One-pass rate control cleanups/fixes/refactoring
Inlcudes a number cleanups: 1. Moves the one-pass pre-encode parameter setting functions to vp9_ratectrl.c 2. Deprecates per_frame_bandwidth in RATE_CONTROL structure 3. Removes target_bandwidth in cpi structure since it is not used. 4. Various renaming of functions There is no bit-stream change in 2-pass, one-pass cbr and one-pass vbr modes. Change-Id: Ifd9916bf4d485b7d04c5f52044ffe6703254ccbd
This commit is contained in:
Родитель
303c17ea29
Коммит
40e63d4b51
|
@ -49,8 +49,9 @@
|
|||
|
||||
#define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x) - 0.000001 : (x) + 0.000001)
|
||||
|
||||
#define MIN_BOOST 300
|
||||
#define KEY_FRAME_BOOST 2000
|
||||
#define MIN_KF_BOOST 300
|
||||
|
||||
#define DISABLE_RC_LONG_TERM_MEM 0
|
||||
|
||||
static void swap_yv12(YV12_BUFFER_CONFIG *a, YV12_BUFFER_CONFIG *b) {
|
||||
YV12_BUFFER_CONFIG temp = *a;
|
||||
|
@ -1725,7 +1726,7 @@ static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
|||
(!rc->source_alt_ref_pending &&
|
||||
(cpi->common.frame_type != KEY_FRAME))) {
|
||||
// Per frame bit target for this frame
|
||||
rc->per_frame_bandwidth = gf_bits;
|
||||
vp9_rc_set_frame_target(cpi, gf_bits);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1827,12 +1828,7 @@ static void assign_std_frame_bits(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
|||
cpi->twopass.gf_group_bits = 0;
|
||||
|
||||
// Per frame bit target for this frame.
|
||||
cpi->rc.per_frame_bandwidth = target_frame_size;
|
||||
}
|
||||
|
||||
static int test_for_kf_one_pass(VP9_COMP *cpi) {
|
||||
// Placeholder function for auto key frame
|
||||
return 0;
|
||||
vp9_rc_set_frame_target(cpi, target_frame_size);
|
||||
}
|
||||
|
||||
static int test_candidate_kf(VP9_COMP *cpi,
|
||||
|
@ -2170,8 +2166,8 @@ static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
|||
if (kf_boost < (rc->frames_to_key * 3))
|
||||
kf_boost = (rc->frames_to_key * 3);
|
||||
|
||||
if (kf_boost < MIN_BOOST)
|
||||
kf_boost = MIN_BOOST;
|
||||
if (kf_boost < MIN_KF_BOOST)
|
||||
kf_boost = MIN_KF_BOOST;
|
||||
|
||||
// Make a note of baseline boost and the zero motion
|
||||
// accumulator value for use elsewhere.
|
||||
|
@ -2235,13 +2231,9 @@ static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
|||
twopass->kf_bits = alt_kf_bits;
|
||||
}
|
||||
}
|
||||
|
||||
twopass->kf_group_bits -= twopass->kf_bits;
|
||||
|
||||
// Peer frame bit target for this frame
|
||||
rc->per_frame_bandwidth = twopass->kf_bits;
|
||||
// Convert to a per second bitrate
|
||||
cpi->target_bandwidth = (int)(twopass->kf_bits * cpi->output_framerate);
|
||||
// Per frame bit target for this frame.
|
||||
vp9_rc_set_frame_target(cpi, twopass->kf_bits);
|
||||
}
|
||||
|
||||
// Note the total error score of the kf group minus the key frame itself
|
||||
|
@ -2253,176 +2245,7 @@ static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
|||
twopass->modified_error_left -= kf_group_err;
|
||||
}
|
||||
|
||||
void vp9_get_svc_params(VP9_COMP *cpi) {
|
||||
VP9_COMMON *const cm = &cpi->common;
|
||||
if ((cm->current_video_frame == 0) ||
|
||||
(cm->frame_flags & FRAMEFLAGS_KEY) ||
|
||||
(cpi->oxcf.auto_key && (cpi->rc.frames_since_key %
|
||||
cpi->key_frame_frequency == 0))) {
|
||||
cm->frame_type = KEY_FRAME;
|
||||
cpi->rc.source_alt_ref_active = 0;
|
||||
} else {
|
||||
cm->frame_type = INTER_FRAME;
|
||||
}
|
||||
cpi->rc.frames_till_gf_update_due = INT_MAX;
|
||||
cpi->rc.baseline_gf_interval = INT_MAX;
|
||||
}
|
||||
|
||||
// Use this macro to turn on/off use of alt-refs in one-pass mode.
|
||||
#define USE_ALTREF_FOR_ONE_PASS 1
|
||||
|
||||
void vp9_get_one_pass_params(VP9_COMP *cpi) {
|
||||
VP9_COMMON *const cm = &cpi->common;
|
||||
if (!cpi->refresh_alt_ref_frame &&
|
||||
(cm->current_video_frame == 0 ||
|
||||
cm->frame_flags & FRAMEFLAGS_KEY ||
|
||||
cpi->rc.frames_to_key == 0 ||
|
||||
(cpi->oxcf.auto_key && test_for_kf_one_pass(cpi)))) {
|
||||
cm->frame_type = KEY_FRAME;
|
||||
cpi->rc.this_key_frame_forced = cm->current_video_frame != 0 &&
|
||||
cpi->rc.frames_to_key == 0;
|
||||
cpi->rc.frames_to_key = cpi->key_frame_frequency;
|
||||
cpi->rc.kf_boost = KEY_FRAME_BOOST;
|
||||
cpi->rc.source_alt_ref_active = 0;
|
||||
cpi->rc.per_frame_bandwidth = cpi->rc.av_per_frame_bandwidth * 8;
|
||||
if (cm->current_video_frame == 0) {
|
||||
cpi->rc.active_worst_quality = cpi->rc.worst_quality;
|
||||
} else {
|
||||
// Choose active worst quality twice as large as the last q.
|
||||
cpi->rc.active_worst_quality = cpi->rc.last_q[KEY_FRAME] * 2;
|
||||
if (cpi->rc.active_worst_quality > cpi->rc.worst_quality)
|
||||
cpi->rc.active_worst_quality = cpi->rc.worst_quality;
|
||||
}
|
||||
} else {
|
||||
cm->frame_type = INTER_FRAME;
|
||||
cpi->rc.per_frame_bandwidth = cpi->rc.av_per_frame_bandwidth;
|
||||
if (cm->current_video_frame == 1) {
|
||||
cpi->rc.active_worst_quality = cpi->rc.worst_quality;
|
||||
} else {
|
||||
// Choose active worst quality twice as large as the last q.
|
||||
cpi->rc.active_worst_quality = cpi->rc.last_q[INTER_FRAME] * 2;
|
||||
if (cpi->rc.active_worst_quality > cpi->rc.worst_quality)
|
||||
cpi->rc.active_worst_quality = cpi->rc.worst_quality;
|
||||
}
|
||||
}
|
||||
if (cpi->rc.frames_till_gf_update_due == 0) {
|
||||
cpi->rc.baseline_gf_interval = DEFAULT_GF_INTERVAL;
|
||||
cpi->rc.frames_till_gf_update_due = cpi->rc.baseline_gf_interval;
|
||||
// NOTE: frames_till_gf_update_due must be <= frames_to_key.
|
||||
if (cpi->rc.frames_till_gf_update_due > cpi->rc.frames_to_key)
|
||||
cpi->rc.frames_till_gf_update_due = cpi->rc.frames_to_key;
|
||||
cpi->refresh_golden_frame = 1;
|
||||
cpi->rc.source_alt_ref_pending = USE_ALTREF_FOR_ONE_PASS;
|
||||
cpi->rc.gfu_boost = 2000;
|
||||
}
|
||||
}
|
||||
|
||||
// Adjust active_worst_quality level based on buffer level.
|
||||
static int calc_active_worst_quality_from_buffer_level(const VP9_COMP *cpi) {
|
||||
// Adjust active_worst_quality: If buffer is above the optimal/target level,
|
||||
// bring active_worst_quality down depending on fullness of buffer.
|
||||
// If buffer is below the optimal level, let the active_worst_quality go from
|
||||
// ambient Q (at buffer = optimal level) to worst_quality level
|
||||
// (at buffer = critical level).
|
||||
const VP9_CONFIG *oxcf = &cpi->oxcf;
|
||||
const RATE_CONTROL *rc = &cpi->rc;
|
||||
int active_worst_quality = rc->active_worst_quality;
|
||||
// Maximum limit for down adjustment, ~20%.
|
||||
int max_adjustment_down = active_worst_quality / 5;
|
||||
// Buffer level below which we push active_worst to worst_quality.
|
||||
int critical_level = oxcf->optimal_buffer_level >> 2;
|
||||
int adjustment = 0;
|
||||
int buff_lvl_step = 0;
|
||||
if (rc->buffer_level > oxcf->optimal_buffer_level) {
|
||||
// Adjust down.
|
||||
if (max_adjustment_down) {
|
||||
buff_lvl_step = (int)((oxcf->maximum_buffer_size -
|
||||
oxcf->optimal_buffer_level) / max_adjustment_down);
|
||||
if (buff_lvl_step)
|
||||
adjustment = (int)((rc->buffer_level - oxcf->optimal_buffer_level) /
|
||||
buff_lvl_step);
|
||||
active_worst_quality -= adjustment;
|
||||
}
|
||||
} else if (rc->buffer_level > critical_level) {
|
||||
// Adjust up from ambient Q.
|
||||
if (critical_level) {
|
||||
buff_lvl_step = (oxcf->optimal_buffer_level - critical_level);
|
||||
if (buff_lvl_step) {
|
||||
adjustment = (rc->worst_quality - rc->avg_frame_qindex[INTER_FRAME]) *
|
||||
(oxcf->optimal_buffer_level - rc->buffer_level) /
|
||||
buff_lvl_step;
|
||||
}
|
||||
active_worst_quality = rc->avg_frame_qindex[INTER_FRAME] + adjustment;
|
||||
}
|
||||
} else {
|
||||
// Set to worst_quality if buffer is below critical level.
|
||||
active_worst_quality = rc->worst_quality;
|
||||
}
|
||||
return active_worst_quality;
|
||||
}
|
||||
|
||||
static int calc_pframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
|
||||
const VP9_CONFIG *oxcf = &cpi->oxcf;
|
||||
const RATE_CONTROL *rc = &cpi->rc;
|
||||
int target = rc->av_per_frame_bandwidth;
|
||||
const int64_t diff = oxcf->optimal_buffer_level - rc->buffer_level;
|
||||
const int one_pct_bits = 1 + oxcf->optimal_buffer_level / 100;
|
||||
if (diff > 0) {
|
||||
// Lower the target bandwidth for this frame.
|
||||
const int pct_low = MIN(diff / one_pct_bits, oxcf->under_shoot_pct);
|
||||
target -= (target * pct_low) / 200;
|
||||
} else if (diff < 0) {
|
||||
// Increase the target bandwidth for this frame.
|
||||
const int pct_high = MIN(-diff / one_pct_bits, oxcf->over_shoot_pct);
|
||||
target += (target * pct_high) / 200;
|
||||
}
|
||||
return target;
|
||||
}
|
||||
|
||||
static int calc_iframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
|
||||
int per_frame_bandwidth;
|
||||
const RATE_CONTROL *rc = &cpi->rc;
|
||||
if (cpi->common.current_video_frame == 0) {
|
||||
per_frame_bandwidth = cpi->oxcf.starting_buffer_level / 2;
|
||||
} else {
|
||||
int initial_boost = 32;
|
||||
int kf_boost = MAX(initial_boost, (int)(2 * cpi->output_framerate - 16));
|
||||
if (rc->frames_since_key < cpi->output_framerate / 2) {
|
||||
kf_boost = (int)(kf_boost * rc->frames_since_key /
|
||||
(cpi->output_framerate / 2));
|
||||
}
|
||||
per_frame_bandwidth =
|
||||
((16 + kf_boost) * rc->av_per_frame_bandwidth) >> 4;
|
||||
}
|
||||
return per_frame_bandwidth;
|
||||
}
|
||||
|
||||
void vp9_get_one_pass_cbr_params(VP9_COMP *cpi) {
|
||||
VP9_COMMON *const cm = &cpi->common;
|
||||
if ((cm->current_video_frame == 0 ||
|
||||
cm->frame_flags & FRAMEFLAGS_KEY ||
|
||||
cpi->rc.frames_to_key == 0 ||
|
||||
(cpi->oxcf.auto_key && test_for_kf_one_pass(cpi)))) {
|
||||
cm->frame_type = KEY_FRAME;
|
||||
cpi->rc.this_key_frame_forced = cm->current_video_frame != 0 &&
|
||||
cpi->rc.frames_to_key == 0;
|
||||
cpi->rc.frames_to_key = cpi->key_frame_frequency;
|
||||
cpi->rc.kf_boost = KEY_FRAME_BOOST;
|
||||
cpi->rc.source_alt_ref_active = 0;
|
||||
cpi->rc.per_frame_bandwidth = calc_iframe_target_size_one_pass_cbr(cpi);
|
||||
cpi->rc.active_worst_quality = cpi->rc.worst_quality;
|
||||
} else {
|
||||
cm->frame_type = INTER_FRAME;
|
||||
cpi->rc.per_frame_bandwidth = calc_pframe_target_size_one_pass_cbr(cpi);
|
||||
cpi->rc.active_worst_quality =
|
||||
calc_active_worst_quality_from_buffer_level(cpi);
|
||||
}
|
||||
// Don't use gf_update by default in CBR mode.
|
||||
cpi->rc.frames_till_gf_update_due = INT_MAX;
|
||||
cpi->rc.baseline_gf_interval = INT_MAX;
|
||||
}
|
||||
|
||||
void vp9_get_first_pass_params(VP9_COMP *cpi) {
|
||||
void vp9_rc_get_first_pass_params(VP9_COMP *cpi) {
|
||||
VP9_COMMON *const cm = &cpi->common;
|
||||
if (!cpi->refresh_alt_ref_frame &&
|
||||
(cm->current_video_frame == 0 ||
|
||||
|
@ -2435,7 +2258,7 @@ void vp9_get_first_pass_params(VP9_COMP *cpi) {
|
|||
cpi->rc.frames_to_key = INT_MAX;
|
||||
}
|
||||
|
||||
void vp9_get_second_pass_params(VP9_COMP *cpi) {
|
||||
void vp9_rc_get_second_pass_params(VP9_COMP *cpi) {
|
||||
VP9_COMMON *const cm = &cpi->common;
|
||||
RATE_CONTROL *const rc = &cpi->rc;
|
||||
struct twopass_rc *const twopass = &cpi->twopass;
|
||||
|
@ -2446,13 +2269,14 @@ void vp9_get_second_pass_params(VP9_COMP *cpi) {
|
|||
|
||||
double this_frame_intra_error;
|
||||
double this_frame_coded_error;
|
||||
int target;
|
||||
|
||||
if (!twopass->stats_in)
|
||||
return;
|
||||
|
||||
if (cpi->refresh_alt_ref_frame) {
|
||||
cm->frame_type = INTER_FRAME;
|
||||
rc->per_frame_bandwidth = twopass->gf_bits;
|
||||
vp9_rc_set_frame_target(cpi, twopass->gf_bits);
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -2463,7 +2287,7 @@ void vp9_get_second_pass_params(VP9_COMP *cpi) {
|
|||
} else if (cm->current_video_frame == 0) {
|
||||
// Special case code for first frame.
|
||||
const int section_target_bandwidth = (int)(twopass->bits_left /
|
||||
frames_left);
|
||||
frames_left);
|
||||
const int tmp_q = estimate_max_q(cpi, &twopass->total_left_stats,
|
||||
section_target_bandwidth);
|
||||
|
||||
|
@ -2539,11 +2363,11 @@ void vp9_get_second_pass_params(VP9_COMP *cpi) {
|
|||
}
|
||||
}
|
||||
|
||||
// Set nominal per second bandwidth for this frame
|
||||
cpi->target_bandwidth = (int)(rc->per_frame_bandwidth *
|
||||
cpi->output_framerate);
|
||||
if (cpi->target_bandwidth < 0)
|
||||
cpi->target_bandwidth = 0;
|
||||
if (cpi->common.frame_type == KEY_FRAME)
|
||||
target = vp9_rc_clamp_iframe_target_size(cpi, rc->this_frame_target);
|
||||
else
|
||||
target = vp9_rc_clamp_pframe_target_size(cpi, rc->this_frame_target);
|
||||
vp9_rc_set_frame_target(cpi, target);
|
||||
|
||||
// Update the total stats remaining structure
|
||||
subtract_stats(&twopass->total_left_stats, &this_frame);
|
||||
|
@ -2554,5 +2378,18 @@ void vp9_twopass_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) {
|
|||
cpi->twopass.bits_left -= cpi->rc.this_frame_target;
|
||||
#else
|
||||
cpi->twopass.bits_left -= 8 * bytes_used;
|
||||
// Update bits left to the kf and gf groups to account for overshoot or
|
||||
// undershoot on these frames
|
||||
if (cm->frame_type == KEY_FRAME) {
|
||||
cpi->twopass.kf_group_bits += cpi->rc.this_frame_target -
|
||||
cpi->rc.projected_frame_size;
|
||||
|
||||
cpi->twopass.kf_group_bits = MAX(cpi->twopass.kf_group_bits, 0);
|
||||
} else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) {
|
||||
cpi->twopass.gf_group_bits += cpi->rc.this_frame_target -
|
||||
cpi->rc.projected_frame_size;
|
||||
|
||||
cpi->twopass.gf_group_bits = MAX(cpi->twopass.gf_group_bits, 0);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
|
|
@ -17,18 +17,17 @@ extern "C" {
|
|||
#endif
|
||||
|
||||
void vp9_init_first_pass(VP9_COMP *cpi);
|
||||
void vp9_rc_get_first_pass_params(VP9_COMP *cpi);
|
||||
void vp9_first_pass(VP9_COMP *cpi);
|
||||
void vp9_end_first_pass(VP9_COMP *cpi);
|
||||
|
||||
void vp9_init_second_pass(VP9_COMP *cpi);
|
||||
void vp9_get_second_pass_params(VP9_COMP *cpi);
|
||||
void vp9_rc_get_second_pass_params(VP9_COMP *cpi);
|
||||
void vp9_end_second_pass(VP9_COMP *cpi);
|
||||
|
||||
void vp9_get_first_pass_params(VP9_COMP *cpi);
|
||||
void vp9_get_one_pass_params(VP9_COMP *cpi);
|
||||
void vp9_get_one_pass_cbr_params(VP9_COMP *cpi);
|
||||
void vp9_get_svc_params(VP9_COMP *cpi);
|
||||
|
||||
// Post encode update of the rate control parameters for 2-pass
|
||||
void vp9_twopass_postencode_update(struct VP9_COMP *cpi,
|
||||
uint64_t bytes_used);
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
|
|
@ -1104,8 +1104,6 @@ void vp9_new_framerate(VP9_COMP *cpi, double framerate) {
|
|||
|
||||
cpi->oxcf.framerate = framerate;
|
||||
cpi->output_framerate = cpi->oxcf.framerate;
|
||||
cpi->rc.per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth
|
||||
/ cpi->output_framerate);
|
||||
cpi->rc.av_per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth
|
||||
/ cpi->output_framerate);
|
||||
cpi->rc.min_frame_bandwidth = (int)(cpi->rc.av_per_frame_bandwidth *
|
||||
|
@ -1344,8 +1342,6 @@ void vp9_change_config(VP9_PTR ptr, VP9_CONFIG *oxcf) {
|
|||
|
||||
cm->interp_filter = DEFAULT_INTERP_FILTER;
|
||||
|
||||
cpi->target_bandwidth = cpi->oxcf.target_bandwidth;
|
||||
|
||||
cm->display_width = cpi->oxcf.width;
|
||||
cm->display_height = cpi->oxcf.height;
|
||||
|
||||
|
@ -3025,10 +3021,7 @@ static void encode_frame_to_data_rate(VP9_COMP *cpi,
|
|||
if (cpi->pass == 0 &&
|
||||
cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER &&
|
||||
cm->frame_type != KEY_FRAME) {
|
||||
if (vp9_drop_frame(cpi)) {
|
||||
// Update buffer level with zero size, update frame counters, and return.
|
||||
vp9_update_buffer_level(cpi, 0);
|
||||
cm->last_frame_type = cm->frame_type;
|
||||
if (vp9_rc_drop_frame(cpi)) {
|
||||
vp9_rc_postencode_update_drop_frame(cpi);
|
||||
cm->current_video_frame++;
|
||||
return;
|
||||
|
@ -3068,9 +3061,6 @@ static void encode_frame_to_data_rate(VP9_COMP *cpi,
|
|||
vp9_write_yuv_frame(cpi->Source);
|
||||
#endif
|
||||
|
||||
// Decide how big to make the frame.
|
||||
vp9_rc_pick_frame_size_target(cpi);
|
||||
|
||||
// Decide frame size bounds
|
||||
vp9_rc_compute_frame_size_bounds(cpi, cpi->rc.this_frame_target,
|
||||
&frame_under_shoot_limit,
|
||||
|
@ -3171,10 +3161,6 @@ static void encode_frame_to_data_rate(VP9_COMP *cpi,
|
|||
vp9_update_mode_context_stats(cpi);
|
||||
#endif
|
||||
|
||||
/* Move storing frame_type out of the above loop since it is also
|
||||
* needed in motion search besides loopfilter */
|
||||
cm->last_frame_type = cm->frame_type;
|
||||
|
||||
#if 0
|
||||
output_frame_level_debug_stats(cpi);
|
||||
#endif
|
||||
|
@ -3262,16 +3248,16 @@ static void encode_frame_to_data_rate(VP9_COMP *cpi,
|
|||
|
||||
static void SvcEncode(VP9_COMP *cpi, size_t *size, uint8_t *dest,
|
||||
unsigned int *frame_flags) {
|
||||
vp9_get_svc_params(cpi);
|
||||
vp9_rc_get_svc_params(cpi);
|
||||
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
|
||||
}
|
||||
|
||||
static void Pass0Encode(VP9_COMP *cpi, size_t *size, uint8_t *dest,
|
||||
unsigned int *frame_flags) {
|
||||
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
|
||||
vp9_get_one_pass_cbr_params(cpi);
|
||||
vp9_rc_get_one_pass_cbr_params(cpi);
|
||||
} else {
|
||||
vp9_get_one_pass_params(cpi);
|
||||
vp9_rc_get_one_pass_vbr_params(cpi);
|
||||
}
|
||||
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
|
||||
}
|
||||
|
@ -3282,7 +3268,7 @@ static void Pass1Encode(VP9_COMP *cpi, size_t *size, uint8_t *dest,
|
|||
(void) dest;
|
||||
(void) frame_flags;
|
||||
|
||||
vp9_get_first_pass_params(cpi);
|
||||
vp9_rc_get_first_pass_params(cpi);
|
||||
vp9_set_quantizer(cpi, find_fp_qindex());
|
||||
vp9_first_pass(cpi);
|
||||
}
|
||||
|
@ -3291,7 +3277,7 @@ static void Pass2Encode(VP9_COMP *cpi, size_t *size,
|
|||
uint8_t *dest, unsigned int *frame_flags) {
|
||||
cpi->enable_encode_breakout = 1;
|
||||
|
||||
vp9_get_second_pass_params(cpi);
|
||||
vp9_rc_get_second_pass_params(cpi);
|
||||
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
|
||||
|
||||
vp9_twopass_postencode_update(cpi, *size);
|
||||
|
|
|
@ -36,7 +36,6 @@
|
|||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define DISABLE_RC_LONG_TERM_MEM 0
|
||||
// #define MODE_TEST_HIT_STATS
|
||||
|
||||
// #define SPEEDSTATS 1
|
||||
|
@ -47,6 +46,7 @@ extern "C" {
|
|||
#define MIN_GF_INTERVAL 4
|
||||
#endif
|
||||
#define DEFAULT_GF_INTERVAL 7
|
||||
#define DEFAULT_KF_BOOST 2000
|
||||
|
||||
#define KEY_FRAME_CONTEXT 5
|
||||
|
||||
|
@ -530,7 +530,6 @@ typedef struct VP9_COMP {
|
|||
vp9_coeff_probs_model frame_coef_probs[TX_SIZES][PLANE_TYPES];
|
||||
vp9_coeff_stats frame_branch_ct[TX_SIZES][PLANE_TYPES];
|
||||
|
||||
int64_t target_bandwidth;
|
||||
struct vpx_codec_pkt_list *output_pkt_list;
|
||||
|
||||
MBGRAPH_FRAME_STATS mbgraph_stats[MAX_LAG_BUFFERS];
|
||||
|
|
|
@ -209,24 +209,40 @@ static int estimate_bits_at_q(int frame_kind, int q, int mbs,
|
|||
: (bpm * mbs) >> BPER_MB_NORMBITS;
|
||||
}
|
||||
|
||||
int vp9_rc_clamp_pframe_target_size(const VP9_COMP *const cpi, int target) {
|
||||
const RATE_CONTROL *rc = &cpi->rc;
|
||||
const int min_frame_target = MAX(rc->min_frame_bandwidth,
|
||||
rc->av_per_frame_bandwidth >> 5);
|
||||
if (target < min_frame_target)
|
||||
target = min_frame_target;
|
||||
if (cpi->refresh_golden_frame && rc->source_alt_ref_active) {
|
||||
// If there is an active ARF at this location use the minimum
|
||||
// bits on this frame even if it is a constructed arf.
|
||||
// The active maximum quantizer insures that an appropriate
|
||||
// number of bits will be spent if needed for constructed ARFs.
|
||||
target = 0;
|
||||
}
|
||||
// Clip the frame target to the maximum allowed value.
|
||||
if (target > rc->max_frame_bandwidth)
|
||||
target = rc->max_frame_bandwidth;
|
||||
return target;
|
||||
}
|
||||
|
||||
static void calc_iframe_target_size(VP9_COMP *cpi) {
|
||||
int vp9_rc_clamp_iframe_target_size(const VP9_COMP *const cpi, int target) {
|
||||
const RATE_CONTROL *rc = &cpi->rc;
|
||||
const VP9_CONFIG *oxcf = &cpi->oxcf;
|
||||
RATE_CONTROL *const rc = &cpi->rc;
|
||||
int target = rc->per_frame_bandwidth;
|
||||
|
||||
vp9_clear_system_state(); // __asm emms;
|
||||
|
||||
if (oxcf->rc_max_intra_bitrate_pct) {
|
||||
const int max_rate = rc->per_frame_bandwidth *
|
||||
const int max_rate = rc->av_per_frame_bandwidth *
|
||||
oxcf->rc_max_intra_bitrate_pct / 100;
|
||||
target = MIN(target, max_rate);
|
||||
}
|
||||
rc->this_frame_target = target;
|
||||
if (target > rc->max_frame_bandwidth)
|
||||
target = rc->max_frame_bandwidth;
|
||||
return target;
|
||||
}
|
||||
|
||||
// Update the buffer level: leaky bucket model.
|
||||
void vp9_update_buffer_level(VP9_COMP *cpi, int encoded_frame_size) {
|
||||
static void update_buffer_level(VP9_COMP *cpi, int encoded_frame_size) {
|
||||
const VP9_COMMON *const cm = &cpi->common;
|
||||
const VP9_CONFIG *oxcf = &cpi->oxcf;
|
||||
RATE_CONTROL *const rc = &cpi->rc;
|
||||
|
@ -242,7 +258,7 @@ void vp9_update_buffer_level(VP9_COMP *cpi, int encoded_frame_size) {
|
|||
rc->buffer_level = MIN(rc->bits_off_target, oxcf->maximum_buffer_size);
|
||||
}
|
||||
|
||||
int vp9_drop_frame(VP9_COMP *cpi) {
|
||||
int vp9_rc_drop_frame(VP9_COMP *cpi) {
|
||||
const VP9_CONFIG *oxcf = &cpi->oxcf;
|
||||
RATE_CONTROL *const rc = &cpi->rc;
|
||||
|
||||
|
@ -281,53 +297,6 @@ int vp9_drop_frame(VP9_COMP *cpi) {
|
|||
}
|
||||
}
|
||||
|
||||
static void calc_pframe_target_size(VP9_COMP *const cpi) {
|
||||
RATE_CONTROL *const rc = &cpi->rc;
|
||||
const VP9_CONFIG *const oxcf = &cpi->oxcf;
|
||||
int min_frame_target;
|
||||
rc->this_frame_target = rc->per_frame_bandwidth;
|
||||
|
||||
if (cpi->pass == 0 && oxcf->end_usage == USAGE_STREAM_FROM_SERVER) {
|
||||
// Need to decide how low min_frame_target should be for 1-pass CBR.
|
||||
// For now, use: cpi->rc.av_per_frame_bandwidth / 16:
|
||||
min_frame_target = MAX(rc->av_per_frame_bandwidth >> 4,
|
||||
FRAME_OVERHEAD_BITS);
|
||||
if (rc->this_frame_target < min_frame_target)
|
||||
rc->this_frame_target = min_frame_target;
|
||||
return;
|
||||
}
|
||||
|
||||
// Check that the total sum of adjustments is not above the maximum allowed.
|
||||
// That is, having allowed for the KF and GF penalties, we have not pushed
|
||||
// the current inter-frame target too low. If the adjustment we apply here is
|
||||
// not capable of recovering all the extra bits we have spent in the KF or GF,
|
||||
// then the remainder will have to be recovered over a longer time span via
|
||||
// other buffer / rate control mechanisms.
|
||||
min_frame_target = MAX(rc->min_frame_bandwidth,
|
||||
rc->av_per_frame_bandwidth >> 5);
|
||||
|
||||
if (rc->this_frame_target < min_frame_target)
|
||||
rc->this_frame_target = min_frame_target;
|
||||
|
||||
// Adjust target frame size for Golden Frames:
|
||||
if (cpi->refresh_golden_frame) {
|
||||
// If we are using alternate ref instead of gf then do not apply the boost
|
||||
// It will instead be applied to the altref update
|
||||
// Jims modified boost
|
||||
if (!rc->source_alt_ref_active) {
|
||||
// The spend on the GF is defined in the two pass code
|
||||
// for two pass encodes
|
||||
rc->this_frame_target = rc->per_frame_bandwidth;
|
||||
} else {
|
||||
// If there is an active ARF at this location use the minimum
|
||||
// bits on this frame even if it is a constructed arf.
|
||||
// The active maximum quantizer insures that an appropriate
|
||||
// number of bits will be spent if needed for constructed ARFs.
|
||||
rc->this_frame_target = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static double get_rate_correction_factor(const VP9_COMP *cpi) {
|
||||
if (cpi->common.frame_type == KEY_FRAME) {
|
||||
return cpi->rc.key_frame_rate_correction_factor;
|
||||
|
@ -899,24 +868,14 @@ void vp9_rc_compute_frame_size_bounds(const VP9_COMP *cpi,
|
|||
}
|
||||
}
|
||||
|
||||
// return of 0 means drop frame
|
||||
int vp9_rc_pick_frame_size_target(VP9_COMP *cpi) {
|
||||
void vp9_rc_set_frame_target(VP9_COMP *cpi, int target) {
|
||||
const VP9_COMMON *const cm = &cpi->common;
|
||||
RATE_CONTROL *const rc = &cpi->rc;
|
||||
|
||||
if (cm->frame_type == KEY_FRAME)
|
||||
calc_iframe_target_size(cpi);
|
||||
else
|
||||
calc_pframe_target_size(cpi);
|
||||
|
||||
// Clip the frame target to the maximum allowed value.
|
||||
if (rc->this_frame_target > rc->max_frame_bandwidth)
|
||||
rc->this_frame_target = rc->max_frame_bandwidth;
|
||||
|
||||
rc->this_frame_target = target;
|
||||
// Target rate per SB64 (including partial SB64s.
|
||||
rc->sb64_target_rate = ((int64_t)rc->this_frame_target * 64 * 64) /
|
||||
(cm->width * cm->height);
|
||||
return 1;
|
||||
}
|
||||
|
||||
static void update_alt_ref_frame_stats(VP9_COMP *cpi) {
|
||||
|
@ -960,6 +919,8 @@ static void update_golden_frame_stats(VP9_COMP *cpi) {
|
|||
void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) {
|
||||
VP9_COMMON *const cm = &cpi->common;
|
||||
RATE_CONTROL *const rc = &cpi->rc;
|
||||
|
||||
cm->last_frame_type = cm->frame_type;
|
||||
// Update rate control heuristics
|
||||
rc->projected_frame_size = (bytes_used << 3);
|
||||
|
||||
|
@ -1002,7 +963,7 @@ void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) {
|
|||
rc->last_boosted_qindex = cm->base_qindex;
|
||||
}
|
||||
|
||||
vp9_update_buffer_level(cpi, rc->projected_frame_size);
|
||||
update_buffer_level(cpi, rc->projected_frame_size);
|
||||
|
||||
// Rolling monitors of whether we are over or underspending used to help
|
||||
// regulate min and Max Q in two pass.
|
||||
|
@ -1024,22 +985,6 @@ void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) {
|
|||
rc->total_target_vs_actual += (rc->this_frame_target -
|
||||
rc->projected_frame_size);
|
||||
|
||||
#ifndef DISABLE_RC_LONG_TERM_MEM
|
||||
// Update bits left to the kf and gf groups to account for overshoot or
|
||||
// undershoot on these frames
|
||||
if (cm->frame_type == KEY_FRAME) {
|
||||
cpi->twopass.kf_group_bits += cpi->rc.this_frame_target -
|
||||
cpi->rc.projected_frame_size;
|
||||
|
||||
cpi->twopass.kf_group_bits = MAX(cpi->twopass.kf_group_bits, 0);
|
||||
} else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) {
|
||||
cpi->twopass.gf_group_bits += cpi->rc.this_frame_target -
|
||||
cpi->rc.projected_frame_size;
|
||||
|
||||
cpi->twopass.gf_group_bits = MAX(cpi->twopass.gf_group_bits, 0);
|
||||
}
|
||||
#endif
|
||||
|
||||
if (cpi->oxcf.play_alternate && cpi->refresh_alt_ref_frame &&
|
||||
(cm->frame_type != KEY_FRAME))
|
||||
// Update the alternate reference frame stats as appropriate.
|
||||
|
@ -1057,6 +1002,205 @@ void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) {
|
|||
}
|
||||
|
||||
void vp9_rc_postencode_update_drop_frame(VP9_COMP *cpi) {
|
||||
// Update buffer level with zero size, update frame counters, and return.
|
||||
update_buffer_level(cpi, 0);
|
||||
cpi->common.last_frame_type = cpi->common.frame_type;
|
||||
cpi->rc.frames_since_key++;
|
||||
cpi->rc.frames_to_key--;
|
||||
}
|
||||
|
||||
void vp9_rc_get_svc_params(VP9_COMP *cpi) {
|
||||
VP9_COMMON *const cm = &cpi->common;
|
||||
if ((cm->current_video_frame == 0) ||
|
||||
(cm->frame_flags & FRAMEFLAGS_KEY) ||
|
||||
(cpi->oxcf.auto_key && (cpi->rc.frames_since_key %
|
||||
cpi->key_frame_frequency == 0))) {
|
||||
cm->frame_type = KEY_FRAME;
|
||||
cpi->rc.source_alt_ref_active = 0;
|
||||
} else {
|
||||
cm->frame_type = INTER_FRAME;
|
||||
}
|
||||
cpi->rc.frames_till_gf_update_due = INT_MAX;
|
||||
cpi->rc.baseline_gf_interval = INT_MAX;
|
||||
}
|
||||
|
||||
static int test_for_kf_one_pass(VP9_COMP *cpi) {
|
||||
// Placeholder function for auto key frame
|
||||
return 0;
|
||||
}
|
||||
// Use this macro to turn on/off use of alt-refs in one-pass mode.
|
||||
#define USE_ALTREF_FOR_ONE_PASS 1
|
||||
|
||||
static int calc_pframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) {
|
||||
const RATE_CONTROL *rc = &cpi->rc;
|
||||
int target = rc->av_per_frame_bandwidth;
|
||||
target = vp9_rc_clamp_pframe_target_size(cpi, target);
|
||||
return target;
|
||||
}
|
||||
|
||||
static int calc_iframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) {
|
||||
const RATE_CONTROL *rc = &cpi->rc;
|
||||
int target = rc->av_per_frame_bandwidth * 8;
|
||||
target = vp9_rc_clamp_iframe_target_size(cpi, target);
|
||||
return target;
|
||||
}
|
||||
|
||||
void vp9_rc_get_one_pass_vbr_params(VP9_COMP *cpi) {
|
||||
VP9_COMMON *const cm = &cpi->common;
|
||||
int target;
|
||||
if (!cpi->refresh_alt_ref_frame &&
|
||||
(cm->current_video_frame == 0 ||
|
||||
cm->frame_flags & FRAMEFLAGS_KEY ||
|
||||
cpi->rc.frames_to_key == 0 ||
|
||||
(cpi->oxcf.auto_key && test_for_kf_one_pass(cpi)))) {
|
||||
cm->frame_type = KEY_FRAME;
|
||||
cpi->rc.this_key_frame_forced = cm->current_video_frame != 0 &&
|
||||
cpi->rc.frames_to_key == 0;
|
||||
cpi->rc.frames_to_key = cpi->key_frame_frequency;
|
||||
cpi->rc.kf_boost = DEFAULT_KF_BOOST;
|
||||
cpi->rc.source_alt_ref_active = 0;
|
||||
if (cm->current_video_frame == 0) {
|
||||
cpi->rc.active_worst_quality = cpi->rc.worst_quality;
|
||||
} else {
|
||||
// Choose active worst quality twice as large as the last q.
|
||||
cpi->rc.active_worst_quality = cpi->rc.last_q[KEY_FRAME] * 2;
|
||||
if (cpi->rc.active_worst_quality > cpi->rc.worst_quality)
|
||||
cpi->rc.active_worst_quality = cpi->rc.worst_quality;
|
||||
}
|
||||
} else {
|
||||
cm->frame_type = INTER_FRAME;
|
||||
if (cm->current_video_frame == 1) {
|
||||
cpi->rc.active_worst_quality = cpi->rc.worst_quality;
|
||||
} else {
|
||||
// Choose active worst quality twice as large as the last q.
|
||||
cpi->rc.active_worst_quality = cpi->rc.last_q[INTER_FRAME] * 2;
|
||||
if (cpi->rc.active_worst_quality > cpi->rc.worst_quality)
|
||||
cpi->rc.active_worst_quality = cpi->rc.worst_quality;
|
||||
}
|
||||
}
|
||||
if (cpi->rc.frames_till_gf_update_due == 0) {
|
||||
cpi->rc.baseline_gf_interval = DEFAULT_GF_INTERVAL;
|
||||
cpi->rc.frames_till_gf_update_due = cpi->rc.baseline_gf_interval;
|
||||
// NOTE: frames_till_gf_update_due must be <= frames_to_key.
|
||||
if (cpi->rc.frames_till_gf_update_due > cpi->rc.frames_to_key)
|
||||
cpi->rc.frames_till_gf_update_due = cpi->rc.frames_to_key;
|
||||
cpi->refresh_golden_frame = 1;
|
||||
cpi->rc.source_alt_ref_pending = USE_ALTREF_FOR_ONE_PASS;
|
||||
cpi->rc.gfu_boost = 2000;
|
||||
}
|
||||
if (cm->frame_type == KEY_FRAME)
|
||||
target = calc_iframe_target_size_one_pass_vbr(cpi);
|
||||
else
|
||||
target = calc_pframe_target_size_one_pass_vbr(cpi);
|
||||
vp9_rc_set_frame_target(cpi, target);
|
||||
}
|
||||
|
||||
// Adjust active_worst_quality level based on buffer level.
|
||||
static int calc_active_worst_quality_one_pass_cbr(const VP9_COMP *cpi) {
|
||||
// Adjust active_worst_quality: If buffer is above the optimal/target level,
|
||||
// bring active_worst_quality down depending on fullness of buffer.
|
||||
// If buffer is below the optimal level, let the active_worst_quality go from
|
||||
// ambient Q (at buffer = optimal level) to worst_quality level
|
||||
// (at buffer = critical level).
|
||||
const VP9_CONFIG *oxcf = &cpi->oxcf;
|
||||
const RATE_CONTROL *rc = &cpi->rc;
|
||||
int active_worst_quality = rc->active_worst_quality;
|
||||
// Maximum limit for down adjustment, ~20%.
|
||||
int max_adjustment_down = active_worst_quality / 5;
|
||||
// Buffer level below which we push active_worst to worst_quality.
|
||||
int critical_level = oxcf->optimal_buffer_level >> 2;
|
||||
int adjustment = 0;
|
||||
int buff_lvl_step = 0;
|
||||
if (rc->buffer_level > oxcf->optimal_buffer_level) {
|
||||
// Adjust down.
|
||||
if (max_adjustment_down) {
|
||||
buff_lvl_step = (int)((oxcf->maximum_buffer_size -
|
||||
oxcf->optimal_buffer_level) / max_adjustment_down);
|
||||
if (buff_lvl_step)
|
||||
adjustment = (int)((rc->buffer_level - oxcf->optimal_buffer_level) /
|
||||
buff_lvl_step);
|
||||
active_worst_quality -= adjustment;
|
||||
}
|
||||
} else if (rc->buffer_level > critical_level) {
|
||||
// Adjust up from ambient Q.
|
||||
if (critical_level) {
|
||||
buff_lvl_step = (oxcf->optimal_buffer_level - critical_level);
|
||||
if (buff_lvl_step) {
|
||||
adjustment = (rc->worst_quality - rc->avg_frame_qindex[INTER_FRAME]) *
|
||||
(oxcf->optimal_buffer_level - rc->buffer_level) /
|
||||
buff_lvl_step;
|
||||
}
|
||||
active_worst_quality = rc->avg_frame_qindex[INTER_FRAME] + adjustment;
|
||||
}
|
||||
} else {
|
||||
// Set to worst_quality if buffer is below critical level.
|
||||
active_worst_quality = rc->worst_quality;
|
||||
}
|
||||
return active_worst_quality;
|
||||
}
|
||||
|
||||
static int calc_pframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
|
||||
const VP9_CONFIG *oxcf = &cpi->oxcf;
|
||||
const RATE_CONTROL *rc = &cpi->rc;
|
||||
int target = rc->av_per_frame_bandwidth;
|
||||
const int min_frame_target = MAX(rc->av_per_frame_bandwidth >> 4,
|
||||
FRAME_OVERHEAD_BITS);
|
||||
const int64_t diff = oxcf->optimal_buffer_level - rc->buffer_level;
|
||||
const int one_pct_bits = 1 + oxcf->optimal_buffer_level / 100;
|
||||
if (diff > 0) {
|
||||
// Lower the target bandwidth for this frame.
|
||||
const int pct_low = MIN(diff / one_pct_bits, oxcf->under_shoot_pct);
|
||||
target -= (target * pct_low) / 200;
|
||||
} else if (diff < 0) {
|
||||
// Increase the target bandwidth for this frame.
|
||||
const int pct_high = MIN(-diff / one_pct_bits, oxcf->over_shoot_pct);
|
||||
target += (target * pct_high) / 200;
|
||||
}
|
||||
if (target < min_frame_target)
|
||||
target = min_frame_target;
|
||||
return target;
|
||||
}
|
||||
|
||||
static int calc_iframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
|
||||
int target;
|
||||
const RATE_CONTROL *rc = &cpi->rc;
|
||||
if (cpi->common.current_video_frame == 0) {
|
||||
target = cpi->oxcf.starting_buffer_level / 2;
|
||||
} else {
|
||||
int initial_boost = 32;
|
||||
int kf_boost = MAX(initial_boost, (int)(2 * cpi->output_framerate - 16));
|
||||
if (rc->frames_since_key < cpi->output_framerate / 2) {
|
||||
kf_boost = (int)(kf_boost * rc->frames_since_key /
|
||||
(cpi->output_framerate / 2));
|
||||
}
|
||||
target = ((16 + kf_boost) * rc->av_per_frame_bandwidth) >> 4;
|
||||
}
|
||||
return target;
|
||||
}
|
||||
|
||||
void vp9_rc_get_one_pass_cbr_params(VP9_COMP *cpi) {
|
||||
VP9_COMMON *const cm = &cpi->common;
|
||||
int target;
|
||||
if ((cm->current_video_frame == 0 ||
|
||||
cm->frame_flags & FRAMEFLAGS_KEY ||
|
||||
cpi->rc.frames_to_key == 0 ||
|
||||
(cpi->oxcf.auto_key && test_for_kf_one_pass(cpi)))) {
|
||||
cm->frame_type = KEY_FRAME;
|
||||
cpi->rc.this_key_frame_forced = cm->current_video_frame != 0 &&
|
||||
cpi->rc.frames_to_key == 0;
|
||||
cpi->rc.frames_to_key = cpi->key_frame_frequency;
|
||||
cpi->rc.kf_boost = DEFAULT_KF_BOOST;
|
||||
cpi->rc.source_alt_ref_active = 0;
|
||||
target = calc_iframe_target_size_one_pass_cbr(cpi);
|
||||
cpi->rc.active_worst_quality = cpi->rc.worst_quality;
|
||||
} else {
|
||||
cm->frame_type = INTER_FRAME;
|
||||
target = calc_pframe_target_size_one_pass_cbr(cpi);
|
||||
cpi->rc.active_worst_quality =
|
||||
calc_active_worst_quality_one_pass_cbr(cpi);
|
||||
}
|
||||
vp9_rc_set_frame_target(cpi, target);
|
||||
// Don't use gf_update by default in CBR mode.
|
||||
cpi->rc.frames_till_gf_update_due = INT_MAX;
|
||||
cpi->rc.baseline_gf_interval = INT_MAX;
|
||||
}
|
||||
|
|
|
@ -46,7 +46,6 @@ typedef struct {
|
|||
unsigned int source_alt_ref_active;
|
||||
unsigned int is_src_frame_alt_ref;
|
||||
|
||||
int per_frame_bandwidth; // Current section per frame bandwidth target
|
||||
int av_per_frame_bandwidth; // Average frame size target for clip
|
||||
int min_frame_bandwidth; // Minimum allocation used for any frame
|
||||
int max_frame_bandwidth; // Maximum burst rate allowed for a frame.
|
||||
|
@ -89,16 +88,53 @@ void vp9_setup_inter_frame(struct VP9_COMP *cpi);
|
|||
|
||||
double vp9_convert_qindex_to_q(int qindex);
|
||||
|
||||
// Updates rate correction factors
|
||||
void vp9_rc_update_rate_correction_factors(struct VP9_COMP *cpi, int damp_var);
|
||||
|
||||
// initialize luts for minq
|
||||
void vp9_rc_init_minq_luts(void);
|
||||
|
||||
// return of 0 means drop frame
|
||||
// Changes only rc.this_frame_target and rc.sb64_rate_target
|
||||
int vp9_rc_pick_frame_size_target(struct VP9_COMP *cpi);
|
||||
// Generally at the high level, the following flow is expected
|
||||
// to be enforced for rate control:
|
||||
// First call per frame, one of:
|
||||
// vp9_rc_get_one_pass_vbr_params()
|
||||
// vp9_rc_get_one_pass_cbr_params()
|
||||
// vp9_rc_get_svc_params()
|
||||
// vp9_rc_get_first_pass_params()
|
||||
// vp9_rc_get_second_pass_params()
|
||||
// depending on the usage to set the rate control encode parameters desired.
|
||||
//
|
||||
// Then, call encode_frame_to_data_rate() to perform the
|
||||
// actual encode. This function will in turn call encode_frame()
|
||||
// one or more times, followed by one of:
|
||||
// vp9_rc_postencode_update()
|
||||
// vp9_rc_postencode_update_drop_frame()
|
||||
//
|
||||
// The majority of rate control parameters are only expected
|
||||
// to be set in the vp9_rc_get_..._params() functions and
|
||||
// updated during the vp9_rc_postencode_update...() functions.
|
||||
// The only exceptions are vp9_rc_drop_frame() and
|
||||
// vp9_rc_update_rate_correction_factors() functions.
|
||||
|
||||
// Functions to set parameters for encoding before the actual
|
||||
// encode_frame_to_data_rate() function.
|
||||
void vp9_rc_get_one_pass_vbr_params(struct VP9_COMP *cpi);
|
||||
void vp9_rc_get_one_pass_cbr_params(struct VP9_COMP *cpi);
|
||||
void vp9_rc_get_svc_params(struct VP9_COMP *cpi);
|
||||
|
||||
// Post encode update of the rate control parameters based
|
||||
// on bytes used
|
||||
void vp9_rc_postencode_update(struct VP9_COMP *cpi,
|
||||
uint64_t bytes_used);
|
||||
// Post encode update of the rate control parameters for dropped frames
|
||||
void vp9_rc_postencode_update_drop_frame(struct VP9_COMP *cpi);
|
||||
|
||||
// Updates rate correction factors
|
||||
// Changes only the rate correction factors in the rate control structure.
|
||||
void vp9_rc_update_rate_correction_factors(struct VP9_COMP *cpi, int damp_var);
|
||||
|
||||
// Decide if we should drop this frame: For 1-pass CBR.
|
||||
// Changes only the decimation count in the rate control structure
|
||||
int vp9_rc_drop_frame(struct VP9_COMP *cpi);
|
||||
|
||||
// Computes frame size bounds.
|
||||
void vp9_rc_compute_frame_size_bounds(const struct VP9_COMP *cpi,
|
||||
int this_frame_target,
|
||||
int *frame_under_shoot_limit,
|
||||
|
@ -113,26 +149,18 @@ int vp9_rc_pick_q_and_adjust_q_bounds(const struct VP9_COMP *cpi,
|
|||
int vp9_rc_regulate_q(const struct VP9_COMP *cpi, int target_bits_per_frame,
|
||||
int active_best_quality, int active_worst_quality);
|
||||
|
||||
// Post encode update of the rate control parameters based
|
||||
// on bytes used
|
||||
void vp9_rc_postencode_update(struct VP9_COMP *cpi,
|
||||
uint64_t bytes_used);
|
||||
// for dropped frames
|
||||
void vp9_rc_postencode_update_drop_frame(struct VP9_COMP *cpi);
|
||||
|
||||
// estimates bits per mb for a given qindex and correction factor
|
||||
// Estimates bits per mb for a given qindex and correction factor.
|
||||
int vp9_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex,
|
||||
double correction_factor);
|
||||
|
||||
// Post encode update of the rate control parameters for 2-pass
|
||||
void vp9_twopass_postencode_update(struct VP9_COMP *cpi,
|
||||
uint64_t bytes_used);
|
||||
|
||||
// Decide if we should drop this frame: For 1-pass CBR.
|
||||
int vp9_drop_frame(struct VP9_COMP *cpi);
|
||||
|
||||
// Update the buffer level.
|
||||
void vp9_update_buffer_level(struct VP9_COMP *cpi, int encoded_frame_size);
|
||||
// Clamping utilities for bitrate targets for iframes and pframes.
|
||||
int vp9_rc_clamp_iframe_target_size(const struct VP9_COMP *const cpi,
|
||||
int target);
|
||||
int vp9_rc_clamp_pframe_target_size(const struct VP9_COMP *const cpi,
|
||||
int target);
|
||||
// Utility to set frame_target into the RATE_CONTROL structure
|
||||
// This function is called only from the vp9_rc_get_..._params() functions.
|
||||
void vp9_rc_set_frame_target(struct VP9_COMP *cpi, int target);
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
|
|
Загрузка…
Ссылка в новой задаче