) {
for (col = 0; col < num_4x4_w; col += bw) {
decode_reconstruct_tx(xd, r, mbmi, plane, plane_bsize,
block, row, col, max_tx_size, &eobtotal);
block += step;
}
}
#else
const TX_SIZE tx_size =
plane ? dec_get_uv_tx_size(mbmi, pd->n4_wl, pd->n4_hl)
: mbmi->tx_size;
const int step = (1 << tx_size);
const int max_blocks_wide = num_4x4_w +
(xd->mb_to_right_edge >= 0 ?
0 : xd->mb_to_right_edge >> (5 + pd->subsampling_x));
const int max_blocks_high = num_4x4_h +
(xd->mb_to_bottom_edge >= 0 ?
0 : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
for (row = 0; row < max_blocks_high; row += step)
for (col = 0; col < max_blocks_wide; col += step)
eobtotal += reconstruct_inter_block(xd,
r,
mbmi, plane, row, col,
tx_size);
#endif #endif
}
if (!less8x8 && eobtotal == 0)
mbmi->has_no_coeffs = 1; // skip loopfilter
} }
if (!less8x8 && eobtotal == 0)
mbmi->has_no_coeffs = 1; // skip loopfilter
} }
#if CONFIG_SUPERTX
} }
#endif // CONFIG_SUPERTX
xd->corrupted |= vp10_reader_has_error(r); xd->corrupted |= vp10_reader_has_error(r);
} }