Merge "Move warping model estimation functions to COMMON folder" into nextgenv2
This commit is contained in:
Коммит
8e87224604
|
@ -632,3 +632,587 @@ void av1_integerize_model(const double *model, TransformationType wmtype,
|
|||
default: assert(0 && "Invalid TransformationType");
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// svdcmp
|
||||
// Adopted from Numerical Recipes in C
|
||||
|
||||
static const double TINY_NEAR_ZERO = 1.0E-12;
|
||||
|
||||
static INLINE double sign(double a, double b) {
|
||||
return ((b) >= 0 ? fabs(a) : -fabs(a));
|
||||
}
|
||||
|
||||
static INLINE double pythag(double a, double b) {
|
||||
double ct;
|
||||
const double absa = fabs(a);
|
||||
const double absb = fabs(b);
|
||||
|
||||
if (absa > absb) {
|
||||
ct = absb / absa;
|
||||
return absa * sqrt(1.0 + ct * ct);
|
||||
} else {
|
||||
ct = absa / absb;
|
||||
return (absb == 0) ? 0 : absb * sqrt(1.0 + ct * ct);
|
||||
}
|
||||
}
|
||||
|
||||
static void multiply_mat(const double *m1, const double *m2, double *res,
|
||||
const int m1_rows, const int inner_dim,
|
||||
const int m2_cols) {
|
||||
double sum;
|
||||
|
||||
int row, col, inner;
|
||||
for (row = 0; row < m1_rows; ++row) {
|
||||
for (col = 0; col < m2_cols; ++col) {
|
||||
sum = 0;
|
||||
for (inner = 0; inner < inner_dim; ++inner)
|
||||
sum += m1[row * inner_dim + inner] * m2[inner * m2_cols + col];
|
||||
*(res++) = sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static int svdcmp(double **u, int m, int n, double w[], double **v) {
|
||||
const int max_its = 30;
|
||||
int flag, i, its, j, jj, k, l, nm;
|
||||
double anorm, c, f, g, h, s, scale, x, y, z;
|
||||
double *rv1 = (double *)aom_malloc(sizeof(*rv1) * (n + 1));
|
||||
g = scale = anorm = 0.0;
|
||||
for (i = 0; i < n; i++) {
|
||||
l = i + 1;
|
||||
rv1[i] = scale * g;
|
||||
g = s = scale = 0.0;
|
||||
if (i < m) {
|
||||
for (k = i; k < m; k++) scale += fabs(u[k][i]);
|
||||
if (scale) {
|
||||
for (k = i; k < m; k++) {
|
||||
u[k][i] /= scale;
|
||||
s += u[k][i] * u[k][i];
|
||||
}
|
||||
f = u[i][i];
|
||||
g = -sign(sqrt(s), f);
|
||||
h = f * g - s;
|
||||
u[i][i] = f - g;
|
||||
for (j = l; j < n; j++) {
|
||||
for (s = 0.0, k = i; k < m; k++) s += u[k][i] * u[k][j];
|
||||
f = s / h;
|
||||
for (k = i; k < m; k++) u[k][j] += f * u[k][i];
|
||||
}
|
||||
for (k = i; k < m; k++) u[k][i] *= scale;
|
||||
}
|
||||
}
|
||||
w[i] = scale * g;
|
||||
g = s = scale = 0.0;
|
||||
if (i < m && i != n - 1) {
|
||||
for (k = l; k < n; k++) scale += fabs(u[i][k]);
|
||||
if (scale) {
|
||||
for (k = l; k < n; k++) {
|
||||
u[i][k] /= scale;
|
||||
s += u[i][k] * u[i][k];
|
||||
}
|
||||
f = u[i][l];
|
||||
g = -sign(sqrt(s), f);
|
||||
h = f * g - s;
|
||||
u[i][l] = f - g;
|
||||
for (k = l; k < n; k++) rv1[k] = u[i][k] / h;
|
||||
for (j = l; j < m; j++) {
|
||||
for (s = 0.0, k = l; k < n; k++) s += u[j][k] * u[i][k];
|
||||
for (k = l; k < n; k++) u[j][k] += s * rv1[k];
|
||||
}
|
||||
for (k = l; k < n; k++) u[i][k] *= scale;
|
||||
}
|
||||
}
|
||||
anorm = fmax(anorm, (fabs(w[i]) + fabs(rv1[i])));
|
||||
}
|
||||
|
||||
for (i = n - 1; i >= 0; i--) {
|
||||
if (i < n - 1) {
|
||||
if (g) {
|
||||
for (j = l; j < n; j++) v[j][i] = (u[i][j] / u[i][l]) / g;
|
||||
for (j = l; j < n; j++) {
|
||||
for (s = 0.0, k = l; k < n; k++) s += u[i][k] * v[k][j];
|
||||
for (k = l; k < n; k++) v[k][j] += s * v[k][i];
|
||||
}
|
||||
}
|
||||
for (j = l; j < n; j++) v[i][j] = v[j][i] = 0.0;
|
||||
}
|
||||
v[i][i] = 1.0;
|
||||
g = rv1[i];
|
||||
l = i;
|
||||
}
|
||||
for (i = AOMMIN(m, n) - 1; i >= 0; i--) {
|
||||
l = i + 1;
|
||||
g = w[i];
|
||||
for (j = l; j < n; j++) u[i][j] = 0.0;
|
||||
if (g) {
|
||||
g = 1.0 / g;
|
||||
for (j = l; j < n; j++) {
|
||||
for (s = 0.0, k = l; k < m; k++) s += u[k][i] * u[k][j];
|
||||
f = (s / u[i][i]) * g;
|
||||
for (k = i; k < m; k++) u[k][j] += f * u[k][i];
|
||||
}
|
||||
for (j = i; j < m; j++) u[j][i] *= g;
|
||||
} else {
|
||||
for (j = i; j < m; j++) u[j][i] = 0.0;
|
||||
}
|
||||
++u[i][i];
|
||||
}
|
||||
for (k = n - 1; k >= 0; k--) {
|
||||
for (its = 0; its < max_its; its++) {
|
||||
flag = 1;
|
||||
for (l = k; l >= 0; l--) {
|
||||
nm = l - 1;
|
||||
if ((double)(fabs(rv1[l]) + anorm) == anorm || nm < 0) {
|
||||
flag = 0;
|
||||
break;
|
||||
}
|
||||
if ((double)(fabs(w[nm]) + anorm) == anorm) break;
|
||||
}
|
||||
if (flag) {
|
||||
c = 0.0;
|
||||
s = 1.0;
|
||||
for (i = l; i <= k; i++) {
|
||||
f = s * rv1[i];
|
||||
rv1[i] = c * rv1[i];
|
||||
if ((double)(fabs(f) + anorm) == anorm) break;
|
||||
g = w[i];
|
||||
h = pythag(f, g);
|
||||
w[i] = h;
|
||||
h = 1.0 / h;
|
||||
c = g * h;
|
||||
s = -f * h;
|
||||
for (j = 0; j < m; j++) {
|
||||
y = u[j][nm];
|
||||
z = u[j][i];
|
||||
u[j][nm] = y * c + z * s;
|
||||
u[j][i] = z * c - y * s;
|
||||
}
|
||||
}
|
||||
}
|
||||
z = w[k];
|
||||
if (l == k) {
|
||||
if (z < 0.0) {
|
||||
w[k] = -z;
|
||||
for (j = 0; j < n; j++) v[j][k] = -v[j][k];
|
||||
}
|
||||
break;
|
||||
}
|
||||
if (its == max_its - 1) {
|
||||
return 1;
|
||||
}
|
||||
assert(k > 0);
|
||||
x = w[l];
|
||||
nm = k - 1;
|
||||
y = w[nm];
|
||||
g = rv1[nm];
|
||||
h = rv1[k];
|
||||
f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2.0 * h * y);
|
||||
g = pythag(f, 1.0);
|
||||
f = ((x - z) * (x + z) + h * ((y / (f + sign(g, f))) - h)) / x;
|
||||
c = s = 1.0;
|
||||
for (j = l; j <= nm; j++) {
|
||||
i = j + 1;
|
||||
g = rv1[i];
|
||||
y = w[i];
|
||||
h = s * g;
|
||||
g = c * g;
|
||||
z = pythag(f, h);
|
||||
rv1[j] = z;
|
||||
c = f / z;
|
||||
s = h / z;
|
||||
f = x * c + g * s;
|
||||
g = g * c - x * s;
|
||||
h = y * s;
|
||||
y *= c;
|
||||
for (jj = 0; jj < n; jj++) {
|
||||
x = v[jj][j];
|
||||
z = v[jj][i];
|
||||
v[jj][j] = x * c + z * s;
|
||||
v[jj][i] = z * c - x * s;
|
||||
}
|
||||
z = pythag(f, h);
|
||||
w[j] = z;
|
||||
if (z) {
|
||||
z = 1.0 / z;
|
||||
c = f * z;
|
||||
s = h * z;
|
||||
}
|
||||
f = c * g + s * y;
|
||||
x = c * y - s * g;
|
||||
for (jj = 0; jj < m; jj++) {
|
||||
y = u[jj][j];
|
||||
z = u[jj][i];
|
||||
u[jj][j] = y * c + z * s;
|
||||
u[jj][i] = z * c - y * s;
|
||||
}
|
||||
}
|
||||
rv1[l] = 0.0;
|
||||
rv1[k] = f;
|
||||
w[k] = x;
|
||||
}
|
||||
}
|
||||
aom_free(rv1);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int SVD(double *U, double *W, double *V, double *matx, int M, int N) {
|
||||
// Assumes allocation for U is MxN
|
||||
double **nrU = (double **)aom_malloc((M) * sizeof(*nrU));
|
||||
double **nrV = (double **)aom_malloc((N) * sizeof(*nrV));
|
||||
int problem, i;
|
||||
|
||||
problem = !(nrU && nrV);
|
||||
if (!problem) {
|
||||
for (i = 0; i < M; i++) {
|
||||
nrU[i] = &U[i * N];
|
||||
}
|
||||
for (i = 0; i < N; i++) {
|
||||
nrV[i] = &V[i * N];
|
||||
}
|
||||
} else {
|
||||
if (nrU) aom_free(nrU);
|
||||
if (nrV) aom_free(nrV);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* copy from given matx into nrU */
|
||||
for (i = 0; i < M; i++) {
|
||||
memcpy(&(nrU[i][0]), matx + N * i, N * sizeof(*matx));
|
||||
}
|
||||
|
||||
/* HERE IT IS: do SVD */
|
||||
if (svdcmp(nrU, M, N, W, nrV)) {
|
||||
aom_free(nrU);
|
||||
aom_free(nrV);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* aom_free Numerical Recipes arrays */
|
||||
aom_free(nrU);
|
||||
aom_free(nrV);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int pseudo_inverse(double *inv, double *matx, const int M, const int N) {
|
||||
double ans;
|
||||
int i, j, k;
|
||||
double *const U = (double *)aom_malloc(M * N * sizeof(*matx));
|
||||
double *const W = (double *)aom_malloc(N * sizeof(*matx));
|
||||
double *const V = (double *)aom_malloc(N * N * sizeof(*matx));
|
||||
|
||||
if (!(U && W && V)) {
|
||||
return 1;
|
||||
}
|
||||
if (SVD(U, W, V, matx, M, N)) {
|
||||
return 1;
|
||||
}
|
||||
for (i = 0; i < N; i++) {
|
||||
if (fabs(W[i]) < TINY_NEAR_ZERO) {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
for (i = 0; i < N; i++) {
|
||||
for (j = 0; j < M; j++) {
|
||||
ans = 0;
|
||||
for (k = 0; k < N; k++) {
|
||||
ans += V[k + N * i] * U[k + N * j] / W[k];
|
||||
}
|
||||
inv[j + M * i] = ans;
|
||||
}
|
||||
}
|
||||
aom_free(U);
|
||||
aom_free(W);
|
||||
aom_free(V);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void normalize_homography(double *pts, int n, double *T) {
|
||||
// Assume the points are 2d coordinates with scale = 1
|
||||
double *p = pts;
|
||||
double mean[2] = { 0, 0 };
|
||||
double msqe = 0;
|
||||
double scale;
|
||||
int i;
|
||||
for (i = 0; i < n; ++i, p += 2) {
|
||||
mean[0] += p[0];
|
||||
mean[1] += p[1];
|
||||
}
|
||||
mean[0] /= n;
|
||||
mean[1] /= n;
|
||||
for (p = pts, i = 0; i < n; ++i, p += 2) {
|
||||
p[0] -= mean[0];
|
||||
p[1] -= mean[1];
|
||||
msqe += sqrt(p[0] * p[0] + p[1] * p[1]);
|
||||
}
|
||||
msqe /= n;
|
||||
scale = sqrt(2) / msqe;
|
||||
T[0] = scale;
|
||||
T[1] = 0;
|
||||
T[2] = -scale * mean[0];
|
||||
T[3] = 0;
|
||||
T[4] = scale;
|
||||
T[5] = -scale * mean[1];
|
||||
T[6] = 0;
|
||||
T[7] = 0;
|
||||
T[8] = 1;
|
||||
for (p = pts, i = 0; i < n; ++i, p += 2) {
|
||||
p[0] *= scale;
|
||||
p[1] *= scale;
|
||||
}
|
||||
}
|
||||
|
||||
static void invnormalize_mat(double *T, double *iT) {
|
||||
double is = 1.0 / T[0];
|
||||
double m0 = -T[2] * is;
|
||||
double m1 = -T[5] * is;
|
||||
iT[0] = is;
|
||||
iT[1] = 0;
|
||||
iT[2] = m0;
|
||||
iT[3] = 0;
|
||||
iT[4] = is;
|
||||
iT[5] = m1;
|
||||
iT[6] = 0;
|
||||
iT[7] = 0;
|
||||
iT[8] = 1;
|
||||
}
|
||||
|
||||
static void denormalize_homography(double *params, double *T1, double *T2) {
|
||||
double iT2[9];
|
||||
double params2[9];
|
||||
invnormalize_mat(T2, iT2);
|
||||
multiply_mat(params, T1, params2, 3, 3, 3);
|
||||
multiply_mat(iT2, params2, params, 3, 3, 3);
|
||||
}
|
||||
|
||||
static void denormalize_affine(double *params, double *T1, double *T2) {
|
||||
double params_denorm[MAX_PARAMDIM];
|
||||
params_denorm[0] = params[0];
|
||||
params_denorm[1] = params[1];
|
||||
params_denorm[2] = params[4];
|
||||
params_denorm[3] = params[2];
|
||||
params_denorm[4] = params[3];
|
||||
params_denorm[5] = params[5];
|
||||
params_denorm[6] = params_denorm[7] = 0;
|
||||
params_denorm[8] = 1;
|
||||
denormalize_homography(params_denorm, T1, T2);
|
||||
params[0] = params_denorm[5];
|
||||
params[1] = params_denorm[2];
|
||||
params[2] = params_denorm[1];
|
||||
params[3] = params_denorm[0];
|
||||
params[4] = params_denorm[3];
|
||||
params[5] = params_denorm[4];
|
||||
}
|
||||
|
||||
static void denormalize_rotzoom(double *params, double *T1, double *T2) {
|
||||
double params_denorm[MAX_PARAMDIM];
|
||||
params_denorm[0] = params[0];
|
||||
params_denorm[1] = params[1];
|
||||
params_denorm[2] = params[2];
|
||||
params_denorm[3] = -params[1];
|
||||
params_denorm[4] = params[0];
|
||||
params_denorm[5] = params[3];
|
||||
params_denorm[6] = params_denorm[7] = 0;
|
||||
params_denorm[8] = 1;
|
||||
denormalize_homography(params_denorm, T1, T2);
|
||||
params[0] = params_denorm[5];
|
||||
params[1] = params_denorm[2];
|
||||
params[2] = params_denorm[1];
|
||||
params[3] = params_denorm[0];
|
||||
}
|
||||
|
||||
static void denormalize_translation(double *params, double *T1, double *T2) {
|
||||
double params_denorm[MAX_PARAMDIM];
|
||||
params_denorm[0] = 1;
|
||||
params_denorm[1] = 0;
|
||||
params_denorm[2] = params[0];
|
||||
params_denorm[3] = 0;
|
||||
params_denorm[4] = 1;
|
||||
params_denorm[5] = params[1];
|
||||
params_denorm[6] = params_denorm[7] = 0;
|
||||
params_denorm[8] = 1;
|
||||
denormalize_homography(params_denorm, T1, T2);
|
||||
params[0] = params_denorm[5];
|
||||
params[1] = params_denorm[2];
|
||||
}
|
||||
|
||||
int find_translation(const int np, double *pts1, double *pts2, double *mat) {
|
||||
int i;
|
||||
double sx, sy, dx, dy;
|
||||
double sumx, sumy;
|
||||
|
||||
double T1[9], T2[9];
|
||||
normalize_homography(pts1, np, T1);
|
||||
normalize_homography(pts2, np, T2);
|
||||
|
||||
sumx = 0;
|
||||
sumy = 0;
|
||||
for (i = 0; i < np; ++i) {
|
||||
dx = *(pts2++);
|
||||
dy = *(pts2++);
|
||||
sx = *(pts1++);
|
||||
sy = *(pts1++);
|
||||
|
||||
sumx += dx - sx;
|
||||
sumy += dy - sy;
|
||||
}
|
||||
mat[0] = sumx / np;
|
||||
mat[1] = sumy / np;
|
||||
denormalize_translation(mat, T1, T2);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int find_rotzoom(const int np, double *pts1, double *pts2, double *mat) {
|
||||
const int np2 = np * 2;
|
||||
double *a = (double *)aom_malloc(sizeof(*a) * np2 * 9);
|
||||
double *b = a + np2 * 4;
|
||||
double *temp = b + np2;
|
||||
int i;
|
||||
double sx, sy, dx, dy;
|
||||
|
||||
double T1[9], T2[9];
|
||||
normalize_homography(pts1, np, T1);
|
||||
normalize_homography(pts2, np, T2);
|
||||
|
||||
for (i = 0; i < np; ++i) {
|
||||
dx = *(pts2++);
|
||||
dy = *(pts2++);
|
||||
sx = *(pts1++);
|
||||
sy = *(pts1++);
|
||||
|
||||
a[i * 2 * 4 + 0] = sx;
|
||||
a[i * 2 * 4 + 1] = sy;
|
||||
a[i * 2 * 4 + 2] = 1;
|
||||
a[i * 2 * 4 + 3] = 0;
|
||||
a[(i * 2 + 1) * 4 + 0] = sy;
|
||||
a[(i * 2 + 1) * 4 + 1] = -sx;
|
||||
a[(i * 2 + 1) * 4 + 2] = 0;
|
||||
a[(i * 2 + 1) * 4 + 3] = 1;
|
||||
|
||||
b[2 * i] = dx;
|
||||
b[2 * i + 1] = dy;
|
||||
}
|
||||
if (pseudo_inverse(temp, a, np2, 4)) {
|
||||
aom_free(a);
|
||||
return 1;
|
||||
}
|
||||
multiply_mat(temp, b, mat, 4, np2, 1);
|
||||
denormalize_rotzoom(mat, T1, T2);
|
||||
aom_free(a);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int find_affine(const int np, double *pts1, double *pts2, double *mat) {
|
||||
const int np2 = np * 2;
|
||||
double *a = (double *)aom_malloc(sizeof(*a) * np2 * 13);
|
||||
double *b = a + np2 * 6;
|
||||
double *temp = b + np2;
|
||||
int i;
|
||||
double sx, sy, dx, dy;
|
||||
|
||||
double T1[9], T2[9];
|
||||
normalize_homography(pts1, np, T1);
|
||||
normalize_homography(pts2, np, T2);
|
||||
|
||||
for (i = 0; i < np; ++i) {
|
||||
dx = *(pts2++);
|
||||
dy = *(pts2++);
|
||||
sx = *(pts1++);
|
||||
sy = *(pts1++);
|
||||
|
||||
a[i * 2 * 6 + 0] = sx;
|
||||
a[i * 2 * 6 + 1] = sy;
|
||||
a[i * 2 * 6 + 2] = 0;
|
||||
a[i * 2 * 6 + 3] = 0;
|
||||
a[i * 2 * 6 + 4] = 1;
|
||||
a[i * 2 * 6 + 5] = 0;
|
||||
a[(i * 2 + 1) * 6 + 0] = 0;
|
||||
a[(i * 2 + 1) * 6 + 1] = 0;
|
||||
a[(i * 2 + 1) * 6 + 2] = sx;
|
||||
a[(i * 2 + 1) * 6 + 3] = sy;
|
||||
a[(i * 2 + 1) * 6 + 4] = 0;
|
||||
a[(i * 2 + 1) * 6 + 5] = 1;
|
||||
|
||||
b[2 * i] = dx;
|
||||
b[2 * i + 1] = dy;
|
||||
}
|
||||
if (pseudo_inverse(temp, a, np2, 6)) {
|
||||
aom_free(a);
|
||||
return 1;
|
||||
}
|
||||
multiply_mat(temp, b, mat, 6, np2, 1);
|
||||
denormalize_affine(mat, T1, T2);
|
||||
aom_free(a);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int find_homography(const int np, double *pts1, double *pts2, double *mat) {
|
||||
// Implemented from Peter Kovesi's normalized implementation
|
||||
const int np3 = np * 3;
|
||||
double *a = (double *)aom_malloc(sizeof(*a) * np3 * 18);
|
||||
double *U = a + np3 * 9;
|
||||
double S[9], V[9 * 9];
|
||||
int i, mini;
|
||||
double sx, sy, dx, dy;
|
||||
double T1[9], T2[9];
|
||||
|
||||
normalize_homography(pts1, np, T1);
|
||||
normalize_homography(pts2, np, T2);
|
||||
|
||||
for (i = 0; i < np; ++i) {
|
||||
dx = *(pts2++);
|
||||
dy = *(pts2++);
|
||||
sx = *(pts1++);
|
||||
sy = *(pts1++);
|
||||
|
||||
a[i * 3 * 9 + 0] = a[i * 3 * 9 + 1] = a[i * 3 * 9 + 2] = 0;
|
||||
a[i * 3 * 9 + 3] = -sx;
|
||||
a[i * 3 * 9 + 4] = -sy;
|
||||
a[i * 3 * 9 + 5] = -1;
|
||||
a[i * 3 * 9 + 6] = dy * sx;
|
||||
a[i * 3 * 9 + 7] = dy * sy;
|
||||
a[i * 3 * 9 + 8] = dy;
|
||||
|
||||
a[(i * 3 + 1) * 9 + 0] = sx;
|
||||
a[(i * 3 + 1) * 9 + 1] = sy;
|
||||
a[(i * 3 + 1) * 9 + 2] = 1;
|
||||
a[(i * 3 + 1) * 9 + 3] = a[(i * 3 + 1) * 9 + 4] = a[(i * 3 + 1) * 9 + 5] =
|
||||
0;
|
||||
a[(i * 3 + 1) * 9 + 6] = -dx * sx;
|
||||
a[(i * 3 + 1) * 9 + 7] = -dx * sy;
|
||||
a[(i * 3 + 1) * 9 + 8] = -dx;
|
||||
|
||||
a[(i * 3 + 2) * 9 + 0] = -dy * sx;
|
||||
a[(i * 3 + 2) * 9 + 1] = -dy * sy;
|
||||
a[(i * 3 + 2) * 9 + 2] = -dy;
|
||||
a[(i * 3 + 2) * 9 + 3] = dx * sx;
|
||||
a[(i * 3 + 2) * 9 + 4] = dx * sy;
|
||||
a[(i * 3 + 2) * 9 + 5] = dx;
|
||||
a[(i * 3 + 2) * 9 + 6] = a[(i * 3 + 2) * 9 + 7] = a[(i * 3 + 2) * 9 + 8] =
|
||||
0;
|
||||
}
|
||||
|
||||
if (SVD(U, S, V, a, np3, 9)) {
|
||||
aom_free(a);
|
||||
return 1;
|
||||
} else {
|
||||
double minS = 1e12;
|
||||
mini = -1;
|
||||
for (i = 0; i < 9; ++i) {
|
||||
if (S[i] < minS) {
|
||||
minS = S[i];
|
||||
mini = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (i = 0; i < 9; i++) mat[i] = V[i * 9 + mini];
|
||||
denormalize_homography(mat, T1, T2);
|
||||
aom_free(a);
|
||||
if (mat[8] == 0.0) {
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -22,6 +22,8 @@
|
|||
#include "aom_dsp/aom_dsp_common.h"
|
||||
#include "av1/common/mv.h"
|
||||
|
||||
#define MAX_PARAMDIM 9
|
||||
|
||||
typedef void (*ProjectPointsFunc)(int16_t *mat, int *points, int *proj,
|
||||
const int n, const int stride_points,
|
||||
const int stride_proj,
|
||||
|
@ -67,4 +69,9 @@ void av1_warp_plane(WarpedMotionParams *wm,
|
|||
// Integerize model into the WarpedMotionParams structure
|
||||
void av1_integerize_model(const double *model, TransformationType wmtype,
|
||||
WarpedMotionParams *wm);
|
||||
|
||||
int find_translation(const int np, double *pts1, double *pts2, double *mat);
|
||||
int find_rotzoom(const int np, double *pts1, double *pts2, double *mat);
|
||||
int find_affine(const int np, double *pts1, double *pts2, double *mat);
|
||||
int find_homography(const int np, double *pts1, double *pts2, double *mat);
|
||||
#endif // AV1_COMMON_WARPED_MOTION_H_
|
||||
|
|
|
@ -17,307 +17,11 @@
|
|||
|
||||
#include "av1/encoder/ransac.h"
|
||||
|
||||
#define MAX_PARAMDIM 9
|
||||
#define MAX_MINPTS 4
|
||||
|
||||
#define MAX_DEGENERATE_ITER 10
|
||||
#define MINPTS_MULTIPLIER 5
|
||||
|
||||
// svdcmp
|
||||
// Adopted from Numerical Recipes in C
|
||||
|
||||
static const double TINY_NEAR_ZERO = 1.0E-12;
|
||||
|
||||
static INLINE double sign(double a, double b) {
|
||||
return ((b) >= 0 ? fabs(a) : -fabs(a));
|
||||
}
|
||||
|
||||
static INLINE double pythag(double a, double b) {
|
||||
double ct;
|
||||
const double absa = fabs(a);
|
||||
const double absb = fabs(b);
|
||||
|
||||
if (absa > absb) {
|
||||
ct = absb / absa;
|
||||
return absa * sqrt(1.0 + ct * ct);
|
||||
} else {
|
||||
ct = absa / absb;
|
||||
return (absb == 0) ? 0 : absb * sqrt(1.0 + ct * ct);
|
||||
}
|
||||
}
|
||||
|
||||
static void multiply_mat(const double *m1, const double *m2, double *res,
|
||||
const int m1_rows, const int inner_dim,
|
||||
const int m2_cols) {
|
||||
double sum;
|
||||
|
||||
int row, col, inner;
|
||||
for (row = 0; row < m1_rows; ++row) {
|
||||
for (col = 0; col < m2_cols; ++col) {
|
||||
sum = 0;
|
||||
for (inner = 0; inner < inner_dim; ++inner)
|
||||
sum += m1[row * inner_dim + inner] * m2[inner * m2_cols + col];
|
||||
*(res++) = sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static int svdcmp(double **u, int m, int n, double w[], double **v) {
|
||||
const int max_its = 30;
|
||||
int flag, i, its, j, jj, k, l, nm;
|
||||
double anorm, c, f, g, h, s, scale, x, y, z;
|
||||
double *rv1 = (double *)aom_malloc(sizeof(*rv1) * (n + 1));
|
||||
g = scale = anorm = 0.0;
|
||||
for (i = 0; i < n; i++) {
|
||||
l = i + 1;
|
||||
rv1[i] = scale * g;
|
||||
g = s = scale = 0.0;
|
||||
if (i < m) {
|
||||
for (k = i; k < m; k++) scale += fabs(u[k][i]);
|
||||
if (scale) {
|
||||
for (k = i; k < m; k++) {
|
||||
u[k][i] /= scale;
|
||||
s += u[k][i] * u[k][i];
|
||||
}
|
||||
f = u[i][i];
|
||||
g = -sign(sqrt(s), f);
|
||||
h = f * g - s;
|
||||
u[i][i] = f - g;
|
||||
for (j = l; j < n; j++) {
|
||||
for (s = 0.0, k = i; k < m; k++) s += u[k][i] * u[k][j];
|
||||
f = s / h;
|
||||
for (k = i; k < m; k++) u[k][j] += f * u[k][i];
|
||||
}
|
||||
for (k = i; k < m; k++) u[k][i] *= scale;
|
||||
}
|
||||
}
|
||||
w[i] = scale * g;
|
||||
g = s = scale = 0.0;
|
||||
if (i < m && i != n - 1) {
|
||||
for (k = l; k < n; k++) scale += fabs(u[i][k]);
|
||||
if (scale) {
|
||||
for (k = l; k < n; k++) {
|
||||
u[i][k] /= scale;
|
||||
s += u[i][k] * u[i][k];
|
||||
}
|
||||
f = u[i][l];
|
||||
g = -sign(sqrt(s), f);
|
||||
h = f * g - s;
|
||||
u[i][l] = f - g;
|
||||
for (k = l; k < n; k++) rv1[k] = u[i][k] / h;
|
||||
for (j = l; j < m; j++) {
|
||||
for (s = 0.0, k = l; k < n; k++) s += u[j][k] * u[i][k];
|
||||
for (k = l; k < n; k++) u[j][k] += s * rv1[k];
|
||||
}
|
||||
for (k = l; k < n; k++) u[i][k] *= scale;
|
||||
}
|
||||
}
|
||||
anorm = fmax(anorm, (fabs(w[i]) + fabs(rv1[i])));
|
||||
}
|
||||
|
||||
for (i = n - 1; i >= 0; i--) {
|
||||
if (i < n - 1) {
|
||||
if (g) {
|
||||
for (j = l; j < n; j++) v[j][i] = (u[i][j] / u[i][l]) / g;
|
||||
for (j = l; j < n; j++) {
|
||||
for (s = 0.0, k = l; k < n; k++) s += u[i][k] * v[k][j];
|
||||
for (k = l; k < n; k++) v[k][j] += s * v[k][i];
|
||||
}
|
||||
}
|
||||
for (j = l; j < n; j++) v[i][j] = v[j][i] = 0.0;
|
||||
}
|
||||
v[i][i] = 1.0;
|
||||
g = rv1[i];
|
||||
l = i;
|
||||
}
|
||||
for (i = AOMMIN(m, n) - 1; i >= 0; i--) {
|
||||
l = i + 1;
|
||||
g = w[i];
|
||||
for (j = l; j < n; j++) u[i][j] = 0.0;
|
||||
if (g) {
|
||||
g = 1.0 / g;
|
||||
for (j = l; j < n; j++) {
|
||||
for (s = 0.0, k = l; k < m; k++) s += u[k][i] * u[k][j];
|
||||
f = (s / u[i][i]) * g;
|
||||
for (k = i; k < m; k++) u[k][j] += f * u[k][i];
|
||||
}
|
||||
for (j = i; j < m; j++) u[j][i] *= g;
|
||||
} else {
|
||||
for (j = i; j < m; j++) u[j][i] = 0.0;
|
||||
}
|
||||
++u[i][i];
|
||||
}
|
||||
for (k = n - 1; k >= 0; k--) {
|
||||
for (its = 0; its < max_its; its++) {
|
||||
flag = 1;
|
||||
for (l = k; l >= 0; l--) {
|
||||
nm = l - 1;
|
||||
if ((double)(fabs(rv1[l]) + anorm) == anorm || nm < 0) {
|
||||
flag = 0;
|
||||
break;
|
||||
}
|
||||
if ((double)(fabs(w[nm]) + anorm) == anorm) break;
|
||||
}
|
||||
if (flag) {
|
||||
c = 0.0;
|
||||
s = 1.0;
|
||||
for (i = l; i <= k; i++) {
|
||||
f = s * rv1[i];
|
||||
rv1[i] = c * rv1[i];
|
||||
if ((double)(fabs(f) + anorm) == anorm) break;
|
||||
g = w[i];
|
||||
h = pythag(f, g);
|
||||
w[i] = h;
|
||||
h = 1.0 / h;
|
||||
c = g * h;
|
||||
s = -f * h;
|
||||
for (j = 0; j < m; j++) {
|
||||
y = u[j][nm];
|
||||
z = u[j][i];
|
||||
u[j][nm] = y * c + z * s;
|
||||
u[j][i] = z * c - y * s;
|
||||
}
|
||||
}
|
||||
}
|
||||
z = w[k];
|
||||
if (l == k) {
|
||||
if (z < 0.0) {
|
||||
w[k] = -z;
|
||||
for (j = 0; j < n; j++) v[j][k] = -v[j][k];
|
||||
}
|
||||
break;
|
||||
}
|
||||
if (its == max_its - 1) {
|
||||
return 1;
|
||||
}
|
||||
assert(k > 0);
|
||||
x = w[l];
|
||||
nm = k - 1;
|
||||
y = w[nm];
|
||||
g = rv1[nm];
|
||||
h = rv1[k];
|
||||
f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2.0 * h * y);
|
||||
g = pythag(f, 1.0);
|
||||
f = ((x - z) * (x + z) + h * ((y / (f + sign(g, f))) - h)) / x;
|
||||
c = s = 1.0;
|
||||
for (j = l; j <= nm; j++) {
|
||||
i = j + 1;
|
||||
g = rv1[i];
|
||||
y = w[i];
|
||||
h = s * g;
|
||||
g = c * g;
|
||||
z = pythag(f, h);
|
||||
rv1[j] = z;
|
||||
c = f / z;
|
||||
s = h / z;
|
||||
f = x * c + g * s;
|
||||
g = g * c - x * s;
|
||||
h = y * s;
|
||||
y *= c;
|
||||
for (jj = 0; jj < n; jj++) {
|
||||
x = v[jj][j];
|
||||
z = v[jj][i];
|
||||
v[jj][j] = x * c + z * s;
|
||||
v[jj][i] = z * c - x * s;
|
||||
}
|
||||
z = pythag(f, h);
|
||||
w[j] = z;
|
||||
if (z) {
|
||||
z = 1.0 / z;
|
||||
c = f * z;
|
||||
s = h * z;
|
||||
}
|
||||
f = c * g + s * y;
|
||||
x = c * y - s * g;
|
||||
for (jj = 0; jj < m; jj++) {
|
||||
y = u[jj][j];
|
||||
z = u[jj][i];
|
||||
u[jj][j] = y * c + z * s;
|
||||
u[jj][i] = z * c - y * s;
|
||||
}
|
||||
}
|
||||
rv1[l] = 0.0;
|
||||
rv1[k] = f;
|
||||
w[k] = x;
|
||||
}
|
||||
}
|
||||
aom_free(rv1);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int SVD(double *U, double *W, double *V, double *matx, int M, int N) {
|
||||
// Assumes allocation for U is MxN
|
||||
double **nrU = (double **)aom_malloc((M) * sizeof(*nrU));
|
||||
double **nrV = (double **)aom_malloc((N) * sizeof(*nrV));
|
||||
int problem, i;
|
||||
|
||||
problem = !(nrU && nrV);
|
||||
if (!problem) {
|
||||
for (i = 0; i < M; i++) {
|
||||
nrU[i] = &U[i * N];
|
||||
}
|
||||
for (i = 0; i < N; i++) {
|
||||
nrV[i] = &V[i * N];
|
||||
}
|
||||
} else {
|
||||
if (nrU) aom_free(nrU);
|
||||
if (nrV) aom_free(nrV);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* copy from given matx into nrU */
|
||||
for (i = 0; i < M; i++) {
|
||||
memcpy(&(nrU[i][0]), matx + N * i, N * sizeof(*matx));
|
||||
}
|
||||
|
||||
/* HERE IT IS: do SVD */
|
||||
if (svdcmp(nrU, M, N, W, nrV)) {
|
||||
aom_free(nrU);
|
||||
aom_free(nrV);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* aom_free Numerical Recipes arrays */
|
||||
aom_free(nrU);
|
||||
aom_free(nrV);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int pseudo_inverse(double *inv, double *matx, const int M, const int N) {
|
||||
double ans;
|
||||
int i, j, k;
|
||||
double *const U = (double *)aom_malloc(M * N * sizeof(*matx));
|
||||
double *const W = (double *)aom_malloc(N * sizeof(*matx));
|
||||
double *const V = (double *)aom_malloc(N * N * sizeof(*matx));
|
||||
|
||||
if (!(U && W && V)) {
|
||||
return 1;
|
||||
}
|
||||
if (SVD(U, W, V, matx, M, N)) {
|
||||
return 1;
|
||||
}
|
||||
for (i = 0; i < N; i++) {
|
||||
if (fabs(W[i]) < TINY_NEAR_ZERO) {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
for (i = 0; i < N; i++) {
|
||||
for (j = 0; j < M; j++) {
|
||||
ans = 0;
|
||||
for (k = 0; k < N; k++) {
|
||||
ans += V[k + N * i] * U[k + N * j] / W[k];
|
||||
}
|
||||
inv[j + M * i] = ans;
|
||||
}
|
||||
}
|
||||
aom_free(U);
|
||||
aom_free(W);
|
||||
aom_free(V);
|
||||
return 0;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// ransac
|
||||
typedef int (*IsDegenerateFunc)(double *p);
|
||||
|
@ -594,117 +298,6 @@ finish_ransac:
|
|||
return ret_val;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
static void normalize_homography(double *pts, int n, double *T) {
|
||||
// Assume the points are 2d coordinates with scale = 1
|
||||
double *p = pts;
|
||||
double mean[2] = { 0, 0 };
|
||||
double msqe = 0;
|
||||
double scale;
|
||||
int i;
|
||||
for (i = 0; i < n; ++i, p += 2) {
|
||||
mean[0] += p[0];
|
||||
mean[1] += p[1];
|
||||
}
|
||||
mean[0] /= n;
|
||||
mean[1] /= n;
|
||||
for (p = pts, i = 0; i < n; ++i, p += 2) {
|
||||
p[0] -= mean[0];
|
||||
p[1] -= mean[1];
|
||||
msqe += sqrt(p[0] * p[0] + p[1] * p[1]);
|
||||
}
|
||||
msqe /= n;
|
||||
scale = sqrt(2) / msqe;
|
||||
T[0] = scale;
|
||||
T[1] = 0;
|
||||
T[2] = -scale * mean[0];
|
||||
T[3] = 0;
|
||||
T[4] = scale;
|
||||
T[5] = -scale * mean[1];
|
||||
T[6] = 0;
|
||||
T[7] = 0;
|
||||
T[8] = 1;
|
||||
for (p = pts, i = 0; i < n; ++i, p += 2) {
|
||||
p[0] *= scale;
|
||||
p[1] *= scale;
|
||||
}
|
||||
}
|
||||
|
||||
static void invnormalize_mat(double *T, double *iT) {
|
||||
double is = 1.0 / T[0];
|
||||
double m0 = -T[2] * is;
|
||||
double m1 = -T[5] * is;
|
||||
iT[0] = is;
|
||||
iT[1] = 0;
|
||||
iT[2] = m0;
|
||||
iT[3] = 0;
|
||||
iT[4] = is;
|
||||
iT[5] = m1;
|
||||
iT[6] = 0;
|
||||
iT[7] = 0;
|
||||
iT[8] = 1;
|
||||
}
|
||||
|
||||
static void denormalize_homography(double *params, double *T1, double *T2) {
|
||||
double iT2[9];
|
||||
double params2[9];
|
||||
invnormalize_mat(T2, iT2);
|
||||
multiply_mat(params, T1, params2, 3, 3, 3);
|
||||
multiply_mat(iT2, params2, params, 3, 3, 3);
|
||||
}
|
||||
|
||||
static void denormalize_affine(double *params, double *T1, double *T2) {
|
||||
double params_denorm[MAX_PARAMDIM];
|
||||
params_denorm[0] = params[0];
|
||||
params_denorm[1] = params[1];
|
||||
params_denorm[2] = params[4];
|
||||
params_denorm[3] = params[2];
|
||||
params_denorm[4] = params[3];
|
||||
params_denorm[5] = params[5];
|
||||
params_denorm[6] = params_denorm[7] = 0;
|
||||
params_denorm[8] = 1;
|
||||
denormalize_homography(params_denorm, T1, T2);
|
||||
params[0] = params_denorm[5];
|
||||
params[1] = params_denorm[2];
|
||||
params[2] = params_denorm[1];
|
||||
params[3] = params_denorm[0];
|
||||
params[4] = params_denorm[3];
|
||||
params[5] = params_denorm[4];
|
||||
}
|
||||
|
||||
static void denormalize_rotzoom(double *params, double *T1, double *T2) {
|
||||
double params_denorm[MAX_PARAMDIM];
|
||||
params_denorm[0] = params[0];
|
||||
params_denorm[1] = params[1];
|
||||
params_denorm[2] = params[2];
|
||||
params_denorm[3] = -params[1];
|
||||
params_denorm[4] = params[0];
|
||||
params_denorm[5] = params[3];
|
||||
params_denorm[6] = params_denorm[7] = 0;
|
||||
params_denorm[8] = 1;
|
||||
denormalize_homography(params_denorm, T1, T2);
|
||||
params[0] = params_denorm[5];
|
||||
params[1] = params_denorm[2];
|
||||
params[2] = params_denorm[1];
|
||||
params[3] = params_denorm[0];
|
||||
}
|
||||
|
||||
static void denormalize_translation(double *params, double *T1, double *T2) {
|
||||
double params_denorm[MAX_PARAMDIM];
|
||||
params_denorm[0] = 1;
|
||||
params_denorm[1] = 0;
|
||||
params_denorm[2] = params[0];
|
||||
params_denorm[3] = 0;
|
||||
params_denorm[4] = 1;
|
||||
params_denorm[5] = params[1];
|
||||
params_denorm[6] = params_denorm[7] = 0;
|
||||
params_denorm[8] = 1;
|
||||
denormalize_homography(params_denorm, T1, T2);
|
||||
params[0] = params_denorm[5];
|
||||
params[1] = params_denorm[2];
|
||||
}
|
||||
|
||||
static int is_collinear3(double *p1, double *p2, double *p3) {
|
||||
static const double collinear_eps = 1e-3;
|
||||
const double v =
|
||||
|
@ -725,185 +318,6 @@ static int is_degenerate_homography(double *p) {
|
|||
is_collinear3(p, p + 4, p + 6) || is_collinear3(p + 2, p + 4, p + 6);
|
||||
}
|
||||
|
||||
int find_translation(const int np, double *pts1, double *pts2, double *mat) {
|
||||
int i;
|
||||
double sx, sy, dx, dy;
|
||||
double sumx, sumy;
|
||||
|
||||
double T1[9], T2[9];
|
||||
normalize_homography(pts1, np, T1);
|
||||
normalize_homography(pts2, np, T2);
|
||||
|
||||
sumx = 0;
|
||||
sumy = 0;
|
||||
for (i = 0; i < np; ++i) {
|
||||
dx = *(pts2++);
|
||||
dy = *(pts2++);
|
||||
sx = *(pts1++);
|
||||
sy = *(pts1++);
|
||||
|
||||
sumx += dx - sx;
|
||||
sumy += dy - sy;
|
||||
}
|
||||
mat[0] = sumx / np;
|
||||
mat[1] = sumy / np;
|
||||
denormalize_translation(mat, T1, T2);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int find_rotzoom(const int np, double *pts1, double *pts2, double *mat) {
|
||||
const int np2 = np * 2;
|
||||
double *a = (double *)aom_malloc(sizeof(*a) * np2 * 9);
|
||||
double *b = a + np2 * 4;
|
||||
double *temp = b + np2;
|
||||
int i;
|
||||
double sx, sy, dx, dy;
|
||||
|
||||
double T1[9], T2[9];
|
||||
normalize_homography(pts1, np, T1);
|
||||
normalize_homography(pts2, np, T2);
|
||||
|
||||
for (i = 0; i < np; ++i) {
|
||||
dx = *(pts2++);
|
||||
dy = *(pts2++);
|
||||
sx = *(pts1++);
|
||||
sy = *(pts1++);
|
||||
|
||||
a[i * 2 * 4 + 0] = sx;
|
||||
a[i * 2 * 4 + 1] = sy;
|
||||
a[i * 2 * 4 + 2] = 1;
|
||||
a[i * 2 * 4 + 3] = 0;
|
||||
a[(i * 2 + 1) * 4 + 0] = sy;
|
||||
a[(i * 2 + 1) * 4 + 1] = -sx;
|
||||
a[(i * 2 + 1) * 4 + 2] = 0;
|
||||
a[(i * 2 + 1) * 4 + 3] = 1;
|
||||
|
||||
b[2 * i] = dx;
|
||||
b[2 * i + 1] = dy;
|
||||
}
|
||||
if (pseudo_inverse(temp, a, np2, 4)) {
|
||||
aom_free(a);
|
||||
return 1;
|
||||
}
|
||||
multiply_mat(temp, b, mat, 4, np2, 1);
|
||||
denormalize_rotzoom(mat, T1, T2);
|
||||
aom_free(a);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int find_affine(const int np, double *pts1, double *pts2, double *mat) {
|
||||
const int np2 = np * 2;
|
||||
double *a = (double *)aom_malloc(sizeof(*a) * np2 * 13);
|
||||
double *b = a + np2 * 6;
|
||||
double *temp = b + np2;
|
||||
int i;
|
||||
double sx, sy, dx, dy;
|
||||
|
||||
double T1[9], T2[9];
|
||||
normalize_homography(pts1, np, T1);
|
||||
normalize_homography(pts2, np, T2);
|
||||
|
||||
for (i = 0; i < np; ++i) {
|
||||
dx = *(pts2++);
|
||||
dy = *(pts2++);
|
||||
sx = *(pts1++);
|
||||
sy = *(pts1++);
|
||||
|
||||
a[i * 2 * 6 + 0] = sx;
|
||||
a[i * 2 * 6 + 1] = sy;
|
||||
a[i * 2 * 6 + 2] = 0;
|
||||
a[i * 2 * 6 + 3] = 0;
|
||||
a[i * 2 * 6 + 4] = 1;
|
||||
a[i * 2 * 6 + 5] = 0;
|
||||
a[(i * 2 + 1) * 6 + 0] = 0;
|
||||
a[(i * 2 + 1) * 6 + 1] = 0;
|
||||
a[(i * 2 + 1) * 6 + 2] = sx;
|
||||
a[(i * 2 + 1) * 6 + 3] = sy;
|
||||
a[(i * 2 + 1) * 6 + 4] = 0;
|
||||
a[(i * 2 + 1) * 6 + 5] = 1;
|
||||
|
||||
b[2 * i] = dx;
|
||||
b[2 * i + 1] = dy;
|
||||
}
|
||||
if (pseudo_inverse(temp, a, np2, 6)) {
|
||||
aom_free(a);
|
||||
return 1;
|
||||
}
|
||||
multiply_mat(temp, b, mat, 6, np2, 1);
|
||||
denormalize_affine(mat, T1, T2);
|
||||
aom_free(a);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int find_homography(const int np, double *pts1, double *pts2, double *mat) {
|
||||
// Implemented from Peter Kovesi's normalized implementation
|
||||
const int np3 = np * 3;
|
||||
double *a = (double *)aom_malloc(sizeof(*a) * np3 * 18);
|
||||
double *U = a + np3 * 9;
|
||||
double S[9], V[9 * 9];
|
||||
int i, mini;
|
||||
double sx, sy, dx, dy;
|
||||
double T1[9], T2[9];
|
||||
|
||||
normalize_homography(pts1, np, T1);
|
||||
normalize_homography(pts2, np, T2);
|
||||
|
||||
for (i = 0; i < np; ++i) {
|
||||
dx = *(pts2++);
|
||||
dy = *(pts2++);
|
||||
sx = *(pts1++);
|
||||
sy = *(pts1++);
|
||||
|
||||
a[i * 3 * 9 + 0] = a[i * 3 * 9 + 1] = a[i * 3 * 9 + 2] = 0;
|
||||
a[i * 3 * 9 + 3] = -sx;
|
||||
a[i * 3 * 9 + 4] = -sy;
|
||||
a[i * 3 * 9 + 5] = -1;
|
||||
a[i * 3 * 9 + 6] = dy * sx;
|
||||
a[i * 3 * 9 + 7] = dy * sy;
|
||||
a[i * 3 * 9 + 8] = dy;
|
||||
|
||||
a[(i * 3 + 1) * 9 + 0] = sx;
|
||||
a[(i * 3 + 1) * 9 + 1] = sy;
|
||||
a[(i * 3 + 1) * 9 + 2] = 1;
|
||||
a[(i * 3 + 1) * 9 + 3] = a[(i * 3 + 1) * 9 + 4] = a[(i * 3 + 1) * 9 + 5] =
|
||||
0;
|
||||
a[(i * 3 + 1) * 9 + 6] = -dx * sx;
|
||||
a[(i * 3 + 1) * 9 + 7] = -dx * sy;
|
||||
a[(i * 3 + 1) * 9 + 8] = -dx;
|
||||
|
||||
a[(i * 3 + 2) * 9 + 0] = -dy * sx;
|
||||
a[(i * 3 + 2) * 9 + 1] = -dy * sy;
|
||||
a[(i * 3 + 2) * 9 + 2] = -dy;
|
||||
a[(i * 3 + 2) * 9 + 3] = dx * sx;
|
||||
a[(i * 3 + 2) * 9 + 4] = dx * sy;
|
||||
a[(i * 3 + 2) * 9 + 5] = dx;
|
||||
a[(i * 3 + 2) * 9 + 6] = a[(i * 3 + 2) * 9 + 7] = a[(i * 3 + 2) * 9 + 8] =
|
||||
0;
|
||||
}
|
||||
|
||||
if (SVD(U, S, V, a, np3, 9)) {
|
||||
aom_free(a);
|
||||
return 1;
|
||||
} else {
|
||||
double minS = 1e12;
|
||||
mini = -1;
|
||||
for (i = 0; i < 9; ++i) {
|
||||
if (S[i] < minS) {
|
||||
minS = S[i];
|
||||
mini = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (i = 0; i < 9; i++) mat[i] = V[i * 9 + mini];
|
||||
denormalize_homography(mat, T1, T2);
|
||||
aom_free(a);
|
||||
if (mat[8] == 0.0) {
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
int ransac_translation(double *matched_points, int npoints,
|
||||
int *number_of_inliers, int *best_inlier_mask,
|
||||
double *best_params) {
|
||||
|
|
Загрузка…
Ссылка в новой задаче