One-pass rate control cleanups/fixes/refactoring

Inlcudes a number cleanups:
1. Moves the one-pass pre-encode parameter setting functions
to vp9_ratectrl.c
2. Deprecates per_frame_bandwidth in RATE_CONTROL structure
3. Removes target_bandwidth in cpi structure since it is not used.
4. Various renaming of functions

There is no bit-stream change in 2-pass, one-pass cbr and one-pass
vbr modes.

Change-Id: Ifd9916bf4d485b7d04c5f52044ffe6703254ccbd
This commit is contained in:
Deb Mukherjee 2014-02-04 11:42:50 -08:00
Родитель 303c17ea29
Коммит 40e63d4b51
6 изменённых файлов: 326 добавлений и 333 удалений

Просмотреть файл

@ -49,8 +49,9 @@
#define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x) - 0.000001 : (x) + 0.000001)
#define MIN_BOOST 300
#define KEY_FRAME_BOOST 2000
#define MIN_KF_BOOST 300
#define DISABLE_RC_LONG_TERM_MEM 0
static void swap_yv12(YV12_BUFFER_CONFIG *a, YV12_BUFFER_CONFIG *b) {
YV12_BUFFER_CONFIG temp = *a;
@ -1725,7 +1726,7 @@ static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
(!rc->source_alt_ref_pending &&
(cpi->common.frame_type != KEY_FRAME))) {
// Per frame bit target for this frame
rc->per_frame_bandwidth = gf_bits;
vp9_rc_set_frame_target(cpi, gf_bits);
}
}
@ -1827,12 +1828,7 @@ static void assign_std_frame_bits(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
cpi->twopass.gf_group_bits = 0;
// Per frame bit target for this frame.
cpi->rc.per_frame_bandwidth = target_frame_size;
}
static int test_for_kf_one_pass(VP9_COMP *cpi) {
// Placeholder function for auto key frame
return 0;
vp9_rc_set_frame_target(cpi, target_frame_size);
}
static int test_candidate_kf(VP9_COMP *cpi,
@ -2170,8 +2166,8 @@ static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
if (kf_boost < (rc->frames_to_key * 3))
kf_boost = (rc->frames_to_key * 3);
if (kf_boost < MIN_BOOST)
kf_boost = MIN_BOOST;
if (kf_boost < MIN_KF_BOOST)
kf_boost = MIN_KF_BOOST;
// Make a note of baseline boost and the zero motion
// accumulator value for use elsewhere.
@ -2235,13 +2231,9 @@ static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
twopass->kf_bits = alt_kf_bits;
}
}
twopass->kf_group_bits -= twopass->kf_bits;
// Peer frame bit target for this frame
rc->per_frame_bandwidth = twopass->kf_bits;
// Convert to a per second bitrate
cpi->target_bandwidth = (int)(twopass->kf_bits * cpi->output_framerate);
// Per frame bit target for this frame.
vp9_rc_set_frame_target(cpi, twopass->kf_bits);
}
// Note the total error score of the kf group minus the key frame itself
@ -2253,176 +2245,7 @@ static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
twopass->modified_error_left -= kf_group_err;
}
void vp9_get_svc_params(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
if ((cm->current_video_frame == 0) ||
(cm->frame_flags & FRAMEFLAGS_KEY) ||
(cpi->oxcf.auto_key && (cpi->rc.frames_since_key %
cpi->key_frame_frequency == 0))) {
cm->frame_type = KEY_FRAME;
cpi->rc.source_alt_ref_active = 0;
} else {
cm->frame_type = INTER_FRAME;
}
cpi->rc.frames_till_gf_update_due = INT_MAX;
cpi->rc.baseline_gf_interval = INT_MAX;
}
// Use this macro to turn on/off use of alt-refs in one-pass mode.
#define USE_ALTREF_FOR_ONE_PASS 1
void vp9_get_one_pass_params(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
if (!cpi->refresh_alt_ref_frame &&
(cm->current_video_frame == 0 ||
cm->frame_flags & FRAMEFLAGS_KEY ||
cpi->rc.frames_to_key == 0 ||
(cpi->oxcf.auto_key && test_for_kf_one_pass(cpi)))) {
cm->frame_type = KEY_FRAME;
cpi->rc.this_key_frame_forced = cm->current_video_frame != 0 &&
cpi->rc.frames_to_key == 0;
cpi->rc.frames_to_key = cpi->key_frame_frequency;
cpi->rc.kf_boost = KEY_FRAME_BOOST;
cpi->rc.source_alt_ref_active = 0;
cpi->rc.per_frame_bandwidth = cpi->rc.av_per_frame_bandwidth * 8;
if (cm->current_video_frame == 0) {
cpi->rc.active_worst_quality = cpi->rc.worst_quality;
} else {
// Choose active worst quality twice as large as the last q.
cpi->rc.active_worst_quality = cpi->rc.last_q[KEY_FRAME] * 2;
if (cpi->rc.active_worst_quality > cpi->rc.worst_quality)
cpi->rc.active_worst_quality = cpi->rc.worst_quality;
}
} else {
cm->frame_type = INTER_FRAME;
cpi->rc.per_frame_bandwidth = cpi->rc.av_per_frame_bandwidth;
if (cm->current_video_frame == 1) {
cpi->rc.active_worst_quality = cpi->rc.worst_quality;
} else {
// Choose active worst quality twice as large as the last q.
cpi->rc.active_worst_quality = cpi->rc.last_q[INTER_FRAME] * 2;
if (cpi->rc.active_worst_quality > cpi->rc.worst_quality)
cpi->rc.active_worst_quality = cpi->rc.worst_quality;
}
}
if (cpi->rc.frames_till_gf_update_due == 0) {
cpi->rc.baseline_gf_interval = DEFAULT_GF_INTERVAL;
cpi->rc.frames_till_gf_update_due = cpi->rc.baseline_gf_interval;
// NOTE: frames_till_gf_update_due must be <= frames_to_key.
if (cpi->rc.frames_till_gf_update_due > cpi->rc.frames_to_key)
cpi->rc.frames_till_gf_update_due = cpi->rc.frames_to_key;
cpi->refresh_golden_frame = 1;
cpi->rc.source_alt_ref_pending = USE_ALTREF_FOR_ONE_PASS;
cpi->rc.gfu_boost = 2000;
}
}
// Adjust active_worst_quality level based on buffer level.
static int calc_active_worst_quality_from_buffer_level(const VP9_COMP *cpi) {
// Adjust active_worst_quality: If buffer is above the optimal/target level,
// bring active_worst_quality down depending on fullness of buffer.
// If buffer is below the optimal level, let the active_worst_quality go from
// ambient Q (at buffer = optimal level) to worst_quality level
// (at buffer = critical level).
const VP9_CONFIG *oxcf = &cpi->oxcf;
const RATE_CONTROL *rc = &cpi->rc;
int active_worst_quality = rc->active_worst_quality;
// Maximum limit for down adjustment, ~20%.
int max_adjustment_down = active_worst_quality / 5;
// Buffer level below which we push active_worst to worst_quality.
int critical_level = oxcf->optimal_buffer_level >> 2;
int adjustment = 0;
int buff_lvl_step = 0;
if (rc->buffer_level > oxcf->optimal_buffer_level) {
// Adjust down.
if (max_adjustment_down) {
buff_lvl_step = (int)((oxcf->maximum_buffer_size -
oxcf->optimal_buffer_level) / max_adjustment_down);
if (buff_lvl_step)
adjustment = (int)((rc->buffer_level - oxcf->optimal_buffer_level) /
buff_lvl_step);
active_worst_quality -= adjustment;
}
} else if (rc->buffer_level > critical_level) {
// Adjust up from ambient Q.
if (critical_level) {
buff_lvl_step = (oxcf->optimal_buffer_level - critical_level);
if (buff_lvl_step) {
adjustment = (rc->worst_quality - rc->avg_frame_qindex[INTER_FRAME]) *
(oxcf->optimal_buffer_level - rc->buffer_level) /
buff_lvl_step;
}
active_worst_quality = rc->avg_frame_qindex[INTER_FRAME] + adjustment;
}
} else {
// Set to worst_quality if buffer is below critical level.
active_worst_quality = rc->worst_quality;
}
return active_worst_quality;
}
static int calc_pframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
const VP9_CONFIG *oxcf = &cpi->oxcf;
const RATE_CONTROL *rc = &cpi->rc;
int target = rc->av_per_frame_bandwidth;
const int64_t diff = oxcf->optimal_buffer_level - rc->buffer_level;
const int one_pct_bits = 1 + oxcf->optimal_buffer_level / 100;
if (diff > 0) {
// Lower the target bandwidth for this frame.
const int pct_low = MIN(diff / one_pct_bits, oxcf->under_shoot_pct);
target -= (target * pct_low) / 200;
} else if (diff < 0) {
// Increase the target bandwidth for this frame.
const int pct_high = MIN(-diff / one_pct_bits, oxcf->over_shoot_pct);
target += (target * pct_high) / 200;
}
return target;
}
static int calc_iframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
int per_frame_bandwidth;
const RATE_CONTROL *rc = &cpi->rc;
if (cpi->common.current_video_frame == 0) {
per_frame_bandwidth = cpi->oxcf.starting_buffer_level / 2;
} else {
int initial_boost = 32;
int kf_boost = MAX(initial_boost, (int)(2 * cpi->output_framerate - 16));
if (rc->frames_since_key < cpi->output_framerate / 2) {
kf_boost = (int)(kf_boost * rc->frames_since_key /
(cpi->output_framerate / 2));
}
per_frame_bandwidth =
((16 + kf_boost) * rc->av_per_frame_bandwidth) >> 4;
}
return per_frame_bandwidth;
}
void vp9_get_one_pass_cbr_params(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
if ((cm->current_video_frame == 0 ||
cm->frame_flags & FRAMEFLAGS_KEY ||
cpi->rc.frames_to_key == 0 ||
(cpi->oxcf.auto_key && test_for_kf_one_pass(cpi)))) {
cm->frame_type = KEY_FRAME;
cpi->rc.this_key_frame_forced = cm->current_video_frame != 0 &&
cpi->rc.frames_to_key == 0;
cpi->rc.frames_to_key = cpi->key_frame_frequency;
cpi->rc.kf_boost = KEY_FRAME_BOOST;
cpi->rc.source_alt_ref_active = 0;
cpi->rc.per_frame_bandwidth = calc_iframe_target_size_one_pass_cbr(cpi);
cpi->rc.active_worst_quality = cpi->rc.worst_quality;
} else {
cm->frame_type = INTER_FRAME;
cpi->rc.per_frame_bandwidth = calc_pframe_target_size_one_pass_cbr(cpi);
cpi->rc.active_worst_quality =
calc_active_worst_quality_from_buffer_level(cpi);
}
// Don't use gf_update by default in CBR mode.
cpi->rc.frames_till_gf_update_due = INT_MAX;
cpi->rc.baseline_gf_interval = INT_MAX;
}
void vp9_get_first_pass_params(VP9_COMP *cpi) {
void vp9_rc_get_first_pass_params(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
if (!cpi->refresh_alt_ref_frame &&
(cm->current_video_frame == 0 ||
@ -2435,7 +2258,7 @@ void vp9_get_first_pass_params(VP9_COMP *cpi) {
cpi->rc.frames_to_key = INT_MAX;
}
void vp9_get_second_pass_params(VP9_COMP *cpi) {
void vp9_rc_get_second_pass_params(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
struct twopass_rc *const twopass = &cpi->twopass;
@ -2446,13 +2269,14 @@ void vp9_get_second_pass_params(VP9_COMP *cpi) {
double this_frame_intra_error;
double this_frame_coded_error;
int target;
if (!twopass->stats_in)
return;
if (cpi->refresh_alt_ref_frame) {
cm->frame_type = INTER_FRAME;
rc->per_frame_bandwidth = twopass->gf_bits;
vp9_rc_set_frame_target(cpi, twopass->gf_bits);
return;
}
@ -2463,7 +2287,7 @@ void vp9_get_second_pass_params(VP9_COMP *cpi) {
} else if (cm->current_video_frame == 0) {
// Special case code for first frame.
const int section_target_bandwidth = (int)(twopass->bits_left /
frames_left);
frames_left);
const int tmp_q = estimate_max_q(cpi, &twopass->total_left_stats,
section_target_bandwidth);
@ -2539,11 +2363,11 @@ void vp9_get_second_pass_params(VP9_COMP *cpi) {
}
}
// Set nominal per second bandwidth for this frame
cpi->target_bandwidth = (int)(rc->per_frame_bandwidth *
cpi->output_framerate);
if (cpi->target_bandwidth < 0)
cpi->target_bandwidth = 0;
if (cpi->common.frame_type == KEY_FRAME)
target = vp9_rc_clamp_iframe_target_size(cpi, rc->this_frame_target);
else
target = vp9_rc_clamp_pframe_target_size(cpi, rc->this_frame_target);
vp9_rc_set_frame_target(cpi, target);
// Update the total stats remaining structure
subtract_stats(&twopass->total_left_stats, &this_frame);
@ -2554,5 +2378,18 @@ void vp9_twopass_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) {
cpi->twopass.bits_left -= cpi->rc.this_frame_target;
#else
cpi->twopass.bits_left -= 8 * bytes_used;
// Update bits left to the kf and gf groups to account for overshoot or
// undershoot on these frames
if (cm->frame_type == KEY_FRAME) {
cpi->twopass.kf_group_bits += cpi->rc.this_frame_target -
cpi->rc.projected_frame_size;
cpi->twopass.kf_group_bits = MAX(cpi->twopass.kf_group_bits, 0);
} else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) {
cpi->twopass.gf_group_bits += cpi->rc.this_frame_target -
cpi->rc.projected_frame_size;
cpi->twopass.gf_group_bits = MAX(cpi->twopass.gf_group_bits, 0);
}
#endif
}

Просмотреть файл

@ -17,18 +17,17 @@ extern "C" {
#endif
void vp9_init_first_pass(VP9_COMP *cpi);
void vp9_rc_get_first_pass_params(VP9_COMP *cpi);
void vp9_first_pass(VP9_COMP *cpi);
void vp9_end_first_pass(VP9_COMP *cpi);
void vp9_init_second_pass(VP9_COMP *cpi);
void vp9_get_second_pass_params(VP9_COMP *cpi);
void vp9_rc_get_second_pass_params(VP9_COMP *cpi);
void vp9_end_second_pass(VP9_COMP *cpi);
void vp9_get_first_pass_params(VP9_COMP *cpi);
void vp9_get_one_pass_params(VP9_COMP *cpi);
void vp9_get_one_pass_cbr_params(VP9_COMP *cpi);
void vp9_get_svc_params(VP9_COMP *cpi);
// Post encode update of the rate control parameters for 2-pass
void vp9_twopass_postencode_update(struct VP9_COMP *cpi,
uint64_t bytes_used);
#ifdef __cplusplus
} // extern "C"
#endif

Просмотреть файл

@ -1104,8 +1104,6 @@ void vp9_new_framerate(VP9_COMP *cpi, double framerate) {
cpi->oxcf.framerate = framerate;
cpi->output_framerate = cpi->oxcf.framerate;
cpi->rc.per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth
/ cpi->output_framerate);
cpi->rc.av_per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth
/ cpi->output_framerate);
cpi->rc.min_frame_bandwidth = (int)(cpi->rc.av_per_frame_bandwidth *
@ -1344,8 +1342,6 @@ void vp9_change_config(VP9_PTR ptr, VP9_CONFIG *oxcf) {
cm->interp_filter = DEFAULT_INTERP_FILTER;
cpi->target_bandwidth = cpi->oxcf.target_bandwidth;
cm->display_width = cpi->oxcf.width;
cm->display_height = cpi->oxcf.height;
@ -3025,10 +3021,7 @@ static void encode_frame_to_data_rate(VP9_COMP *cpi,
if (cpi->pass == 0 &&
cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER &&
cm->frame_type != KEY_FRAME) {
if (vp9_drop_frame(cpi)) {
// Update buffer level with zero size, update frame counters, and return.
vp9_update_buffer_level(cpi, 0);
cm->last_frame_type = cm->frame_type;
if (vp9_rc_drop_frame(cpi)) {
vp9_rc_postencode_update_drop_frame(cpi);
cm->current_video_frame++;
return;
@ -3068,9 +3061,6 @@ static void encode_frame_to_data_rate(VP9_COMP *cpi,
vp9_write_yuv_frame(cpi->Source);
#endif
// Decide how big to make the frame.
vp9_rc_pick_frame_size_target(cpi);
// Decide frame size bounds
vp9_rc_compute_frame_size_bounds(cpi, cpi->rc.this_frame_target,
&frame_under_shoot_limit,
@ -3171,10 +3161,6 @@ static void encode_frame_to_data_rate(VP9_COMP *cpi,
vp9_update_mode_context_stats(cpi);
#endif
/* Move storing frame_type out of the above loop since it is also
* needed in motion search besides loopfilter */
cm->last_frame_type = cm->frame_type;
#if 0
output_frame_level_debug_stats(cpi);
#endif
@ -3262,16 +3248,16 @@ static void encode_frame_to_data_rate(VP9_COMP *cpi,
static void SvcEncode(VP9_COMP *cpi, size_t *size, uint8_t *dest,
unsigned int *frame_flags) {
vp9_get_svc_params(cpi);
vp9_rc_get_svc_params(cpi);
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
}
static void Pass0Encode(VP9_COMP *cpi, size_t *size, uint8_t *dest,
unsigned int *frame_flags) {
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
vp9_get_one_pass_cbr_params(cpi);
vp9_rc_get_one_pass_cbr_params(cpi);
} else {
vp9_get_one_pass_params(cpi);
vp9_rc_get_one_pass_vbr_params(cpi);
}
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
}
@ -3282,7 +3268,7 @@ static void Pass1Encode(VP9_COMP *cpi, size_t *size, uint8_t *dest,
(void) dest;
(void) frame_flags;
vp9_get_first_pass_params(cpi);
vp9_rc_get_first_pass_params(cpi);
vp9_set_quantizer(cpi, find_fp_qindex());
vp9_first_pass(cpi);
}
@ -3291,7 +3277,7 @@ static void Pass2Encode(VP9_COMP *cpi, size_t *size,
uint8_t *dest, unsigned int *frame_flags) {
cpi->enable_encode_breakout = 1;
vp9_get_second_pass_params(cpi);
vp9_rc_get_second_pass_params(cpi);
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
vp9_twopass_postencode_update(cpi, *size);

Просмотреть файл

@ -36,7 +36,6 @@
extern "C" {
#endif
#define DISABLE_RC_LONG_TERM_MEM 0
// #define MODE_TEST_HIT_STATS
// #define SPEEDSTATS 1
@ -47,6 +46,7 @@ extern "C" {
#define MIN_GF_INTERVAL 4
#endif
#define DEFAULT_GF_INTERVAL 7
#define DEFAULT_KF_BOOST 2000
#define KEY_FRAME_CONTEXT 5
@ -530,7 +530,6 @@ typedef struct VP9_COMP {
vp9_coeff_probs_model frame_coef_probs[TX_SIZES][PLANE_TYPES];
vp9_coeff_stats frame_branch_ct[TX_SIZES][PLANE_TYPES];
int64_t target_bandwidth;
struct vpx_codec_pkt_list *output_pkt_list;
MBGRAPH_FRAME_STATS mbgraph_stats[MAX_LAG_BUFFERS];

Просмотреть файл

@ -209,24 +209,40 @@ static int estimate_bits_at_q(int frame_kind, int q, int mbs,
: (bpm * mbs) >> BPER_MB_NORMBITS;
}
int vp9_rc_clamp_pframe_target_size(const VP9_COMP *const cpi, int target) {
const RATE_CONTROL *rc = &cpi->rc;
const int min_frame_target = MAX(rc->min_frame_bandwidth,
rc->av_per_frame_bandwidth >> 5);
if (target < min_frame_target)
target = min_frame_target;
if (cpi->refresh_golden_frame && rc->source_alt_ref_active) {
// If there is an active ARF at this location use the minimum
// bits on this frame even if it is a constructed arf.
// The active maximum quantizer insures that an appropriate
// number of bits will be spent if needed for constructed ARFs.
target = 0;
}
// Clip the frame target to the maximum allowed value.
if (target > rc->max_frame_bandwidth)
target = rc->max_frame_bandwidth;
return target;
}
static void calc_iframe_target_size(VP9_COMP *cpi) {
int vp9_rc_clamp_iframe_target_size(const VP9_COMP *const cpi, int target) {
const RATE_CONTROL *rc = &cpi->rc;
const VP9_CONFIG *oxcf = &cpi->oxcf;
RATE_CONTROL *const rc = &cpi->rc;
int target = rc->per_frame_bandwidth;
vp9_clear_system_state(); // __asm emms;
if (oxcf->rc_max_intra_bitrate_pct) {
const int max_rate = rc->per_frame_bandwidth *
const int max_rate = rc->av_per_frame_bandwidth *
oxcf->rc_max_intra_bitrate_pct / 100;
target = MIN(target, max_rate);
}
rc->this_frame_target = target;
if (target > rc->max_frame_bandwidth)
target = rc->max_frame_bandwidth;
return target;
}
// Update the buffer level: leaky bucket model.
void vp9_update_buffer_level(VP9_COMP *cpi, int encoded_frame_size) {
static void update_buffer_level(VP9_COMP *cpi, int encoded_frame_size) {
const VP9_COMMON *const cm = &cpi->common;
const VP9_CONFIG *oxcf = &cpi->oxcf;
RATE_CONTROL *const rc = &cpi->rc;
@ -242,7 +258,7 @@ void vp9_update_buffer_level(VP9_COMP *cpi, int encoded_frame_size) {
rc->buffer_level = MIN(rc->bits_off_target, oxcf->maximum_buffer_size);
}
int vp9_drop_frame(VP9_COMP *cpi) {
int vp9_rc_drop_frame(VP9_COMP *cpi) {
const VP9_CONFIG *oxcf = &cpi->oxcf;
RATE_CONTROL *const rc = &cpi->rc;
@ -281,53 +297,6 @@ int vp9_drop_frame(VP9_COMP *cpi) {
}
}
static void calc_pframe_target_size(VP9_COMP *const cpi) {
RATE_CONTROL *const rc = &cpi->rc;
const VP9_CONFIG *const oxcf = &cpi->oxcf;
int min_frame_target;
rc->this_frame_target = rc->per_frame_bandwidth;
if (cpi->pass == 0 && oxcf->end_usage == USAGE_STREAM_FROM_SERVER) {
// Need to decide how low min_frame_target should be for 1-pass CBR.
// For now, use: cpi->rc.av_per_frame_bandwidth / 16:
min_frame_target = MAX(rc->av_per_frame_bandwidth >> 4,
FRAME_OVERHEAD_BITS);
if (rc->this_frame_target < min_frame_target)
rc->this_frame_target = min_frame_target;
return;
}
// Check that the total sum of adjustments is not above the maximum allowed.
// That is, having allowed for the KF and GF penalties, we have not pushed
// the current inter-frame target too low. If the adjustment we apply here is
// not capable of recovering all the extra bits we have spent in the KF or GF,
// then the remainder will have to be recovered over a longer time span via
// other buffer / rate control mechanisms.
min_frame_target = MAX(rc->min_frame_bandwidth,
rc->av_per_frame_bandwidth >> 5);
if (rc->this_frame_target < min_frame_target)
rc->this_frame_target = min_frame_target;
// Adjust target frame size for Golden Frames:
if (cpi->refresh_golden_frame) {
// If we are using alternate ref instead of gf then do not apply the boost
// It will instead be applied to the altref update
// Jims modified boost
if (!rc->source_alt_ref_active) {
// The spend on the GF is defined in the two pass code
// for two pass encodes
rc->this_frame_target = rc->per_frame_bandwidth;
} else {
// If there is an active ARF at this location use the minimum
// bits on this frame even if it is a constructed arf.
// The active maximum quantizer insures that an appropriate
// number of bits will be spent if needed for constructed ARFs.
rc->this_frame_target = 0;
}
}
}
static double get_rate_correction_factor(const VP9_COMP *cpi) {
if (cpi->common.frame_type == KEY_FRAME) {
return cpi->rc.key_frame_rate_correction_factor;
@ -899,24 +868,14 @@ void vp9_rc_compute_frame_size_bounds(const VP9_COMP *cpi,
}
}
// return of 0 means drop frame
int vp9_rc_pick_frame_size_target(VP9_COMP *cpi) {
void vp9_rc_set_frame_target(VP9_COMP *cpi, int target) {
const VP9_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
if (cm->frame_type == KEY_FRAME)
calc_iframe_target_size(cpi);
else
calc_pframe_target_size(cpi);
// Clip the frame target to the maximum allowed value.
if (rc->this_frame_target > rc->max_frame_bandwidth)
rc->this_frame_target = rc->max_frame_bandwidth;
rc->this_frame_target = target;
// Target rate per SB64 (including partial SB64s.
rc->sb64_target_rate = ((int64_t)rc->this_frame_target * 64 * 64) /
(cm->width * cm->height);
return 1;
}
static void update_alt_ref_frame_stats(VP9_COMP *cpi) {
@ -960,6 +919,8 @@ static void update_golden_frame_stats(VP9_COMP *cpi) {
void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) {
VP9_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
cm->last_frame_type = cm->frame_type;
// Update rate control heuristics
rc->projected_frame_size = (bytes_used << 3);
@ -1002,7 +963,7 @@ void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) {
rc->last_boosted_qindex = cm->base_qindex;
}
vp9_update_buffer_level(cpi, rc->projected_frame_size);
update_buffer_level(cpi, rc->projected_frame_size);
// Rolling monitors of whether we are over or underspending used to help
// regulate min and Max Q in two pass.
@ -1024,22 +985,6 @@ void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) {
rc->total_target_vs_actual += (rc->this_frame_target -
rc->projected_frame_size);
#ifndef DISABLE_RC_LONG_TERM_MEM
// Update bits left to the kf and gf groups to account for overshoot or
// undershoot on these frames
if (cm->frame_type == KEY_FRAME) {
cpi->twopass.kf_group_bits += cpi->rc.this_frame_target -
cpi->rc.projected_frame_size;
cpi->twopass.kf_group_bits = MAX(cpi->twopass.kf_group_bits, 0);
} else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) {
cpi->twopass.gf_group_bits += cpi->rc.this_frame_target -
cpi->rc.projected_frame_size;
cpi->twopass.gf_group_bits = MAX(cpi->twopass.gf_group_bits, 0);
}
#endif
if (cpi->oxcf.play_alternate && cpi->refresh_alt_ref_frame &&
(cm->frame_type != KEY_FRAME))
// Update the alternate reference frame stats as appropriate.
@ -1057,6 +1002,205 @@ void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) {
}
void vp9_rc_postencode_update_drop_frame(VP9_COMP *cpi) {
// Update buffer level with zero size, update frame counters, and return.
update_buffer_level(cpi, 0);
cpi->common.last_frame_type = cpi->common.frame_type;
cpi->rc.frames_since_key++;
cpi->rc.frames_to_key--;
}
void vp9_rc_get_svc_params(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
if ((cm->current_video_frame == 0) ||
(cm->frame_flags & FRAMEFLAGS_KEY) ||
(cpi->oxcf.auto_key && (cpi->rc.frames_since_key %
cpi->key_frame_frequency == 0))) {
cm->frame_type = KEY_FRAME;
cpi->rc.source_alt_ref_active = 0;
} else {
cm->frame_type = INTER_FRAME;
}
cpi->rc.frames_till_gf_update_due = INT_MAX;
cpi->rc.baseline_gf_interval = INT_MAX;
}
static int test_for_kf_one_pass(VP9_COMP *cpi) {
// Placeholder function for auto key frame
return 0;
}
// Use this macro to turn on/off use of alt-refs in one-pass mode.
#define USE_ALTREF_FOR_ONE_PASS 1
static int calc_pframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) {
const RATE_CONTROL *rc = &cpi->rc;
int target = rc->av_per_frame_bandwidth;
target = vp9_rc_clamp_pframe_target_size(cpi, target);
return target;
}
static int calc_iframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) {
const RATE_CONTROL *rc = &cpi->rc;
int target = rc->av_per_frame_bandwidth * 8;
target = vp9_rc_clamp_iframe_target_size(cpi, target);
return target;
}
void vp9_rc_get_one_pass_vbr_params(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
int target;
if (!cpi->refresh_alt_ref_frame &&
(cm->current_video_frame == 0 ||
cm->frame_flags & FRAMEFLAGS_KEY ||
cpi->rc.frames_to_key == 0 ||
(cpi->oxcf.auto_key && test_for_kf_one_pass(cpi)))) {
cm->frame_type = KEY_FRAME;
cpi->rc.this_key_frame_forced = cm->current_video_frame != 0 &&
cpi->rc.frames_to_key == 0;
cpi->rc.frames_to_key = cpi->key_frame_frequency;
cpi->rc.kf_boost = DEFAULT_KF_BOOST;
cpi->rc.source_alt_ref_active = 0;
if (cm->current_video_frame == 0) {
cpi->rc.active_worst_quality = cpi->rc.worst_quality;
} else {
// Choose active worst quality twice as large as the last q.
cpi->rc.active_worst_quality = cpi->rc.last_q[KEY_FRAME] * 2;
if (cpi->rc.active_worst_quality > cpi->rc.worst_quality)
cpi->rc.active_worst_quality = cpi->rc.worst_quality;
}
} else {
cm->frame_type = INTER_FRAME;
if (cm->current_video_frame == 1) {
cpi->rc.active_worst_quality = cpi->rc.worst_quality;
} else {
// Choose active worst quality twice as large as the last q.
cpi->rc.active_worst_quality = cpi->rc.last_q[INTER_FRAME] * 2;
if (cpi->rc.active_worst_quality > cpi->rc.worst_quality)
cpi->rc.active_worst_quality = cpi->rc.worst_quality;
}
}
if (cpi->rc.frames_till_gf_update_due == 0) {
cpi->rc.baseline_gf_interval = DEFAULT_GF_INTERVAL;
cpi->rc.frames_till_gf_update_due = cpi->rc.baseline_gf_interval;
// NOTE: frames_till_gf_update_due must be <= frames_to_key.
if (cpi->rc.frames_till_gf_update_due > cpi->rc.frames_to_key)
cpi->rc.frames_till_gf_update_due = cpi->rc.frames_to_key;
cpi->refresh_golden_frame = 1;
cpi->rc.source_alt_ref_pending = USE_ALTREF_FOR_ONE_PASS;
cpi->rc.gfu_boost = 2000;
}
if (cm->frame_type == KEY_FRAME)
target = calc_iframe_target_size_one_pass_vbr(cpi);
else
target = calc_pframe_target_size_one_pass_vbr(cpi);
vp9_rc_set_frame_target(cpi, target);
}
// Adjust active_worst_quality level based on buffer level.
static int calc_active_worst_quality_one_pass_cbr(const VP9_COMP *cpi) {
// Adjust active_worst_quality: If buffer is above the optimal/target level,
// bring active_worst_quality down depending on fullness of buffer.
// If buffer is below the optimal level, let the active_worst_quality go from
// ambient Q (at buffer = optimal level) to worst_quality level
// (at buffer = critical level).
const VP9_CONFIG *oxcf = &cpi->oxcf;
const RATE_CONTROL *rc = &cpi->rc;
int active_worst_quality = rc->active_worst_quality;
// Maximum limit for down adjustment, ~20%.
int max_adjustment_down = active_worst_quality / 5;
// Buffer level below which we push active_worst to worst_quality.
int critical_level = oxcf->optimal_buffer_level >> 2;
int adjustment = 0;
int buff_lvl_step = 0;
if (rc->buffer_level > oxcf->optimal_buffer_level) {
// Adjust down.
if (max_adjustment_down) {
buff_lvl_step = (int)((oxcf->maximum_buffer_size -
oxcf->optimal_buffer_level) / max_adjustment_down);
if (buff_lvl_step)
adjustment = (int)((rc->buffer_level - oxcf->optimal_buffer_level) /
buff_lvl_step);
active_worst_quality -= adjustment;
}
} else if (rc->buffer_level > critical_level) {
// Adjust up from ambient Q.
if (critical_level) {
buff_lvl_step = (oxcf->optimal_buffer_level - critical_level);
if (buff_lvl_step) {
adjustment = (rc->worst_quality - rc->avg_frame_qindex[INTER_FRAME]) *
(oxcf->optimal_buffer_level - rc->buffer_level) /
buff_lvl_step;
}
active_worst_quality = rc->avg_frame_qindex[INTER_FRAME] + adjustment;
}
} else {
// Set to worst_quality if buffer is below critical level.
active_worst_quality = rc->worst_quality;
}
return active_worst_quality;
}
static int calc_pframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
const VP9_CONFIG *oxcf = &cpi->oxcf;
const RATE_CONTROL *rc = &cpi->rc;
int target = rc->av_per_frame_bandwidth;
const int min_frame_target = MAX(rc->av_per_frame_bandwidth >> 4,
FRAME_OVERHEAD_BITS);
const int64_t diff = oxcf->optimal_buffer_level - rc->buffer_level;
const int one_pct_bits = 1 + oxcf->optimal_buffer_level / 100;
if (diff > 0) {
// Lower the target bandwidth for this frame.
const int pct_low = MIN(diff / one_pct_bits, oxcf->under_shoot_pct);
target -= (target * pct_low) / 200;
} else if (diff < 0) {
// Increase the target bandwidth for this frame.
const int pct_high = MIN(-diff / one_pct_bits, oxcf->over_shoot_pct);
target += (target * pct_high) / 200;
}
if (target < min_frame_target)
target = min_frame_target;
return target;
}
static int calc_iframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
int target;
const RATE_CONTROL *rc = &cpi->rc;
if (cpi->common.current_video_frame == 0) {
target = cpi->oxcf.starting_buffer_level / 2;
} else {
int initial_boost = 32;
int kf_boost = MAX(initial_boost, (int)(2 * cpi->output_framerate - 16));
if (rc->frames_since_key < cpi->output_framerate / 2) {
kf_boost = (int)(kf_boost * rc->frames_since_key /
(cpi->output_framerate / 2));
}
target = ((16 + kf_boost) * rc->av_per_frame_bandwidth) >> 4;
}
return target;
}
void vp9_rc_get_one_pass_cbr_params(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
int target;
if ((cm->current_video_frame == 0 ||
cm->frame_flags & FRAMEFLAGS_KEY ||
cpi->rc.frames_to_key == 0 ||
(cpi->oxcf.auto_key && test_for_kf_one_pass(cpi)))) {
cm->frame_type = KEY_FRAME;
cpi->rc.this_key_frame_forced = cm->current_video_frame != 0 &&
cpi->rc.frames_to_key == 0;
cpi->rc.frames_to_key = cpi->key_frame_frequency;
cpi->rc.kf_boost = DEFAULT_KF_BOOST;
cpi->rc.source_alt_ref_active = 0;
target = calc_iframe_target_size_one_pass_cbr(cpi);
cpi->rc.active_worst_quality = cpi->rc.worst_quality;
} else {
cm->frame_type = INTER_FRAME;
target = calc_pframe_target_size_one_pass_cbr(cpi);
cpi->rc.active_worst_quality =
calc_active_worst_quality_one_pass_cbr(cpi);
}
vp9_rc_set_frame_target(cpi, target);
// Don't use gf_update by default in CBR mode.
cpi->rc.frames_till_gf_update_due = INT_MAX;
cpi->rc.baseline_gf_interval = INT_MAX;
}

Просмотреть файл

@ -46,7 +46,6 @@ typedef struct {
unsigned int source_alt_ref_active;
unsigned int is_src_frame_alt_ref;
int per_frame_bandwidth; // Current section per frame bandwidth target
int av_per_frame_bandwidth; // Average frame size target for clip
int min_frame_bandwidth; // Minimum allocation used for any frame
int max_frame_bandwidth; // Maximum burst rate allowed for a frame.
@ -89,16 +88,53 @@ void vp9_setup_inter_frame(struct VP9_COMP *cpi);
double vp9_convert_qindex_to_q(int qindex);
// Updates rate correction factors
void vp9_rc_update_rate_correction_factors(struct VP9_COMP *cpi, int damp_var);
// initialize luts for minq
void vp9_rc_init_minq_luts(void);
// return of 0 means drop frame
// Changes only rc.this_frame_target and rc.sb64_rate_target
int vp9_rc_pick_frame_size_target(struct VP9_COMP *cpi);
// Generally at the high level, the following flow is expected
// to be enforced for rate control:
// First call per frame, one of:
// vp9_rc_get_one_pass_vbr_params()
// vp9_rc_get_one_pass_cbr_params()
// vp9_rc_get_svc_params()
// vp9_rc_get_first_pass_params()
// vp9_rc_get_second_pass_params()
// depending on the usage to set the rate control encode parameters desired.
//
// Then, call encode_frame_to_data_rate() to perform the
// actual encode. This function will in turn call encode_frame()
// one or more times, followed by one of:
// vp9_rc_postencode_update()
// vp9_rc_postencode_update_drop_frame()
//
// The majority of rate control parameters are only expected
// to be set in the vp9_rc_get_..._params() functions and
// updated during the vp9_rc_postencode_update...() functions.
// The only exceptions are vp9_rc_drop_frame() and
// vp9_rc_update_rate_correction_factors() functions.
// Functions to set parameters for encoding before the actual
// encode_frame_to_data_rate() function.
void vp9_rc_get_one_pass_vbr_params(struct VP9_COMP *cpi);
void vp9_rc_get_one_pass_cbr_params(struct VP9_COMP *cpi);
void vp9_rc_get_svc_params(struct VP9_COMP *cpi);
// Post encode update of the rate control parameters based
// on bytes used
void vp9_rc_postencode_update(struct VP9_COMP *cpi,
uint64_t bytes_used);
// Post encode update of the rate control parameters for dropped frames
void vp9_rc_postencode_update_drop_frame(struct VP9_COMP *cpi);
// Updates rate correction factors
// Changes only the rate correction factors in the rate control structure.
void vp9_rc_update_rate_correction_factors(struct VP9_COMP *cpi, int damp_var);
// Decide if we should drop this frame: For 1-pass CBR.
// Changes only the decimation count in the rate control structure
int vp9_rc_drop_frame(struct VP9_COMP *cpi);
// Computes frame size bounds.
void vp9_rc_compute_frame_size_bounds(const struct VP9_COMP *cpi,
int this_frame_target,
int *frame_under_shoot_limit,
@ -113,26 +149,18 @@ int vp9_rc_pick_q_and_adjust_q_bounds(const struct VP9_COMP *cpi,
int vp9_rc_regulate_q(const struct VP9_COMP *cpi, int target_bits_per_frame,
int active_best_quality, int active_worst_quality);
// Post encode update of the rate control parameters based
// on bytes used
void vp9_rc_postencode_update(struct VP9_COMP *cpi,
uint64_t bytes_used);
// for dropped frames
void vp9_rc_postencode_update_drop_frame(struct VP9_COMP *cpi);
// estimates bits per mb for a given qindex and correction factor
// Estimates bits per mb for a given qindex and correction factor.
int vp9_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex,
double correction_factor);
// Post encode update of the rate control parameters for 2-pass
void vp9_twopass_postencode_update(struct VP9_COMP *cpi,
uint64_t bytes_used);
// Decide if we should drop this frame: For 1-pass CBR.
int vp9_drop_frame(struct VP9_COMP *cpi);
// Update the buffer level.
void vp9_update_buffer_level(struct VP9_COMP *cpi, int encoded_frame_size);
// Clamping utilities for bitrate targets for iframes and pframes.
int vp9_rc_clamp_iframe_target_size(const struct VP9_COMP *const cpi,
int target);
int vp9_rc_clamp_pframe_target_size(const struct VP9_COMP *const cpi,
int target);
// Utility to set frame_target into the RATE_CONTROL structure
// This function is called only from the vp9_rc_get_..._params() functions.
void vp9_rc_set_frame_target(struct VP9_COMP *cpi, int target);
#ifdef __cplusplus
} // extern "C"