Implement global motion parameter computation
This computes global motion parameters between 2 frames by matching corresponding points using FAST feature and then fitting a model using RANSAC. Change-Id: Ib6664df44090e8cfa4db9f2f9e0556931ccfe5c8
This commit is contained in:
Родитель
162f5f792b
Коммит
4dc0f1b186
|
@ -0,0 +1,30 @@
|
|||
Copyright (c) 2006, 2008 Edward Rosten
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions
|
||||
are met:
|
||||
|
||||
|
||||
*Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
*Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
*Neither the name of the University of Cambridge nor the names of
|
||||
its contributors may be used to endorse or promote products derived
|
||||
from this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
@ -0,0 +1,34 @@
|
|||
This code was taken from http://www.edwardrosten.com/work/fast.html. Fast 10, 11, and 12
|
||||
have been deleted.
|
||||
|
||||
FAST feature detectors in C Version 2.0
|
||||
---------------------------------------
|
||||
|
||||
The files are valid C and C++ code, and have no special requirements for
|
||||
compiling, and they do not depend on any libraries. Just compile them along with
|
||||
the rest of your project.
|
||||
|
||||
To use the functions, #include "fast.h"
|
||||
|
||||
The corner detectors have the following prototype (where X is 9, 10, 11 or 12):
|
||||
|
||||
xy* fastX_detect_nonmax(const unsigned char * data, int xsize, int ysize, int stride, int threshold, int* numcorners)
|
||||
|
||||
Where xy is the following simple struct typedef:
|
||||
|
||||
typedef struct
|
||||
{
|
||||
int x, y;
|
||||
} xy;
|
||||
|
||||
The image is passed in as a block of data and dimensions, and the list of
|
||||
corners is returned as an array of xy structs, and an integer (numcorners)
|
||||
with the number of corners returned. The data can be deallocated with free().
|
||||
Nonmaximal suppression is performed on the corners. Note that the stride
|
||||
is the number of bytes between rows. If your image has no padding, then this
|
||||
is the same as xsize.
|
||||
|
||||
The detection, scoring and nonmaximal suppression are available as individual
|
||||
functions. To see how to use the individual functions, see fast.c
|
||||
|
||||
|
|
@ -0,0 +1,22 @@
|
|||
// clang-format off
|
||||
#include <stdlib.h>
|
||||
#include "fast.h"
|
||||
|
||||
|
||||
xy* fast9_detect_nonmax(const byte* im, int xsize, int ysize, int stride, int b, int* ret_num_corners)
|
||||
{
|
||||
xy* corners;
|
||||
int num_corners;
|
||||
int* scores;
|
||||
xy* nonmax;
|
||||
|
||||
corners = fast9_detect(im, xsize, ysize, stride, b, &num_corners);
|
||||
scores = fast9_score(im, stride, corners, num_corners, b);
|
||||
nonmax = nonmax_suppression(corners, scores, num_corners, ret_num_corners);
|
||||
|
||||
free(corners);
|
||||
free(scores);
|
||||
|
||||
return nonmax;
|
||||
}
|
||||
// clang-format on
|
|
@ -0,0 +1,20 @@
|
|||
// clang-format off
|
||||
#ifndef FAST_H
|
||||
#define FAST_H
|
||||
|
||||
typedef struct { int x, y; } xy;
|
||||
typedef unsigned char byte;
|
||||
|
||||
int fast9_corner_score(const byte* p, const int pixel[], int bstart);
|
||||
|
||||
xy* fast9_detect(const byte* im, int xsize, int ysize, int stride, int b, int* ret_num_corners);
|
||||
|
||||
int* fast9_score(const byte* i, int stride, xy* corners, int num_corners, int b);
|
||||
|
||||
xy* fast9_detect_nonmax(const byte* im, int xsize, int ysize, int stride, int b, int* ret_num_corners);
|
||||
|
||||
xy* nonmax_suppression(const xy* corners, const int* scores, int num_corners, int* ret_num_nonmax);
|
||||
|
||||
|
||||
#endif
|
||||
// clang-format on
|
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
|
@ -0,0 +1,119 @@
|
|||
// clang-format off
|
||||
#include <stdlib.h>
|
||||
#include "fast.h"
|
||||
|
||||
|
||||
#define Compare(X, Y) ((X)>=(Y))
|
||||
|
||||
xy* nonmax_suppression(const xy* corners, const int* scores, int num_corners, int* ret_num_nonmax)
|
||||
{
|
||||
int num_nonmax=0;
|
||||
int last_row;
|
||||
int* row_start;
|
||||
int i, j;
|
||||
xy* ret_nonmax;
|
||||
const int sz = (int)num_corners;
|
||||
|
||||
/*Point above points (roughly) to the pixel above the one of interest, if there
|
||||
is a feature there.*/
|
||||
int point_above = 0;
|
||||
int point_below = 0;
|
||||
|
||||
|
||||
if(num_corners < 1)
|
||||
{
|
||||
*ret_num_nonmax = 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
ret_nonmax = (xy*)malloc(num_corners * sizeof(xy));
|
||||
|
||||
/* Find where each row begins
|
||||
(the corners are output in raster scan order). A beginning of -1 signifies
|
||||
that there are no corners on that row. */
|
||||
last_row = corners[num_corners-1].y;
|
||||
row_start = (int*)malloc((last_row+1)*sizeof(int));
|
||||
|
||||
for(i=0; i < last_row+1; i++)
|
||||
row_start[i] = -1;
|
||||
|
||||
{
|
||||
int prev_row = -1;
|
||||
for(i=0; i< num_corners; i++)
|
||||
if(corners[i].y != prev_row)
|
||||
{
|
||||
row_start[corners[i].y] = i;
|
||||
prev_row = corners[i].y;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
for(i=0; i < sz; i++)
|
||||
{
|
||||
int score = scores[i];
|
||||
xy pos = corners[i];
|
||||
|
||||
/*Check left */
|
||||
if(i > 0)
|
||||
if(corners[i-1].x == pos.x-1 && corners[i-1].y == pos.y && Compare(scores[i-1], score))
|
||||
continue;
|
||||
|
||||
/*Check right*/
|
||||
if(i < (sz - 1))
|
||||
if(corners[i+1].x == pos.x+1 && corners[i+1].y == pos.y && Compare(scores[i+1], score))
|
||||
continue;
|
||||
|
||||
/*Check above (if there is a valid row above)*/
|
||||
if(pos.y != 0 && row_start[pos.y - 1] != -1)
|
||||
{
|
||||
/*Make sure that current point_above is one
|
||||
row above.*/
|
||||
if(corners[point_above].y < pos.y - 1)
|
||||
point_above = row_start[pos.y-1];
|
||||
|
||||
/*Make point_above point to the first of the pixels above the current point,
|
||||
if it exists.*/
|
||||
for(; corners[point_above].y < pos.y && corners[point_above].x < pos.x - 1; point_above++)
|
||||
{}
|
||||
|
||||
|
||||
for(j=point_above; corners[j].y < pos.y && corners[j].x <= pos.x + 1; j++)
|
||||
{
|
||||
int x = corners[j].x;
|
||||
if( (x == pos.x - 1 || x ==pos.x || x == pos.x+1) && Compare(scores[j], score))
|
||||
goto cont;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/*Check below (if there is anything below)*/
|
||||
if(pos.y != last_row && row_start[pos.y + 1] != -1 && point_below < sz) /*Nothing below*/
|
||||
{
|
||||
if(corners[point_below].y < pos.y + 1)
|
||||
point_below = row_start[pos.y+1];
|
||||
|
||||
/* Make point below point to one of the pixels belowthe current point, if it
|
||||
exists.*/
|
||||
for(; point_below < sz && corners[point_below].y == pos.y+1 && corners[point_below].x < pos.x - 1; point_below++)
|
||||
{}
|
||||
|
||||
for(j=point_below; j < sz && corners[j].y == pos.y+1 && corners[j].x <= pos.x + 1; j++)
|
||||
{
|
||||
int x = corners[j].x;
|
||||
if( (x == pos.x - 1 || x ==pos.x || x == pos.x+1) && Compare(scores[j],score))
|
||||
goto cont;
|
||||
}
|
||||
}
|
||||
|
||||
ret_nonmax[num_nonmax++] = corners[i];
|
||||
cont:
|
||||
;
|
||||
}
|
||||
|
||||
free(row_start);
|
||||
*ret_num_nonmax = num_nonmax;
|
||||
return ret_nonmax;
|
||||
}
|
||||
|
||||
// clang-format on
|
|
@ -52,7 +52,7 @@ typedef struct mv32 {
|
|||
// for each parameter. In other words, after a parameter is integerized
|
||||
// it is clamped between -(1 << ABS_XXX_BITS) and (1 << ABS_XXX_BITS).
|
||||
//
|
||||
// XXX_PREC_DIFF, XXX_ENCODE_FACTOR and XXX_DECODE_FACTOR
|
||||
// XXX_PREC_DIFF and XXX_DECODE_FACTOR
|
||||
// are computed once here to prevent repetitive
|
||||
// computation on the decoder side. These are
|
||||
// to allow the global motion parameters to be encoded in a lower
|
||||
|
@ -64,12 +64,10 @@ typedef struct mv32 {
|
|||
#define GM_TRANS_PREC_BITS 5
|
||||
#define GM_TRANS_PREC_DIFF (WARPEDMODEL_PREC_BITS - GM_TRANS_PREC_BITS)
|
||||
#define GM_TRANS_DECODE_FACTOR (1 << GM_TRANS_PREC_DIFF)
|
||||
#define GM_TRANS_ENCODE_FACTOR (1 / (GM_TRANS_DECODE_FACTOR))
|
||||
|
||||
#define GM_ALPHA_PREC_BITS 5
|
||||
#define GM_ALPHA_PREC_DIFF (WARPEDMODEL_PREC_BITS - GM_ALPHA_PREC_BITS)
|
||||
#define GM_ALPHA_DECODE_FACTOR (1 << GM_ALPHA_PREC_DIFF)
|
||||
#define GM_ALPHA_ENCODE_FACTOR (1 / (GM_ALPHA_DECODE_FACTOR))
|
||||
|
||||
#define GM_ABS_ALPHA_BITS 8
|
||||
#define GM_ABS_TRANS_BITS 8
|
||||
|
|
|
@ -16,32 +16,7 @@
|
|||
|
||||
#include "vp10/common/warped_motion.h"
|
||||
|
||||
typedef void (*projectPointsType)(int *mat, int *points, int *proj, const int n,
|
||||
const int stride_points,
|
||||
const int stride_proj,
|
||||
const int subsampling_x,
|
||||
const int subsampling_y);
|
||||
|
||||
static void projectPointsHomography(int *mat, int *points, int *proj,
|
||||
const int n, const int stride_points,
|
||||
const int stride_proj,
|
||||
const int subsampling_x,
|
||||
const int subsampling_y);
|
||||
static void projectPointsAffine(int *mat, int *points, int *proj, const int n,
|
||||
const int stride_points, const int stride_proj,
|
||||
const int subsampling_x,
|
||||
const int subsampling_y);
|
||||
static void projectPointsRotZoom(int *mat, int *points, int *proj, const int n,
|
||||
const int stride_points, const int stride_proj,
|
||||
const int subsampling_x,
|
||||
const int subsampling_y);
|
||||
static void projectPointsTranslation(int *mat, int *points, int *proj,
|
||||
const int n, const int stride_points,
|
||||
const int stride_proj,
|
||||
const int subsampling_x,
|
||||
const int subsampling_y);
|
||||
|
||||
static projectPointsType get_projectPointsType(TransformationType type) {
|
||||
static ProjectPointsType get_project_points_type(TransformationType type) {
|
||||
switch (type) {
|
||||
case HOMOGRAPHY: return projectPointsHomography;
|
||||
case AFFINE: return projectPointsAffine;
|
||||
|
@ -51,11 +26,10 @@ static projectPointsType get_projectPointsType(TransformationType type) {
|
|||
}
|
||||
}
|
||||
|
||||
static void projectPointsTranslation(int *mat, int *points, int *proj,
|
||||
const int n, const int stride_points,
|
||||
const int stride_proj,
|
||||
const int subsampling_x,
|
||||
const int subsampling_y) {
|
||||
void projectPointsTranslation(int *mat, int *points, int *proj, const int n,
|
||||
const int stride_points, const int stride_proj,
|
||||
const int subsampling_x,
|
||||
const int subsampling_y) {
|
||||
int i;
|
||||
for (i = 0; i < n; ++i) {
|
||||
const int x = *(points++), y = *(points++);
|
||||
|
@ -105,10 +79,9 @@ void projectPointsRotZoom(int *mat, int *points, int *proj, const int n,
|
|||
}
|
||||
}
|
||||
|
||||
static void projectPointsAffine(int *mat, int *points, int *proj, const int n,
|
||||
const int stride_points, const int stride_proj,
|
||||
const int subsampling_x,
|
||||
const int subsampling_y) {
|
||||
void projectPointsAffine(int *mat, int *points, int *proj, const int n,
|
||||
const int stride_points, const int stride_proj,
|
||||
const int subsampling_x, const int subsampling_y) {
|
||||
int i;
|
||||
for (i = 0; i < n; ++i) {
|
||||
const int x = *(points++), y = *(points++);
|
||||
|
@ -133,11 +106,9 @@ static void projectPointsAffine(int *mat, int *points, int *proj, const int n,
|
|||
}
|
||||
}
|
||||
|
||||
static void projectPointsHomography(int *mat, int *points, int *proj,
|
||||
const int n, const int stride_points,
|
||||
const int stride_proj,
|
||||
const int subsampling_x,
|
||||
const int subsampling_y) {
|
||||
void projectPointsHomography(int *mat, int *points, int *proj, const int n,
|
||||
const int stride_points, const int stride_proj,
|
||||
const int subsampling_x, const int subsampling_y) {
|
||||
int i;
|
||||
int64_t x, y, Z;
|
||||
int64_t xp, yp;
|
||||
|
@ -382,28 +353,6 @@ static uint8_t warp_interpolate(uint8_t *ref, int x, int y, int width,
|
|||
}
|
||||
}
|
||||
|
||||
static void warp_plane(WarpedMotionParams *wm, uint8_t *ref, int width,
|
||||
int height, int stride, uint8_t *pred, int p_col,
|
||||
int p_row, int p_width, int p_height, int p_stride,
|
||||
int subsampling_x, int subsampling_y, int x_scale,
|
||||
int y_scale) {
|
||||
int i, j;
|
||||
projectPointsType projectPoints = get_projectPointsType(wm->wmtype);
|
||||
if (projectPoints == NULL) return;
|
||||
for (i = p_row; i < p_row + p_height; ++i) {
|
||||
for (j = p_col; j < p_col + p_width; ++j) {
|
||||
int in[2], out[2];
|
||||
in[0] = j;
|
||||
in[1] = i;
|
||||
projectPoints(wm->wmmat, in, out, 1, 2, 2, subsampling_x, subsampling_y);
|
||||
out[0] = ROUND_POWER_OF_TWO_SIGNED(out[0] * x_scale, 4);
|
||||
out[1] = ROUND_POWER_OF_TWO_SIGNED(out[1] * y_scale, 4);
|
||||
pred[(j - p_col) + (i - p_row) * p_stride] =
|
||||
warp_interpolate(ref, out[0], out[1], width, height, stride);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#if CONFIG_VP9_HIGHBITDEPTH
|
||||
static INLINE void highbd_get_subcolumn(int taps, uint16_t *ref, int32_t *col,
|
||||
int stride, int x, int y_start) {
|
||||
|
@ -517,6 +466,38 @@ static uint16_t highbd_warp_interpolate(uint16_t *ref, int x, int y, int width,
|
|||
}
|
||||
}
|
||||
|
||||
static double highbd_warp_erroradv(WarpedMotionParams *wm, uint8_t *ref8,
|
||||
int width, int height, int stride,
|
||||
uint8_t *dst8, int p_col, int p_row,
|
||||
int p_width, int p_height, int p_stride,
|
||||
int subsampling_x, int subsampling_y,
|
||||
int x_scale, int y_scale, int bd) {
|
||||
int i, j;
|
||||
ProjectPointsType projectpoints = get_project_points_type(wm->wmtype);
|
||||
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
|
||||
uint16_t *ref = CONVERT_TO_SHORTPTR(ref8);
|
||||
int gm_err = 0, no_gm_err = 0;
|
||||
int gm_sumerr = 0, no_gm_sumerr = 0;
|
||||
for (i = p_row; i < p_row + p_height; ++i) {
|
||||
for (j = p_col; j < p_col + p_width; ++j) {
|
||||
int in[2], out[2];
|
||||
in[0] = j;
|
||||
in[1] = i;
|
||||
projectpoints(wm->wmmat, in, out, 1, 2, 2, subsampling_x, subsampling_y);
|
||||
out[0] = ROUND_POWER_OF_TWO_SIGNED(out[0] * x_scale, 4);
|
||||
out[1] = ROUND_POWER_OF_TWO_SIGNED(out[1] * y_scale, 4);
|
||||
gm_err = dst[(j - p_col) + (i - p_row) * p_stride] -
|
||||
highbd_warp_interpolate(ref, out[0], out[1], width, height,
|
||||
stride, bd);
|
||||
no_gm_err = dst[(j - p_col) + (i - p_row) * p_stride] -
|
||||
ref[(j - p_col) + (i - p_row) * stride];
|
||||
gm_sumerr += gm_err * gm_err;
|
||||
no_gm_sumerr += no_gm_err * no_gm_err;
|
||||
}
|
||||
}
|
||||
return (double)gm_sumerr / no_gm_sumerr;
|
||||
}
|
||||
|
||||
static void highbd_warp_plane(WarpedMotionParams *wm, uint8_t *ref8, int width,
|
||||
int height, int stride, uint8_t *pred8, int p_col,
|
||||
int p_row, int p_width, int p_height,
|
||||
|
@ -524,16 +505,16 @@ static void highbd_warp_plane(WarpedMotionParams *wm, uint8_t *ref8, int width,
|
|||
int subsampling_y, int x_scale, int y_scale,
|
||||
int bd) {
|
||||
int i, j;
|
||||
projectPointsType projectPoints = get_projectPointsType(wm->wmtype);
|
||||
ProjectPointsType projectpoints = get_project_points_type(wm->wmtype);
|
||||
uint16_t *pred = CONVERT_TO_SHORTPTR(pred8);
|
||||
uint16_t *ref = CONVERT_TO_SHORTPTR(ref8);
|
||||
if (projectPoints == NULL) return;
|
||||
if (projectpoints == NULL) return;
|
||||
for (i = p_row; i < p_row + p_height; ++i) {
|
||||
for (j = p_col; j < p_col + p_width; ++j) {
|
||||
int in[2], out[2];
|
||||
in[0] = j;
|
||||
in[1] = i;
|
||||
projectPoints(wm->wmmat, in, out, 1, 2, 2, subsampling_x, subsampling_y);
|
||||
projectpoints(wm->wmmat, in, out, 1, 2, 2, subsampling_x, subsampling_y);
|
||||
out[0] = ROUND_POWER_OF_TWO_SIGNED(out[0] * x_scale, 4);
|
||||
out[1] = ROUND_POWER_OF_TWO_SIGNED(out[1] * y_scale, 4);
|
||||
pred[(j - p_col) + (i - p_row) * p_stride] = highbd_warp_interpolate(
|
||||
|
@ -543,6 +524,76 @@ static void highbd_warp_plane(WarpedMotionParams *wm, uint8_t *ref8, int width,
|
|||
}
|
||||
#endif // CONFIG_VP9_HIGHBITDEPTH
|
||||
|
||||
static double warp_erroradv(WarpedMotionParams *wm, uint8_t *ref, int width,
|
||||
int height, int stride, uint8_t *dst, int p_col,
|
||||
int p_row, int p_width, int p_height, int p_stride,
|
||||
int subsampling_x, int subsampling_y, int x_scale,
|
||||
int y_scale) {
|
||||
int gm_err = 0, no_gm_err = 0;
|
||||
int gm_sumerr = 0, no_gm_sumerr = 0;
|
||||
int i, j;
|
||||
ProjectPointsType projectpoints = get_project_points_type(wm->wmtype);
|
||||
for (i = p_row; i < p_row + p_height; ++i) {
|
||||
for (j = p_col; j < p_col + p_width; ++j) {
|
||||
int in[2], out[2];
|
||||
in[0] = j;
|
||||
in[1] = i;
|
||||
projectpoints(wm->wmmat, in, out, 1, 2, 2, subsampling_x, subsampling_y);
|
||||
out[0] = ROUND_POWER_OF_TWO_SIGNED(out[0] * x_scale, 4);
|
||||
out[1] = ROUND_POWER_OF_TWO_SIGNED(out[1] * y_scale, 4);
|
||||
gm_err = dst[(j - p_col) + (i - p_row) * p_stride] -
|
||||
warp_interpolate(ref, out[0], out[1], width, height, stride);
|
||||
no_gm_err = dst[(j - p_col) + (i - p_row) * p_stride] -
|
||||
ref[(j - p_col) + (i - p_row) * stride];
|
||||
gm_sumerr += gm_err * gm_err;
|
||||
no_gm_sumerr += no_gm_err * no_gm_err;
|
||||
}
|
||||
}
|
||||
return (double)gm_sumerr / no_gm_sumerr;
|
||||
}
|
||||
|
||||
static void warp_plane(WarpedMotionParams *wm, uint8_t *ref, int width,
|
||||
int height, int stride, uint8_t *pred, int p_col,
|
||||
int p_row, int p_width, int p_height, int p_stride,
|
||||
int subsampling_x, int subsampling_y, int x_scale,
|
||||
int y_scale) {
|
||||
int i, j;
|
||||
ProjectPointsType projectpoints = get_project_points_type(wm->wmtype);
|
||||
if (projectpoints == NULL) return;
|
||||
for (i = p_row; i < p_row + p_height; ++i) {
|
||||
for (j = p_col; j < p_col + p_width; ++j) {
|
||||
int in[2], out[2];
|
||||
in[0] = j;
|
||||
in[1] = i;
|
||||
projectpoints(wm->wmmat, in, out, 1, 2, 2, subsampling_x, subsampling_y);
|
||||
out[0] = ROUND_POWER_OF_TWO_SIGNED(out[0] * x_scale, 4);
|
||||
out[1] = ROUND_POWER_OF_TWO_SIGNED(out[1] * y_scale, 4);
|
||||
pred[(j - p_col) + (i - p_row) * p_stride] =
|
||||
warp_interpolate(ref, out[0], out[1], width, height, stride);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
double vp10_warp_erroradv(WarpedMotionParams *wm,
|
||||
#if CONFIG_VP9_HIGHBITDEPTH
|
||||
int use_hbd, int bd,
|
||||
#endif // CONFIG_VP9_HIGHBITDEPTH
|
||||
uint8_t *ref, int width, int height, int stride,
|
||||
uint8_t *dst, int p_col, int p_row, int p_width,
|
||||
int p_height, int p_stride, int subsampling_x,
|
||||
int subsampling_y, int x_scale, int y_scale) {
|
||||
#if CONFIG_VP9_HIGHBITDEPTH
|
||||
if (use_hbd)
|
||||
return highbd_warp_erroradv(
|
||||
wm, ref, width, height, stride, dst, p_col, p_row, p_width, p_height,
|
||||
p_stride, subsampling_x, subsampling_y, x_scale, y_scale, bd);
|
||||
else
|
||||
#endif // CONFIG_VP9_HIGHBITDEPTH
|
||||
return warp_erroradv(wm, ref, width, height, stride, dst, p_col, p_row,
|
||||
p_width, p_height, p_stride, subsampling_x,
|
||||
subsampling_y, x_scale, y_scale);
|
||||
}
|
||||
|
||||
void vp10_warp_plane(WarpedMotionParams *wm,
|
||||
#if CONFIG_VP9_HIGHBITDEPTH
|
||||
int use_hbd, int bd,
|
||||
|
|
|
@ -37,6 +37,24 @@
|
|||
|
||||
#define WARPEDDIFF_PREC_BITS (WARPEDMODEL_PREC_BITS - WARPEDPIXEL_PREC_BITS)
|
||||
|
||||
typedef void (*ProjectPointsType)(int *mat, int *points, int *proj, const int n,
|
||||
const int stride_points,
|
||||
const int stride_proj,
|
||||
const int subsampling_x,
|
||||
const int subsampling_y);
|
||||
void projectPointsHomography(int *mat, int *points, int *proj, const int n,
|
||||
const int stride_points, const int stride_proj,
|
||||
const int subsampling_x, const int subsampling_y);
|
||||
void projectPointsAffine(int *mat, int *points, int *proj, const int n,
|
||||
const int stride_points, const int stride_proj,
|
||||
const int subsampling_x, const int subsampling_y);
|
||||
void projectPointsRotZoom(int *mat, int *points, int *proj, const int n,
|
||||
const int stride_points, const int stride_proj,
|
||||
const int subsampling_x, const int subsampling_y);
|
||||
void projectPointsTranslation(int *mat, int *points, int *proj, const int n,
|
||||
const int stride_points, const int stride_proj,
|
||||
const int subsampling_x, const int subsampling_y);
|
||||
|
||||
typedef enum {
|
||||
UNKNOWN_TRANSFORM = -1,
|
||||
HOMOGRAPHY, // homography, 8-parameter
|
||||
|
@ -54,6 +72,15 @@ typedef struct {
|
|||
int wmmat[8]; // For homography wmmat[9] is assumed to be 1
|
||||
} WarpedMotionParams;
|
||||
|
||||
double vp10_warp_erroradv(WarpedMotionParams *wm,
|
||||
#if CONFIG_VP9_HIGHBITDEPTH
|
||||
int use_hbd, int bd,
|
||||
#endif // CONFIG_VP9_HIGHBITDEPTH
|
||||
uint8_t *ref, int width, int height, int stride,
|
||||
uint8_t *dst, int p_col, int p_row, int p_width,
|
||||
int p_height, int p_stride, int subsampling_x,
|
||||
int subsampling_y, int x_scale, int y_scale);
|
||||
|
||||
void vp10_warp_plane(WarpedMotionParams *wm,
|
||||
#if CONFIG_VP9_HIGHBITDEPTH
|
||||
int use_hbd, int bd,
|
||||
|
|
|
@ -3203,28 +3203,28 @@ static void write_global_motion_params(Global_Motion_Params *params,
|
|||
case GLOBAL_ZERO: break;
|
||||
case GLOBAL_AFFINE:
|
||||
vp10_write_primitive_symmetric(
|
||||
w, params->motion_params.wmmat[4] * GM_ALPHA_ENCODE_FACTOR,
|
||||
w, params->motion_params.wmmat[4] >> GM_ALPHA_PREC_DIFF,
|
||||
GM_ABS_ALPHA_BITS);
|
||||
vp10_write_primitive_symmetric(
|
||||
w, (params->motion_params.wmmat[5] * GM_ALPHA_ENCODE_FACTOR) -
|
||||
w, (params->motion_params.wmmat[5] >> GM_ALPHA_PREC_DIFF) -
|
||||
(1 << GM_ALPHA_PREC_BITS),
|
||||
GM_ABS_ALPHA_BITS);
|
||||
// fallthrough intended
|
||||
case GLOBAL_ROTZOOM:
|
||||
vp10_write_primitive_symmetric(
|
||||
w, (params->motion_params.wmmat[2] * GM_ALPHA_ENCODE_FACTOR) -
|
||||
w, (params->motion_params.wmmat[2] >> GM_ALPHA_PREC_DIFF) -
|
||||
(1 << GM_ALPHA_PREC_BITS),
|
||||
GM_ABS_ALPHA_BITS);
|
||||
vp10_write_primitive_symmetric(
|
||||
w, params->motion_params.wmmat[3] * GM_ALPHA_ENCODE_FACTOR,
|
||||
w, params->motion_params.wmmat[3] >> GM_ALPHA_PREC_DIFF,
|
||||
GM_ABS_ALPHA_BITS);
|
||||
// fallthrough intended
|
||||
case GLOBAL_TRANSLATION:
|
||||
vp10_write_primitive_symmetric(
|
||||
w, params->motion_params.wmmat[0] * GM_TRANS_ENCODE_FACTOR,
|
||||
w, params->motion_params.wmmat[0] >> GM_TRANS_PREC_DIFF,
|
||||
GM_ABS_TRANS_BITS);
|
||||
vp10_write_primitive_symmetric(
|
||||
w, params->motion_params.wmmat[1] * GM_TRANS_ENCODE_FACTOR,
|
||||
w, params->motion_params.wmmat[1] >> GM_TRANS_PREC_DIFF,
|
||||
GM_ABS_TRANS_BITS);
|
||||
break;
|
||||
default: assert(0);
|
||||
|
|
|
@ -0,0 +1,35 @@
|
|||
/*
|
||||
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <memory.h>
|
||||
#include <math.h>
|
||||
#include <assert.h>
|
||||
|
||||
#include "vp10/encoder/corner_detect.h"
|
||||
#include "third_party/fastfeat/fast.h"
|
||||
|
||||
// Fast_9 wrapper
|
||||
#define FAST_BARRIER 40
|
||||
int FastCornerDetect(unsigned char *buf, int width, int height, int stride,
|
||||
int *points, int max_points) {
|
||||
int num_points;
|
||||
xy *frm_corners_xy = fast9_detect_nonmax(buf, width, height, stride,
|
||||
FAST_BARRIER, &num_points);
|
||||
num_points = (num_points <= max_points ? num_points : max_points);
|
||||
if (num_points > 0 && frm_corners_xy) {
|
||||
memcpy(points, frm_corners_xy, sizeof(xy) * num_points);
|
||||
free(frm_corners_xy);
|
||||
return num_points;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,21 @@
|
|||
/*
|
||||
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#ifndef VP10_ENCODER_CORNER_DETECT_H_
|
||||
#define VP10_ENCODER_CORNER_DETECT_H_
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <memory.h>
|
||||
|
||||
int FastCornerDetect(unsigned char *buf, int width, int height, int stride,
|
||||
int *points, int max_points);
|
||||
|
||||
#endif // VP10_ENCODER_CORNER_DETECT_H
|
|
@ -0,0 +1,210 @@
|
|||
/*
|
||||
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <memory.h>
|
||||
#include <math.h>
|
||||
|
||||
#include "vp10/encoder/corner_match.h"
|
||||
|
||||
#define MATCH_SZ 15
|
||||
#define MATCH_SZ_BY2 ((MATCH_SZ - 1) / 2)
|
||||
#define MATCH_SZ_SQ (MATCH_SZ * MATCH_SZ)
|
||||
#define SEARCH_SZ 9
|
||||
#define SEARCH_SZ_BY2 ((SEARCH_SZ - 1) / 2)
|
||||
|
||||
#define THRESHOLD_NCC 0.80
|
||||
|
||||
static double compute_variance(unsigned char *im, int stride, int x, int y,
|
||||
double *mean) {
|
||||
double sum = 0.0;
|
||||
double sumsq = 0.0;
|
||||
double var;
|
||||
int i, j;
|
||||
for (i = 0; i < MATCH_SZ; ++i)
|
||||
for (j = 0; j < MATCH_SZ; ++j) {
|
||||
sum += im[(i + y - MATCH_SZ_BY2) * stride + (j + x - MATCH_SZ_BY2)];
|
||||
sumsq += im[(i + y - MATCH_SZ_BY2) * stride + (j + x - MATCH_SZ_BY2)] *
|
||||
im[(i + y - MATCH_SZ_BY2) * stride + (j + x - MATCH_SZ_BY2)];
|
||||
}
|
||||
var = (sumsq * MATCH_SZ_SQ - sum * sum) / (MATCH_SZ_SQ * MATCH_SZ_SQ);
|
||||
if (mean) *mean = sum / MATCH_SZ_SQ;
|
||||
return var;
|
||||
}
|
||||
|
||||
static double compute_cross_correlation(unsigned char *im1, int stride1, int x1,
|
||||
int y1, unsigned char *im2, int stride2,
|
||||
int x2, int y2) {
|
||||
double sum1 = 0;
|
||||
double sum2 = 0;
|
||||
double cross = 0;
|
||||
double corr;
|
||||
int i, j;
|
||||
for (i = 0; i < MATCH_SZ; ++i)
|
||||
for (j = 0; j < MATCH_SZ; ++j) {
|
||||
sum1 += im1[(i + y1 - MATCH_SZ_BY2) * stride1 + (j + x1 - MATCH_SZ_BY2)];
|
||||
sum2 += im2[(i + y2 - MATCH_SZ_BY2) * stride2 + (j + x2 - MATCH_SZ_BY2)];
|
||||
cross +=
|
||||
im1[(i + y1 - MATCH_SZ_BY2) * stride1 + (j + x1 - MATCH_SZ_BY2)] *
|
||||
im2[(i + y2 - MATCH_SZ_BY2) * stride2 + (j + x2 - MATCH_SZ_BY2)];
|
||||
}
|
||||
corr = (cross * MATCH_SZ_SQ - sum1 * sum2) / (MATCH_SZ_SQ * MATCH_SZ_SQ);
|
||||
return corr;
|
||||
}
|
||||
|
||||
static int is_eligible_point(double pointx, double pointy, int width,
|
||||
int height) {
|
||||
return (pointx >= MATCH_SZ_BY2 && pointy >= MATCH_SZ_BY2 &&
|
||||
pointx + MATCH_SZ_BY2 < width && pointy + MATCH_SZ_BY2 < height);
|
||||
}
|
||||
|
||||
static int is_eligible_distance(double point1x, double point1y, double point2x,
|
||||
double point2y, int width, int height) {
|
||||
const int thresh = (width < height ? height : width) >> 4;
|
||||
return ((point1x - point2x) * (point1x - point2x) +
|
||||
(point1y - point2y) * (point1y - point2y)) <= thresh * thresh;
|
||||
}
|
||||
|
||||
static void improve_correspondence(unsigned char *frm, unsigned char *ref,
|
||||
int width, int height, int frm_stride,
|
||||
int ref_stride,
|
||||
correspondence *correspondences,
|
||||
int num_correspondences) {
|
||||
int i;
|
||||
for (i = 0; i < num_correspondences; ++i) {
|
||||
double template_norm =
|
||||
compute_variance(frm, frm_stride, (int)correspondences[i].x,
|
||||
(int)correspondences[i].y, NULL);
|
||||
int x, y, best_x = 0, best_y = 0;
|
||||
double best_match_ncc = 0.0;
|
||||
for (y = -SEARCH_SZ_BY2; y <= SEARCH_SZ_BY2; ++y) {
|
||||
for (x = -SEARCH_SZ_BY2; x <= SEARCH_SZ_BY2; ++x) {
|
||||
double match_ncc;
|
||||
double subimage_norm;
|
||||
if (!is_eligible_point((int)correspondences[i].rx + x,
|
||||
(int)correspondences[i].ry + y, width, height))
|
||||
continue;
|
||||
if (!is_eligible_distance(
|
||||
(int)correspondences[i].x, (int)correspondences[i].y,
|
||||
(int)correspondences[i].rx + x, (int)correspondences[i].ry + y,
|
||||
width, height))
|
||||
continue;
|
||||
subimage_norm =
|
||||
compute_variance(ref, ref_stride, (int)correspondences[i].rx + x,
|
||||
(int)correspondences[i].ry + y, NULL);
|
||||
match_ncc = compute_cross_correlation(
|
||||
frm, frm_stride, (int)correspondences[i].x,
|
||||
(int)correspondences[i].y, ref, ref_stride,
|
||||
(int)correspondences[i].rx + x,
|
||||
(int)correspondences[i].ry + y) /
|
||||
sqrt(template_norm * subimage_norm);
|
||||
if (match_ncc > best_match_ncc) {
|
||||
best_match_ncc = match_ncc;
|
||||
best_y = y;
|
||||
best_x = x;
|
||||
}
|
||||
}
|
||||
}
|
||||
correspondences[i].rx += (double)best_x;
|
||||
correspondences[i].ry += (double)best_y;
|
||||
}
|
||||
for (i = 0; i < num_correspondences; ++i) {
|
||||
double template_norm =
|
||||
compute_variance(ref, ref_stride, (int)correspondences[i].rx,
|
||||
(int)correspondences[i].ry, NULL);
|
||||
int x, y, best_x = 0, best_y = 0;
|
||||
double best_match_ncc = 0.0;
|
||||
for (y = -SEARCH_SZ_BY2; y <= SEARCH_SZ_BY2; ++y)
|
||||
for (x = -SEARCH_SZ_BY2; x <= SEARCH_SZ_BY2; ++x) {
|
||||
double match_ncc;
|
||||
double subimage_norm;
|
||||
if (!is_eligible_point((int)correspondences[i].x + x,
|
||||
(int)correspondences[i].y + y, width, height))
|
||||
continue;
|
||||
if (!is_eligible_distance((int)correspondences[i].x + x,
|
||||
(int)correspondences[i].y + y,
|
||||
(int)correspondences[i].rx,
|
||||
(int)correspondences[i].ry, width, height))
|
||||
continue;
|
||||
subimage_norm =
|
||||
compute_variance(frm, frm_stride, (int)correspondences[i].x + x,
|
||||
(int)correspondences[i].y + y, NULL);
|
||||
match_ncc =
|
||||
compute_cross_correlation(
|
||||
frm, frm_stride, (int)correspondences[i].x + x,
|
||||
(int)correspondences[i].y + y, ref, ref_stride,
|
||||
(int)correspondences[i].rx, (int)correspondences[i].ry) /
|
||||
sqrt(template_norm * subimage_norm);
|
||||
if (match_ncc > best_match_ncc) {
|
||||
best_match_ncc = match_ncc;
|
||||
best_y = y;
|
||||
best_x = x;
|
||||
}
|
||||
}
|
||||
correspondences[i].x += best_x;
|
||||
correspondences[i].y += best_y;
|
||||
}
|
||||
}
|
||||
|
||||
int determine_correspondence(unsigned char *frm, int *frm_corners,
|
||||
int num_frm_corners, unsigned char *ref,
|
||||
int *ref_corners, int num_ref_corners, int width,
|
||||
int height, int frm_stride, int ref_stride,
|
||||
double *correspondence_pts) {
|
||||
// TODO(sarahparker) Improve this to include 2-way match
|
||||
int i, j;
|
||||
correspondence *correspondences = (correspondence *)correspondence_pts;
|
||||
int num_correspondences = 0;
|
||||
for (i = 0; i < num_frm_corners; ++i) {
|
||||
double best_match_ncc = 0.0;
|
||||
double template_norm;
|
||||
int best_match_j = -1;
|
||||
if (!is_eligible_point(frm_corners[2 * i], frm_corners[2 * i + 1], width,
|
||||
height))
|
||||
continue;
|
||||
template_norm = compute_variance(frm, frm_stride, frm_corners[2 * i],
|
||||
frm_corners[2 * i + 1], NULL);
|
||||
for (j = 0; j < num_ref_corners; ++j) {
|
||||
double match_ncc;
|
||||
double subimage_norm;
|
||||
if (!is_eligible_point(ref_corners[2 * j], ref_corners[2 * j + 1], width,
|
||||
height))
|
||||
continue;
|
||||
if (!is_eligible_distance(frm_corners[2 * i], frm_corners[2 * i + 1],
|
||||
ref_corners[2 * j], ref_corners[2 * j + 1],
|
||||
width, height))
|
||||
continue;
|
||||
subimage_norm = compute_variance(ref, ref_stride, ref_corners[2 * j],
|
||||
ref_corners[2 * j + 1], NULL);
|
||||
match_ncc = compute_cross_correlation(frm, frm_stride, frm_corners[2 * i],
|
||||
frm_corners[2 * i + 1], ref,
|
||||
ref_stride, ref_corners[2 * j],
|
||||
ref_corners[2 * j + 1]) /
|
||||
sqrt(template_norm * subimage_norm);
|
||||
if (match_ncc > best_match_ncc) {
|
||||
best_match_ncc = match_ncc;
|
||||
best_match_j = j;
|
||||
}
|
||||
}
|
||||
if (best_match_ncc > THRESHOLD_NCC) {
|
||||
correspondences[num_correspondences].x = (double)frm_corners[2 * i];
|
||||
correspondences[num_correspondences].y = (double)frm_corners[2 * i + 1];
|
||||
correspondences[num_correspondences].rx =
|
||||
(double)ref_corners[2 * best_match_j];
|
||||
correspondences[num_correspondences].ry =
|
||||
(double)ref_corners[2 * best_match_j + 1];
|
||||
num_correspondences++;
|
||||
}
|
||||
}
|
||||
improve_correspondence(frm, ref, width, height, frm_stride, ref_stride,
|
||||
correspondences, num_correspondences);
|
||||
return num_correspondences;
|
||||
}
|
|
@ -0,0 +1,29 @@
|
|||
/*
|
||||
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#ifndef VP10_ENCODER_CORNER_MATCH_H_
|
||||
#define VP10_ENCODER_CORNER_MATCH_H_
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <memory.h>
|
||||
|
||||
typedef struct {
|
||||
double x, y;
|
||||
double rx, ry;
|
||||
} correspondence;
|
||||
|
||||
int determine_correspondence(unsigned char *frm, int *frm_corners,
|
||||
int num_frm_corners, unsigned char *ref,
|
||||
int *ref_corners, int num_ref_corners, int width,
|
||||
int height, int frm_stride, int ref_stride,
|
||||
double *correspondence_pts);
|
||||
|
||||
#endif // VP10_ENCODER_CORNER_MATCH_H
|
|
@ -4407,6 +4407,7 @@ static int input_fpmb_stats(FIRSTPASS_MB_STATS *firstpass_mb_stats,
|
|||
|
||||
#if CONFIG_GLOBAL_MOTION
|
||||
#define MIN_TRANS_THRESH 8
|
||||
#define GLOBAL_MOTION_ADVANTAGE_THRESH 0.60
|
||||
#define GLOBAL_MOTION_MODEL ROTZOOM
|
||||
static void convert_to_params(double *H, TransformationType type,
|
||||
Global_Motion_Params *model) {
|
||||
|
@ -4472,20 +4473,36 @@ static void encode_frame_internal(VP10_COMP *cpi) {
|
|||
rdc->ex_search_count = 0; // Exhaustive mesh search hits.
|
||||
|
||||
#if CONFIG_GLOBAL_MOTION
|
||||
// TODO(sarahparker) this is a placeholder for gm computation
|
||||
vpx_clear_system_state();
|
||||
vp10_zero(cpi->global_motion_used);
|
||||
if (cpi->common.frame_type == INTER_FRAME && cpi->Source) {
|
||||
YV12_BUFFER_CONFIG *ref_buf;
|
||||
int frame;
|
||||
double H[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 1 };
|
||||
double H[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
|
||||
for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) {
|
||||
ref_buf = get_ref_frame_buffer(cpi, frame);
|
||||
if (ref_buf) {
|
||||
if (compute_global_motion_feature_based(cpi, GLOBAL_MOTION_MODEL,
|
||||
cpi->Source, ref_buf, 0.5, H))
|
||||
if (compute_global_motion_feature_based(GLOBAL_MOTION_MODEL,
|
||||
cpi->Source, ref_buf, H)) {
|
||||
convert_model_to_params(H, GLOBAL_MOTION_MODEL,
|
||||
&cm->global_motion[frame]);
|
||||
if (get_gmtype(&cm->global_motion[frame]) > GLOBAL_ZERO) {
|
||||
// compute the advantage of using gm parameters over 0 motion
|
||||
double erroradvantage = vp10_warp_erroradv(
|
||||
&cm->global_motion[frame].motion_params,
|
||||
#if CONFIG_VP9_HIGHBITDEPTH
|
||||
xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd,
|
||||
#endif // CONFIG_VP9_HIGHBITDEPTH
|
||||
ref_buf->y_buffer, ref_buf->y_width, ref_buf->y_height,
|
||||
ref_buf->y_stride, cpi->Source->y_buffer, 0, 0,
|
||||
cpi->Source->y_width, cpi->Source->y_height,
|
||||
cpi->Source->y_stride, 0, 0, 16, 16);
|
||||
if (erroradvantage > GLOBAL_MOTION_ADVANTAGE_THRESH)
|
||||
// Not enough advantage in using a global model. Make 0.
|
||||
memset(&cm->global_motion[frame], 0,
|
||||
sizeof(cm->global_motion[frame]));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -18,17 +18,71 @@
|
|||
|
||||
#include "vp10/encoder/segmentation.h"
|
||||
#include "vp10/encoder/global_motion.h"
|
||||
#include "vp10/encoder/corner_detect.h"
|
||||
#include "vp10/encoder/corner_match.h"
|
||||
#include "vp10/encoder/ransac.h"
|
||||
|
||||
int compute_global_motion_feature_based(struct VP10_COMP *cpi,
|
||||
TransformationType type,
|
||||
#define MAX_CORNERS 4096
|
||||
#define MIN_INLIER_PROB 0.1
|
||||
|
||||
INLINE RansacType get_ransac_type(TransformationType type) {
|
||||
switch (type) {
|
||||
case HOMOGRAPHY: return ransacHomography;
|
||||
case AFFINE: return ransacAffine;
|
||||
case ROTZOOM: return ransacRotZoom;
|
||||
case TRANSLATION: return ransacTranslation;
|
||||
default: assert(0); return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
// computes global motion parameters by fitting a model using RANSAC
|
||||
static int compute_global_motion_params(TransformationType type,
|
||||
double *correspondences,
|
||||
int num_correspondences, double *params,
|
||||
int *inlier_map) {
|
||||
int result;
|
||||
int num_inliers = 0;
|
||||
RansacType ransac = get_ransac_type(type);
|
||||
if (ransac == NULL) return 0;
|
||||
|
||||
result = ransac(correspondences, num_correspondences, &num_inliers,
|
||||
inlier_map, params);
|
||||
if (!result && num_inliers < MIN_INLIER_PROB * num_correspondences) {
|
||||
result = 1;
|
||||
num_inliers = 0;
|
||||
}
|
||||
return num_inliers;
|
||||
}
|
||||
|
||||
int compute_global_motion_feature_based(TransformationType type,
|
||||
YV12_BUFFER_CONFIG *frm,
|
||||
YV12_BUFFER_CONFIG *ref,
|
||||
double inlier_prob, double *H) {
|
||||
(void)cpi;
|
||||
(void)type;
|
||||
(void)frm;
|
||||
(void)ref;
|
||||
(void)inlier_prob;
|
||||
(void)H;
|
||||
return 0;
|
||||
double *params) {
|
||||
int num_frm_corners, num_ref_corners;
|
||||
int num_correspondences;
|
||||
double *correspondences;
|
||||
int num_inliers;
|
||||
int frm_corners[2 * MAX_CORNERS], ref_corners[2 * MAX_CORNERS];
|
||||
int *inlier_map = NULL;
|
||||
|
||||
// compute interest points in images using FAST features
|
||||
num_frm_corners = FastCornerDetect(frm->y_buffer, frm->y_width, frm->y_height,
|
||||
frm->y_stride, frm_corners, MAX_CORNERS);
|
||||
num_ref_corners = FastCornerDetect(ref->y_buffer, ref->y_width, ref->y_height,
|
||||
ref->y_stride, ref_corners, MAX_CORNERS);
|
||||
|
||||
// find correspondences between the two images
|
||||
correspondences =
|
||||
(double *)malloc(num_frm_corners * 4 * sizeof(*correspondences));
|
||||
num_correspondences = determine_correspondence(
|
||||
frm->y_buffer, (int *)frm_corners, num_frm_corners, ref->y_buffer,
|
||||
(int *)ref_corners, num_ref_corners, frm->y_width, frm->y_height,
|
||||
frm->y_stride, ref->y_stride, correspondences);
|
||||
|
||||
inlier_map = (int *)malloc(num_correspondences * sizeof(*inlier_map));
|
||||
num_inliers = compute_global_motion_params(
|
||||
type, correspondences, num_correspondences, params, inlier_map);
|
||||
free(correspondences);
|
||||
free(inlier_map);
|
||||
return (num_inliers > 0);
|
||||
}
|
||||
|
|
|
@ -17,11 +17,11 @@
|
|||
extern "C" {
|
||||
#endif
|
||||
|
||||
int compute_global_motion_feature_based(struct VP10_COMP *cpi,
|
||||
TransformationType type,
|
||||
// compute global motion parameters between two frames
|
||||
int compute_global_motion_feature_based(TransformationType type,
|
||||
YV12_BUFFER_CONFIG *frm,
|
||||
YV12_BUFFER_CONFIG *ref,
|
||||
double inlier_prob, double *H);
|
||||
double *params);
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
|
|
@ -0,0 +1,940 @@
|
|||
/*
|
||||
* (c) 2010 The WebM project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#include <memory.h>
|
||||
#include <math.h>
|
||||
#include <time.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <assert.h>
|
||||
|
||||
#include "vp10/encoder/ransac.h"
|
||||
|
||||
#define MAX_PARAMDIM 9
|
||||
#define MAX_MINPTS 4
|
||||
|
||||
#define MAX_DEGENERATE_ITER 10
|
||||
#define MINPTS_MULTIPLIER 5
|
||||
|
||||
// svdcmp
|
||||
// Adopted from Numerical Recipes in C
|
||||
|
||||
static const double TINY_NEAR_ZERO = 1.0E-12;
|
||||
|
||||
static inline double SIGN(double a, double b) {
|
||||
return ((b) >= 0 ? fabs(a) : -fabs(a));
|
||||
}
|
||||
|
||||
static inline double PYTHAG(double a, double b) {
|
||||
double absa, absb, ct;
|
||||
absa = fabs(a);
|
||||
absb = fabs(b);
|
||||
|
||||
if (absa > absb) {
|
||||
ct = absb / absa;
|
||||
return absa * sqrt(1.0 + ct * ct);
|
||||
} else {
|
||||
ct = absa / absb;
|
||||
return (absb == 0) ? 0 : absb * sqrt(1.0 + ct * ct);
|
||||
}
|
||||
}
|
||||
|
||||
int IMIN(int a, int b) { return (((a) < (b)) ? (a) : (b)); }
|
||||
|
||||
int IMAX(int a, int b) { return (((a) < (b)) ? (b) : (a)); }
|
||||
|
||||
void MultiplyMat(double *m1, double *m2, double *res, const int M1,
|
||||
const int N1, const int N2) {
|
||||
int timesInner = N1;
|
||||
int timesRows = M1;
|
||||
int timesCols = N2;
|
||||
double sum;
|
||||
|
||||
int row, col, inner;
|
||||
for (row = 0; row < timesRows; ++row) {
|
||||
for (col = 0; col < timesCols; ++col) {
|
||||
sum = 0;
|
||||
for (inner = 0; inner < timesInner; ++inner)
|
||||
sum += m1[row * N1 + inner] * m2[inner * N2 + col];
|
||||
*(res++) = sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static int svdcmp_(double **u, int m, int n, double w[], double **v) {
|
||||
const int max_its = 30;
|
||||
int flag, i, its, j, jj, k, l, nm;
|
||||
double anorm, c, f, g, h, s, scale, x, y, z;
|
||||
double *rv1 = (double *)malloc(sizeof(*rv1) * (n + 1));
|
||||
g = scale = anorm = 0.0;
|
||||
for (i = 0; i < n; i++) {
|
||||
l = i + 1;
|
||||
rv1[i] = scale * g;
|
||||
g = s = scale = 0.0;
|
||||
if (i < m) {
|
||||
for (k = i; k < m; k++) scale += fabs(u[k][i]);
|
||||
if (scale) {
|
||||
for (k = i; k < m; k++) {
|
||||
u[k][i] /= scale;
|
||||
s += u[k][i] * u[k][i];
|
||||
}
|
||||
f = u[i][i];
|
||||
g = -SIGN(sqrt(s), f);
|
||||
h = f * g - s;
|
||||
u[i][i] = f - g;
|
||||
for (j = l; j < n; j++) {
|
||||
for (s = 0.0, k = i; k < m; k++) s += u[k][i] * u[k][j];
|
||||
f = s / h;
|
||||
for (k = i; k < m; k++) u[k][j] += f * u[k][i];
|
||||
}
|
||||
for (k = i; k < m; k++) u[k][i] *= scale;
|
||||
}
|
||||
}
|
||||
w[i] = scale * g;
|
||||
g = s = scale = 0.0;
|
||||
if (i < m && i != n - 1) {
|
||||
for (k = l; k < n; k++) scale += fabs(u[i][k]);
|
||||
if (scale) {
|
||||
for (k = l; k < n; k++) {
|
||||
u[i][k] /= scale;
|
||||
s += u[i][k] * u[i][k];
|
||||
}
|
||||
f = u[i][l];
|
||||
g = -SIGN(sqrt(s), f);
|
||||
h = f * g - s;
|
||||
u[i][l] = f - g;
|
||||
for (k = l; k < n; k++) rv1[k] = u[i][k] / h;
|
||||
for (j = l; j < m; j++) {
|
||||
for (s = 0.0, k = l; k < n; k++) s += u[j][k] * u[i][k];
|
||||
for (k = l; k < n; k++) u[j][k] += s * rv1[k];
|
||||
}
|
||||
for (k = l; k < n; k++) u[i][k] *= scale;
|
||||
}
|
||||
}
|
||||
anorm = fmax(anorm, (fabs(w[i]) + fabs(rv1[i])));
|
||||
}
|
||||
|
||||
for (i = n - 1; i >= 0; i--) {
|
||||
if (i < n - 1) {
|
||||
if (g) {
|
||||
for (j = l; j < n; j++) v[j][i] = (u[i][j] / u[i][l]) / g;
|
||||
for (j = l; j < n; j++) {
|
||||
for (s = 0.0, k = l; k < n; k++) s += u[i][k] * v[k][j];
|
||||
for (k = l; k < n; k++) v[k][j] += s * v[k][i];
|
||||
}
|
||||
}
|
||||
for (j = l; j < n; j++) v[i][j] = v[j][i] = 0.0;
|
||||
}
|
||||
v[i][i] = 1.0;
|
||||
g = rv1[i];
|
||||
l = i;
|
||||
}
|
||||
|
||||
for (i = IMIN(m, n) - 1; i >= 0; i--) {
|
||||
l = i + 1;
|
||||
g = w[i];
|
||||
for (j = l; j < n; j++) u[i][j] = 0.0;
|
||||
if (g) {
|
||||
g = 1.0 / g;
|
||||
for (j = l; j < n; j++) {
|
||||
for (s = 0.0, k = l; k < m; k++) s += u[k][i] * u[k][j];
|
||||
f = (s / u[i][i]) * g;
|
||||
for (k = i; k < m; k++) u[k][j] += f * u[k][i];
|
||||
}
|
||||
for (j = i; j < m; j++) u[j][i] *= g;
|
||||
} else {
|
||||
for (j = i; j < m; j++) u[j][i] = 0.0;
|
||||
}
|
||||
++u[i][i];
|
||||
}
|
||||
for (k = n - 1; k >= 0; k--) {
|
||||
for (its = 0; its < max_its; its++) {
|
||||
flag = 1;
|
||||
for (l = k; l >= 0; l--) {
|
||||
nm = l - 1;
|
||||
if ((double)(fabs(rv1[l]) + anorm) == anorm || nm < 0) {
|
||||
flag = 0;
|
||||
break;
|
||||
}
|
||||
if ((double)(fabs(w[nm]) + anorm) == anorm) break;
|
||||
}
|
||||
if (flag) {
|
||||
c = 0.0;
|
||||
s = 1.0;
|
||||
for (i = l; i <= k; i++) {
|
||||
f = s * rv1[i];
|
||||
rv1[i] = c * rv1[i];
|
||||
if ((double)(fabs(f) + anorm) == anorm) break;
|
||||
g = w[i];
|
||||
h = PYTHAG(f, g);
|
||||
w[i] = h;
|
||||
h = 1.0 / h;
|
||||
c = g * h;
|
||||
s = -f * h;
|
||||
for (j = 0; j < m; j++) {
|
||||
y = u[j][nm];
|
||||
z = u[j][i];
|
||||
u[j][nm] = y * c + z * s;
|
||||
u[j][i] = z * c - y * s;
|
||||
}
|
||||
}
|
||||
}
|
||||
z = w[k];
|
||||
if (l == k) {
|
||||
if (z < 0.0) {
|
||||
w[k] = -z;
|
||||
for (j = 0; j < n; j++) v[j][k] = -v[j][k];
|
||||
}
|
||||
break;
|
||||
}
|
||||
if (its == max_its - 1) {
|
||||
return 1;
|
||||
}
|
||||
assert(k > 0);
|
||||
x = w[l];
|
||||
nm = k - 1;
|
||||
y = w[nm];
|
||||
g = rv1[nm];
|
||||
h = rv1[k];
|
||||
f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2.0 * h * y);
|
||||
g = PYTHAG(f, 1.0);
|
||||
f = ((x - z) * (x + z) + h * ((y / (f + SIGN(g, f))) - h)) / x;
|
||||
c = s = 1.0;
|
||||
for (j = l; j <= nm; j++) {
|
||||
i = j + 1;
|
||||
g = rv1[i];
|
||||
y = w[i];
|
||||
h = s * g;
|
||||
g = c * g;
|
||||
z = PYTHAG(f, h);
|
||||
rv1[j] = z;
|
||||
c = f / z;
|
||||
s = h / z;
|
||||
f = x * c + g * s;
|
||||
g = g * c - x * s;
|
||||
h = y * s;
|
||||
y *= c;
|
||||
for (jj = 0; jj < n; jj++) {
|
||||
x = v[jj][j];
|
||||
z = v[jj][i];
|
||||
v[jj][j] = x * c + z * s;
|
||||
v[jj][i] = z * c - x * s;
|
||||
}
|
||||
z = PYTHAG(f, h);
|
||||
w[j] = z;
|
||||
if (z) {
|
||||
z = 1.0 / z;
|
||||
c = f * z;
|
||||
s = h * z;
|
||||
}
|
||||
f = c * g + s * y;
|
||||
x = c * y - s * g;
|
||||
for (jj = 0; jj < m; jj++) {
|
||||
y = u[jj][j];
|
||||
z = u[jj][i];
|
||||
u[jj][j] = y * c + z * s;
|
||||
u[jj][i] = z * c - y * s;
|
||||
}
|
||||
}
|
||||
rv1[l] = 0.0;
|
||||
rv1[k] = f;
|
||||
w[k] = x;
|
||||
}
|
||||
}
|
||||
free(rv1);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int SVD(double *U, double *W, double *V, double *matx, int M, int N) {
|
||||
// Assumes allocation for U is MxN
|
||||
double **nrU, **nrV;
|
||||
int problem, i;
|
||||
|
||||
nrU = (double **)malloc((M) * sizeof(*nrU));
|
||||
nrV = (double **)malloc((N) * sizeof(*nrV));
|
||||
problem = !(nrU && nrV);
|
||||
if (!problem) {
|
||||
problem = 0;
|
||||
for (i = 0; i < M; i++) {
|
||||
nrU[i] = &U[i * N];
|
||||
}
|
||||
for (i = 0; i < N; i++) {
|
||||
nrV[i] = &V[i * N];
|
||||
}
|
||||
}
|
||||
if (problem) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* copy from given matx into nrU */
|
||||
for (i = 0; i < M; i++) {
|
||||
memcpy(&(nrU[i][0]), matx + N * i, N * sizeof(*matx));
|
||||
}
|
||||
|
||||
/* HERE IT IS: do SVD */
|
||||
if (svdcmp_(nrU, M, N, W, nrV)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* free Numerical Recipes arrays */
|
||||
free(nrU);
|
||||
free(nrV);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int PseudoInverse(double *inv, double *matx, const int M, const int N) {
|
||||
double *U, *W, *V, ans;
|
||||
int i, j, k;
|
||||
U = (double *)malloc(M * N * sizeof(*matx));
|
||||
W = (double *)malloc(N * sizeof(*matx));
|
||||
V = (double *)malloc(N * N * sizeof(*matx));
|
||||
|
||||
if (!(U && W && V)) {
|
||||
return 1;
|
||||
}
|
||||
if (SVD(U, W, V, matx, M, N)) {
|
||||
return 1;
|
||||
}
|
||||
for (i = 0; i < N; i++) {
|
||||
if (fabs(W[i]) < TINY_NEAR_ZERO) {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
for (i = 0; i < N; i++) {
|
||||
for (j = 0; j < M; j++) {
|
||||
ans = 0;
|
||||
for (k = 0; k < N; k++) {
|
||||
ans += V[k + N * i] * U[k + N * j] / W[k];
|
||||
}
|
||||
inv[j + M * i] = ans;
|
||||
}
|
||||
}
|
||||
free(U);
|
||||
free(W);
|
||||
free(V);
|
||||
return 0;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// ransac
|
||||
typedef int (*isDegenerateType)(double *p);
|
||||
typedef void (*normalizeType)(double *p, int np, double *T);
|
||||
typedef void (*denormalizeType)(double *H, double *T1, double *T2);
|
||||
typedef int (*findTransformationType)(int points, double *points1,
|
||||
double *points2, double *H);
|
||||
|
||||
static int get_rand_indices(int npoints, int minpts, int *indices) {
|
||||
int i, j;
|
||||
unsigned int seed = (unsigned int)npoints;
|
||||
int ptr = rand_r(&seed) % npoints;
|
||||
if (minpts > npoints) return 0;
|
||||
indices[0] = ptr;
|
||||
ptr = (ptr == npoints - 1 ? 0 : ptr + 1);
|
||||
i = 1;
|
||||
while (i < minpts) {
|
||||
int index = rand_r(&seed) % npoints;
|
||||
while (index) {
|
||||
ptr = (ptr == npoints - 1 ? 0 : ptr + 1);
|
||||
for (j = 0; j < i; ++j) {
|
||||
if (indices[j] == ptr) break;
|
||||
}
|
||||
if (j == i) index--;
|
||||
}
|
||||
indices[i++] = ptr;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
int ransac_(double *matched_points, int npoints, int *number_of_inliers,
|
||||
int *best_inlier_mask, double *bestH, const int minpts,
|
||||
const int paramdim, isDegenerateType isDegenerate,
|
||||
normalizeType normalize, denormalizeType denormalize,
|
||||
findTransformationType findTransformation,
|
||||
ProjectPointsType projectpoints, TransformationType type) {
|
||||
static const double INLIER_THRESHOLD_NORMALIZED = 0.1;
|
||||
static const double INLIER_THRESHOLD_UNNORMALIZED = 1.0;
|
||||
static const double PROBABILITY_REQUIRED = 0.9;
|
||||
static const double EPS = 1e-12;
|
||||
static const int MIN_TRIALS = 20;
|
||||
|
||||
const double inlier_threshold =
|
||||
(normalize && denormalize ? INLIER_THRESHOLD_NORMALIZED
|
||||
: INLIER_THRESHOLD_UNNORMALIZED);
|
||||
int N = 10000, trial_count = 0;
|
||||
int i;
|
||||
int ret_val = 0;
|
||||
|
||||
int max_inliers = 0;
|
||||
double best_variance = 0.0;
|
||||
double H[MAX_PARAMDIM];
|
||||
WarpedMotionParams wm;
|
||||
double points1[2 * MAX_MINPTS];
|
||||
double points2[2 * MAX_MINPTS];
|
||||
int indices[MAX_MINPTS];
|
||||
|
||||
double *best_inlier_set1;
|
||||
double *best_inlier_set2;
|
||||
double *inlier_set1;
|
||||
double *inlier_set2;
|
||||
double *corners1;
|
||||
int *corners1_int;
|
||||
double *corners2;
|
||||
int *image1_coord;
|
||||
int *inlier_mask;
|
||||
|
||||
double *cnp1, *cnp2;
|
||||
double T1[9], T2[9];
|
||||
|
||||
// srand((unsigned)time(NULL)) ;
|
||||
// better to make this deterministic for a given sequence for ease of testing
|
||||
srand(npoints);
|
||||
|
||||
*number_of_inliers = 0;
|
||||
if (npoints < minpts * MINPTS_MULTIPLIER) {
|
||||
printf("Cannot find motion with %d matches\n", npoints);
|
||||
return 1;
|
||||
}
|
||||
|
||||
memset(&wm, 0, sizeof(wm));
|
||||
best_inlier_set1 = (double *)malloc(sizeof(*best_inlier_set1) * npoints * 2);
|
||||
best_inlier_set2 = (double *)malloc(sizeof(*best_inlier_set2) * npoints * 2);
|
||||
inlier_set1 = (double *)malloc(sizeof(*inlier_set1) * npoints * 2);
|
||||
inlier_set2 = (double *)malloc(sizeof(*inlier_set2) * npoints * 2);
|
||||
corners1 = (double *)malloc(sizeof(*corners1) * npoints * 2);
|
||||
corners1_int = (int *)malloc(sizeof(*corners1_int) * npoints * 2);
|
||||
corners2 = (double *)malloc(sizeof(*corners2) * npoints * 2);
|
||||
image1_coord = (int *)malloc(sizeof(*image1_coord) * npoints * 2);
|
||||
inlier_mask = (int *)malloc(sizeof(*inlier_mask) * npoints);
|
||||
|
||||
for (cnp1 = corners1, cnp2 = corners2, i = 0; i < npoints; ++i) {
|
||||
*(cnp1++) = *(matched_points++);
|
||||
*(cnp1++) = *(matched_points++);
|
||||
*(cnp2++) = *(matched_points++);
|
||||
*(cnp2++) = *(matched_points++);
|
||||
}
|
||||
matched_points -= 4 * npoints;
|
||||
|
||||
if (normalize && denormalize) {
|
||||
normalize(corners1, npoints, T1);
|
||||
normalize(corners2, npoints, T2);
|
||||
}
|
||||
|
||||
while (N > trial_count) {
|
||||
int num_inliers = 0;
|
||||
double sum_distance = 0.0;
|
||||
double sum_distance_squared = 0.0;
|
||||
|
||||
int degenerate = 1;
|
||||
int num_degenerate_iter = 0;
|
||||
while (degenerate) {
|
||||
num_degenerate_iter++;
|
||||
if (!get_rand_indices(npoints, minpts, indices)) {
|
||||
ret_val = 1;
|
||||
goto finish_ransac;
|
||||
}
|
||||
i = 0;
|
||||
while (i < minpts) {
|
||||
int index = indices[i];
|
||||
// add to list
|
||||
points1[i * 2] = corners1[index * 2];
|
||||
points1[i * 2 + 1] = corners1[index * 2 + 1];
|
||||
points2[i * 2] = corners2[index * 2];
|
||||
points2[i * 2 + 1] = corners2[index * 2 + 1];
|
||||
i++;
|
||||
}
|
||||
degenerate = isDegenerate(points1);
|
||||
if (num_degenerate_iter > MAX_DEGENERATE_ITER) {
|
||||
ret_val = 1;
|
||||
goto finish_ransac;
|
||||
}
|
||||
}
|
||||
|
||||
if (findTransformation(minpts, points1, points2, H)) {
|
||||
trial_count++;
|
||||
continue;
|
||||
}
|
||||
|
||||
for (i = 0; i < npoints; ++i) {
|
||||
corners1_int[2 * i] = (int)corners1[i * 2];
|
||||
corners1_int[2 * i + 1] = (int)corners1[i * 2 + 1];
|
||||
}
|
||||
|
||||
vp10_integerize_model(H, type, &wm);
|
||||
projectpoints(wm.wmmat, corners1_int, image1_coord, npoints, 2, 2, 0, 0);
|
||||
|
||||
for (i = 0; i < npoints; ++i) {
|
||||
double dx =
|
||||
(image1_coord[i * 2] >> WARPEDPIXEL_PREC_BITS) - corners2[i * 2];
|
||||
double dy = (image1_coord[i * 2 + 1] >> WARPEDPIXEL_PREC_BITS) -
|
||||
corners2[i * 2 + 1];
|
||||
double distance = sqrt(dx * dx + dy * dy);
|
||||
|
||||
inlier_mask[i] = distance < inlier_threshold;
|
||||
if (inlier_mask[i]) {
|
||||
inlier_set1[num_inliers * 2] = corners1[i * 2];
|
||||
inlier_set1[num_inliers * 2 + 1] = corners1[i * 2 + 1];
|
||||
inlier_set2[num_inliers * 2] = corners2[i * 2];
|
||||
inlier_set2[num_inliers * 2 + 1] = corners2[i * 2 + 1];
|
||||
num_inliers++;
|
||||
sum_distance += distance;
|
||||
sum_distance_squared += distance * distance;
|
||||
}
|
||||
}
|
||||
|
||||
if (num_inliers >= max_inliers) {
|
||||
double mean_distance = sum_distance / ((double)num_inliers);
|
||||
double variance = sum_distance_squared / ((double)num_inliers - 1.0) -
|
||||
mean_distance * mean_distance * ((double)num_inliers) /
|
||||
((double)num_inliers - 1.0);
|
||||
if ((num_inliers > max_inliers) ||
|
||||
(num_inliers == max_inliers && variance < best_variance)) {
|
||||
best_variance = variance;
|
||||
max_inliers = num_inliers;
|
||||
memcpy(bestH, H, paramdim * sizeof(*bestH));
|
||||
memcpy(best_inlier_set1, inlier_set1,
|
||||
num_inliers * 2 * sizeof(*best_inlier_set1));
|
||||
memcpy(best_inlier_set2, inlier_set2,
|
||||
num_inliers * 2 * sizeof(*best_inlier_set2));
|
||||
memcpy(best_inlier_mask, inlier_mask,
|
||||
npoints * sizeof(*best_inlier_mask));
|
||||
|
||||
if (num_inliers > 0) {
|
||||
double fracinliers = (double)num_inliers / (double)npoints;
|
||||
double pNoOutliers = 1 - pow(fracinliers, minpts);
|
||||
int temp;
|
||||
pNoOutliers = fmax(EPS, pNoOutliers);
|
||||
pNoOutliers = fmin(1 - EPS, pNoOutliers);
|
||||
temp = (int)(log(1.0 - PROBABILITY_REQUIRED) / log(pNoOutliers));
|
||||
if (temp > 0 && temp < N) {
|
||||
N = IMAX(temp, MIN_TRIALS);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
trial_count++;
|
||||
}
|
||||
findTransformation(max_inliers, best_inlier_set1, best_inlier_set2, bestH);
|
||||
if (normalize && denormalize) {
|
||||
denormalize(bestH, T1, T2);
|
||||
}
|
||||
*number_of_inliers = max_inliers;
|
||||
finish_ransac:
|
||||
free(best_inlier_set1);
|
||||
free(best_inlier_set2);
|
||||
free(inlier_set1);
|
||||
free(inlier_set2);
|
||||
free(corners1);
|
||||
free(corners2);
|
||||
free(image1_coord);
|
||||
free(inlier_mask);
|
||||
return ret_val;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
static void normalizeHomography(double *pts, int n, double *T) {
|
||||
// Assume the points are 2d coordinates with scale = 1
|
||||
double *p = pts;
|
||||
double mean[2] = { 0, 0 };
|
||||
double msqe = 0;
|
||||
double scale;
|
||||
int i;
|
||||
for (i = 0; i < n; ++i, p += 2) {
|
||||
mean[0] += p[0];
|
||||
mean[1] += p[1];
|
||||
}
|
||||
mean[0] /= n;
|
||||
mean[1] /= n;
|
||||
for (p = pts, i = 0; i < n; ++i, p += 2) {
|
||||
p[0] -= mean[0];
|
||||
p[1] -= mean[1];
|
||||
msqe += sqrt(p[0] * p[0] + p[1] * p[1]);
|
||||
}
|
||||
msqe /= n;
|
||||
scale = sqrt(2) / msqe;
|
||||
T[0] = scale;
|
||||
T[1] = 0;
|
||||
T[2] = -scale * mean[0];
|
||||
T[3] = 0;
|
||||
T[4] = scale;
|
||||
T[5] = -scale * mean[1];
|
||||
T[6] = 0;
|
||||
T[7] = 0;
|
||||
T[8] = 1;
|
||||
for (p = pts, i = 0; i < n; ++i, p += 2) {
|
||||
p[0] *= scale;
|
||||
p[1] *= scale;
|
||||
}
|
||||
}
|
||||
|
||||
static void invnormalize_mat(double *T, double *iT) {
|
||||
double is = 1.0 / T[0];
|
||||
double m0 = -T[2] * is;
|
||||
double m1 = -T[5] * is;
|
||||
iT[0] = is;
|
||||
iT[1] = 0;
|
||||
iT[2] = m0;
|
||||
iT[3] = 0;
|
||||
iT[4] = is;
|
||||
iT[5] = m1;
|
||||
iT[6] = 0;
|
||||
iT[7] = 0;
|
||||
iT[8] = 1;
|
||||
}
|
||||
|
||||
static void denormalizeHomography(double *H, double *T1, double *T2) {
|
||||
double iT2[9];
|
||||
double H2[9];
|
||||
invnormalize_mat(T2, iT2);
|
||||
MultiplyMat(H, T1, H2, 3, 3, 3);
|
||||
MultiplyMat(iT2, H2, H, 3, 3, 3);
|
||||
}
|
||||
|
||||
static void denormalizeAffine(double *H, double *T1, double *T2) {
|
||||
double Ha[MAX_PARAMDIM];
|
||||
Ha[0] = H[0];
|
||||
Ha[1] = H[1];
|
||||
Ha[2] = H[4];
|
||||
Ha[3] = H[2];
|
||||
Ha[4] = H[3];
|
||||
Ha[5] = H[5];
|
||||
Ha[6] = Ha[7] = 0;
|
||||
Ha[8] = 1;
|
||||
denormalizeHomography(Ha, T1, T2);
|
||||
H[0] = Ha[2];
|
||||
H[1] = Ha[5];
|
||||
H[2] = Ha[0];
|
||||
H[3] = Ha[1];
|
||||
H[4] = Ha[3];
|
||||
H[5] = Ha[4];
|
||||
}
|
||||
|
||||
static void denormalizeRotZoom(double *H, double *T1, double *T2) {
|
||||
double Ha[MAX_PARAMDIM];
|
||||
Ha[0] = H[0];
|
||||
Ha[1] = H[1];
|
||||
Ha[2] = H[2];
|
||||
Ha[3] = -H[1];
|
||||
Ha[4] = H[0];
|
||||
Ha[5] = H[3];
|
||||
Ha[6] = Ha[7] = 0;
|
||||
Ha[8] = 1;
|
||||
denormalizeHomography(Ha, T1, T2);
|
||||
H[0] = Ha[2];
|
||||
H[1] = Ha[5];
|
||||
H[2] = Ha[0];
|
||||
H[3] = Ha[1];
|
||||
}
|
||||
|
||||
static void denormalizeTranslation(double *H, double *T1, double *T2) {
|
||||
double Ha[MAX_PARAMDIM];
|
||||
Ha[0] = 1;
|
||||
Ha[1] = 0;
|
||||
Ha[2] = H[0];
|
||||
Ha[3] = 0;
|
||||
Ha[4] = 1;
|
||||
Ha[5] = H[1];
|
||||
Ha[6] = Ha[7] = 0;
|
||||
Ha[8] = 1;
|
||||
denormalizeHomography(Ha, T1, T2);
|
||||
H[0] = Ha[2];
|
||||
H[1] = Ha[5];
|
||||
}
|
||||
|
||||
static int is_collinear3(double *p1, double *p2, double *p3) {
|
||||
static const double collinear_eps = 1e-3;
|
||||
const double v =
|
||||
(p2[0] - p1[0]) * (p3[1] - p1[1]) - (p2[1] - p1[1]) * (p3[0] - p1[0]);
|
||||
return fabs(v) < collinear_eps;
|
||||
}
|
||||
|
||||
static int isDegenerateTranslation(double *p) {
|
||||
return (p[0] - p[2]) * (p[0] - p[2]) + (p[1] - p[3]) * (p[1] - p[3]) <= 2;
|
||||
}
|
||||
|
||||
static int isDegenerateAffine(double *p) {
|
||||
return is_collinear3(p, p + 2, p + 4);
|
||||
}
|
||||
|
||||
static int isDegenerateHomography(double *p) {
|
||||
return is_collinear3(p, p + 2, p + 4) || is_collinear3(p, p + 2, p + 6) ||
|
||||
is_collinear3(p, p + 4, p + 6) || is_collinear3(p + 2, p + 4, p + 6);
|
||||
}
|
||||
|
||||
int findTranslation(const int np, double *pts1, double *pts2, double *mat) {
|
||||
int i;
|
||||
double sx, sy, dx, dy;
|
||||
double sumx, sumy;
|
||||
|
||||
double T1[9], T2[9];
|
||||
normalizeHomography(pts1, np, T1);
|
||||
normalizeHomography(pts2, np, T2);
|
||||
|
||||
sumx = 0;
|
||||
sumy = 0;
|
||||
for (i = 0; i < np; ++i) {
|
||||
dx = *(pts2++);
|
||||
dy = *(pts2++);
|
||||
sx = *(pts1++);
|
||||
sy = *(pts1++);
|
||||
|
||||
sumx += dx - sx;
|
||||
sumy += dy - sy;
|
||||
}
|
||||
mat[0] = sumx / np;
|
||||
mat[1] = sumy / np;
|
||||
denormalizeTranslation(mat, T1, T2);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int findRotZoom(const int np, double *pts1, double *pts2, double *mat) {
|
||||
const int np2 = np * 2;
|
||||
double *a = (double *)malloc(sizeof(*a) * np2 * 9);
|
||||
double *b = a + np2 * 4;
|
||||
double *temp = b + np2;
|
||||
int i;
|
||||
double sx, sy, dx, dy;
|
||||
|
||||
double T1[9], T2[9];
|
||||
normalizeHomography(pts1, np, T1);
|
||||
normalizeHomography(pts2, np, T2);
|
||||
|
||||
for (i = 0; i < np; ++i) {
|
||||
dx = *(pts2++);
|
||||
dy = *(pts2++);
|
||||
sx = *(pts1++);
|
||||
sy = *(pts1++);
|
||||
|
||||
a[i * 2 * 4 + 0] = sx;
|
||||
a[i * 2 * 4 + 1] = sy;
|
||||
a[i * 2 * 4 + 2] = 1;
|
||||
a[i * 2 * 4 + 3] = 0;
|
||||
a[(i * 2 + 1) * 4 + 0] = sy;
|
||||
a[(i * 2 + 1) * 4 + 1] = -sx;
|
||||
a[(i * 2 + 1) * 4 + 2] = 0;
|
||||
a[(i * 2 + 1) * 4 + 3] = 1;
|
||||
|
||||
b[2 * i] = dx;
|
||||
b[2 * i + 1] = dy;
|
||||
}
|
||||
if (PseudoInverse(temp, a, np2, 4)) {
|
||||
free(a);
|
||||
return 1;
|
||||
}
|
||||
MultiplyMat(temp, b, mat, 4, np2, 1);
|
||||
denormalizeRotZoom(mat, T1, T2);
|
||||
free(a);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int findAffine(const int np, double *pts1, double *pts2, double *mat) {
|
||||
const int np2 = np * 2;
|
||||
double *a = (double *)malloc(sizeof(*a) * np2 * 13);
|
||||
double *b = a + np2 * 6;
|
||||
double *temp = b + np2;
|
||||
int i;
|
||||
double sx, sy, dx, dy;
|
||||
|
||||
double T1[9], T2[9];
|
||||
normalizeHomography(pts1, np, T1);
|
||||
normalizeHomography(pts2, np, T2);
|
||||
|
||||
for (i = 0; i < np; ++i) {
|
||||
dx = *(pts2++);
|
||||
dy = *(pts2++);
|
||||
sx = *(pts1++);
|
||||
sy = *(pts1++);
|
||||
|
||||
a[i * 2 * 6 + 0] = sx;
|
||||
a[i * 2 * 6 + 1] = sy;
|
||||
a[i * 2 * 6 + 2] = 0;
|
||||
a[i * 2 * 6 + 3] = 0;
|
||||
a[i * 2 * 6 + 4] = 1;
|
||||
a[i * 2 * 6 + 5] = 0;
|
||||
a[(i * 2 + 1) * 6 + 0] = 0;
|
||||
a[(i * 2 + 1) * 6 + 1] = 0;
|
||||
a[(i * 2 + 1) * 6 + 2] = sx;
|
||||
a[(i * 2 + 1) * 6 + 3] = sy;
|
||||
a[(i * 2 + 1) * 6 + 4] = 0;
|
||||
a[(i * 2 + 1) * 6 + 5] = 1;
|
||||
|
||||
b[2 * i] = dx;
|
||||
b[2 * i + 1] = dy;
|
||||
}
|
||||
if (PseudoInverse(temp, a, np2, 6)) {
|
||||
free(a);
|
||||
return 1;
|
||||
}
|
||||
MultiplyMat(temp, b, mat, 6, np2, 1);
|
||||
denormalizeAffine(mat, T1, T2);
|
||||
free(a);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int findHomography(const int np, double *pts1, double *pts2, double *mat) {
|
||||
// Implemented from Peter Kovesi's normalized implementation
|
||||
const int np3 = np * 3;
|
||||
double *a = (double *)malloc(sizeof(*a) * np3 * 18);
|
||||
double *U = a + np3 * 9;
|
||||
double S[9], V[9 * 9];
|
||||
int i, mini;
|
||||
double sx, sy, dx, dy;
|
||||
double T1[9], T2[9];
|
||||
|
||||
normalizeHomography(pts1, np, T1);
|
||||
normalizeHomography(pts2, np, T2);
|
||||
|
||||
for (i = 0; i < np; ++i) {
|
||||
dx = *(pts2++);
|
||||
dy = *(pts2++);
|
||||
sx = *(pts1++);
|
||||
sy = *(pts1++);
|
||||
|
||||
a[i * 3 * 9 + 0] = a[i * 3 * 9 + 1] = a[i * 3 * 9 + 2] = 0;
|
||||
a[i * 3 * 9 + 3] = -sx;
|
||||
a[i * 3 * 9 + 4] = -sy;
|
||||
a[i * 3 * 9 + 5] = -1;
|
||||
a[i * 3 * 9 + 6] = dy * sx;
|
||||
a[i * 3 * 9 + 7] = dy * sy;
|
||||
a[i * 3 * 9 + 8] = dy;
|
||||
|
||||
a[(i * 3 + 1) * 9 + 0] = sx;
|
||||
a[(i * 3 + 1) * 9 + 1] = sy;
|
||||
a[(i * 3 + 1) * 9 + 2] = 1;
|
||||
a[(i * 3 + 1) * 9 + 3] = a[(i * 3 + 1) * 9 + 4] = a[(i * 3 + 1) * 9 + 5] =
|
||||
0;
|
||||
a[(i * 3 + 1) * 9 + 6] = -dx * sx;
|
||||
a[(i * 3 + 1) * 9 + 7] = -dx * sy;
|
||||
a[(i * 3 + 1) * 9 + 8] = -dx;
|
||||
|
||||
a[(i * 3 + 2) * 9 + 0] = -dy * sx;
|
||||
a[(i * 3 + 2) * 9 + 1] = -dy * sy;
|
||||
a[(i * 3 + 2) * 9 + 2] = -dy;
|
||||
a[(i * 3 + 2) * 9 + 3] = dx * sx;
|
||||
a[(i * 3 + 2) * 9 + 4] = dx * sy;
|
||||
a[(i * 3 + 2) * 9 + 5] = dx;
|
||||
a[(i * 3 + 2) * 9 + 6] = a[(i * 3 + 2) * 9 + 7] = a[(i * 3 + 2) * 9 + 8] =
|
||||
0;
|
||||
}
|
||||
|
||||
if (SVD(U, S, V, a, np3, 9)) {
|
||||
free(a);
|
||||
return 1;
|
||||
} else {
|
||||
double minS = 1e12;
|
||||
mini = -1;
|
||||
for (i = 0; i < 9; ++i) {
|
||||
if (S[i] < minS) {
|
||||
minS = S[i];
|
||||
mini = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (i = 0; i < 9; i++) mat[i] = V[i * 9 + mini];
|
||||
denormalizeHomography(mat, T1, T2);
|
||||
free(a);
|
||||
if (mat[8] == 0.0) {
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
int findHomographyScale1(const int np, double *pts1, double *pts2,
|
||||
double *mat) {
|
||||
// This implementation assumes h33 = 1, but does not seem to give good results
|
||||
const int np2 = np * 2;
|
||||
double *a = (double *)malloc(sizeof(*a) * np2 * 17);
|
||||
double *b = a + np2 * 8;
|
||||
double *temp = b + np2;
|
||||
int i, j;
|
||||
double sx, sy, dx, dy;
|
||||
double T1[9], T2[9];
|
||||
|
||||
normalizeHomography(pts1, np, T1);
|
||||
normalizeHomography(pts2, np, T2);
|
||||
|
||||
for (i = 0, j = np; i < np; ++i, ++j) {
|
||||
dx = *(pts2++);
|
||||
dy = *(pts2++);
|
||||
sx = *(pts1++);
|
||||
sy = *(pts1++);
|
||||
a[i * 8 + 0] = a[j * 8 + 3] = sx;
|
||||
a[i * 8 + 1] = a[j * 8 + 4] = sy;
|
||||
a[i * 8 + 2] = a[j * 8 + 5] = 1;
|
||||
a[i * 8 + 3] = a[i * 8 + 4] = a[i * 8 + 5] = a[j * 8 + 0] = a[j * 8 + 1] =
|
||||
a[j * 8 + 2] = 0;
|
||||
a[i * 8 + 6] = -dx * sx;
|
||||
a[i * 8 + 7] = -dx * sy;
|
||||
a[j * 8 + 6] = -dy * sx;
|
||||
a[j * 8 + 7] = -dy * sy;
|
||||
b[i] = dx;
|
||||
b[j] = dy;
|
||||
}
|
||||
|
||||
if (PseudoInverse(temp, a, np2, 8)) {
|
||||
free(a);
|
||||
return 1;
|
||||
}
|
||||
MultiplyMat(temp, b, &*mat, 8, np2, 1);
|
||||
mat[8] = 1;
|
||||
|
||||
denormalizeHomography(mat, T1, T2);
|
||||
free(a);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int ransacTranslation(double *matched_points, int npoints,
|
||||
int *number_of_inliers, int *best_inlier_mask,
|
||||
double *bestH) {
|
||||
return ransac_(matched_points, npoints, number_of_inliers, best_inlier_mask,
|
||||
bestH, 3, 2, isDegenerateTranslation,
|
||||
NULL, // normalizeHomography,
|
||||
NULL, // denormalizeRotZoom,
|
||||
findTranslation, projectPointsTranslation, TRANSLATION);
|
||||
}
|
||||
|
||||
int ransacRotZoom(double *matched_points, int npoints, int *number_of_inliers,
|
||||
int *best_inlier_mask, double *bestH) {
|
||||
return ransac_(matched_points, npoints, number_of_inliers, best_inlier_mask,
|
||||
bestH, 3, 4, isDegenerateAffine,
|
||||
NULL, // normalizeHomography,
|
||||
NULL, // denormalizeRotZoom,
|
||||
findRotZoom, projectPointsRotZoom, ROTZOOM);
|
||||
}
|
||||
|
||||
int ransacAffine(double *matched_points, int npoints, int *number_of_inliers,
|
||||
int *best_inlier_mask, double *bestH) {
|
||||
return ransac_(matched_points, npoints, number_of_inliers, best_inlier_mask,
|
||||
bestH, 3, 6, isDegenerateAffine,
|
||||
NULL, // normalizeHomography,
|
||||
NULL, // denormalizeAffine,
|
||||
findAffine, projectPointsAffine, AFFINE);
|
||||
}
|
||||
|
||||
int ransacHomography(double *matched_points, int npoints,
|
||||
int *number_of_inliers, int *best_inlier_mask,
|
||||
double *bestH) {
|
||||
int result = ransac_(matched_points, npoints, number_of_inliers,
|
||||
best_inlier_mask, bestH, 4, 8, isDegenerateHomography,
|
||||
NULL, // normalizeHomography,
|
||||
NULL, // denormalizeHomography,
|
||||
findHomography, projectPointsHomography, HOMOGRAPHY);
|
||||
if (!result) {
|
||||
// normalize so that H33 = 1
|
||||
int i;
|
||||
double m = 1.0 / bestH[8];
|
||||
for (i = 0; i < 8; ++i) bestH[i] *= m;
|
||||
bestH[8] = 1.0;
|
||||
}
|
||||
return result;
|
||||
}
|
|
@ -0,0 +1,37 @@
|
|||
/*
|
||||
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#ifndef VP10_ENCODER_RANSAC_H_
|
||||
#define VP10_ENCODER_RANSAC_H_
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
#include <memory.h>
|
||||
|
||||
#include "vp10/common/warped_motion.h"
|
||||
|
||||
typedef int (*RansacType)(double *matched_points, int npoints,
|
||||
int *number_of_inliers, int *best_inlier_mask,
|
||||
double *bestH);
|
||||
|
||||
/* Each of these functions fits a motion model from a set of
|
||||
corresponding points in 2 frames using RANSAC.*/
|
||||
int ransacHomography(double *matched_points, int npoints,
|
||||
int *number_of_inliers, int *best_inlier_indices,
|
||||
double *bestH);
|
||||
int ransacAffine(double *matched_points, int npoints, int *number_of_inliers,
|
||||
int *best_inlier_indices, double *bestH);
|
||||
int ransacRotZoom(double *matched_points, int npoints, int *number_of_inliers,
|
||||
int *best_inlier_indices, double *bestH);
|
||||
int ransacTranslation(double *matched_points, int npoints,
|
||||
int *number_of_inliers, int *best_inlier_indices,
|
||||
double *bestH);
|
||||
#endif // VP10_ENCODER_RANSAC_H
|
|
@ -36,8 +36,18 @@ VP10_CX_SRCS-yes += encoder/ethread.h
|
|||
VP10_CX_SRCS-yes += encoder/ethread.c
|
||||
VP10_CX_SRCS-yes += encoder/extend.c
|
||||
VP10_CX_SRCS-yes += encoder/firstpass.c
|
||||
VP10_CX_SRCS-$(CONFIG_GLOBAL_MOTION) += ../third_party/fastfeat/fast.h
|
||||
VP10_CX_SRCS-$(CONFIG_GLOBAL_MOTION) += ../third_party/fastfeat/nonmax.c
|
||||
VP10_CX_SRCS-$(CONFIG_GLOBAL_MOTION) += ../third_party/fastfeat/fast_9.c
|
||||
VP10_CX_SRCS-$(CONFIG_GLOBAL_MOTION) += ../third_party/fastfeat/fast.c
|
||||
VP10_CX_SRCS-$(CONFIG_GLOBAL_MOTION) += encoder/corner_match.c
|
||||
VP10_CX_SRCS-$(CONFIG_GLOBAL_MOTION) += encoder/corner_match.h
|
||||
VP10_CX_SRCS-$(CONFIG_GLOBAL_MOTION) += encoder/corner_detect.c
|
||||
VP10_CX_SRCS-$(CONFIG_GLOBAL_MOTION) += encoder/corner_detect.h
|
||||
VP10_CX_SRCS-$(CONFIG_GLOBAL_MOTION) += encoder/global_motion.c
|
||||
VP10_CX_SRCS-$(CONFIG_GLOBAL_MOTION) += encoder/global_motion.h
|
||||
VP10_CX_SRCS-$(CONFIG_GLOBAL_MOTION) += encoder/ransac.c
|
||||
VP10_CX_SRCS-$(CONFIG_GLOBAL_MOTION) += encoder/ransac.h
|
||||
VP10_CX_SRCS-yes += encoder/block.h
|
||||
VP10_CX_SRCS-yes += encoder/bitstream.h
|
||||
VP10_CX_SRCS-yes += encoder/encodemb.h
|
||||
|
|
Загрузка…
Ссылка в новой задаче