Merge "Fix ubsan divide by zero warning in ransac" into nextgenv2

This commit is contained in:
James Zern 2016-11-04 00:56:23 +00:00 коммит произвёл Gerrit Code Review
Родитель 97a2c675e7 fa75ae0663
Коммит 9371394492
1 изменённых файлов: 24 добавлений и 18 удалений

Просмотреть файл

@ -81,10 +81,12 @@ static void project_points_double_homography(double *mat, double *points,
const int stride_points,
const int stride_proj) {
int i;
double x, y, Z;
double x, y, Z, Z_inv;
for (i = 0; i < n; ++i) {
x = *(points++), y = *(points++);
Z = 1. / (mat[7] * x + mat[6] * y + 1);
Z_inv = mat[7] * x + mat[6] * y + 1;
assert(fabs(Z_inv) > 0.00001);
Z = 1. / Z_inv;
*(proj++) = (mat[1] * x + mat[0] * y + mat[3]) * Z;
*(proj++) = (mat[2] * x + mat[4] * y + mat[4]) * Z;
points += stride_points - 2;
@ -155,7 +157,7 @@ static int ransac(double *matched_points, int npoints, int *number_of_inliers,
double T1[9], T2[9];
*number_of_inliers = 0;
if (npoints < minpts * MINPTS_MULTIPLIER) {
if (npoints < minpts * MINPTS_MULTIPLIER || npoints == 0) {
printf("Cannot find motion with %d matches\n", npoints);
return 1;
}
@ -245,11 +247,15 @@ static int ransac(double *matched_points, int npoints, int *number_of_inliers,
}
}
if (num_inliers >= max_inliers) {
double mean_distance = sum_distance / ((double)num_inliers);
double variance = sum_distance_squared / ((double)num_inliers - 1.0) -
mean_distance * mean_distance * ((double)num_inliers) /
((double)num_inliers - 1.0);
if (num_inliers >= max_inliers && num_inliers > 1) {
int temp;
double fracinliers, pNoOutliers, mean_distance, variance;
assert(num_inliers > 1);
mean_distance = sum_distance / ((double)num_inliers);
variance = sum_distance_squared / ((double)num_inliers - 1.0) -
mean_distance * mean_distance * ((double)num_inliers) /
((double)num_inliers - 1.0);
if ((num_inliers > max_inliers) ||
(num_inliers == max_inliers && variance < best_variance)) {
best_variance = variance;
@ -262,16 +268,15 @@ static int ransac(double *matched_points, int npoints, int *number_of_inliers,
memcpy(best_inlier_mask, inlier_mask,
npoints * sizeof(*best_inlier_mask));
if (num_inliers > 0) {
double fracinliers = (double)num_inliers / (double)npoints;
double pNoOutliers = 1 - pow(fracinliers, minpts);
int temp;
pNoOutliers = fmax(EPS, pNoOutliers);
pNoOutliers = fmin(1 - EPS, pNoOutliers);
temp = (int)(log(1.0 - PROBABILITY_REQUIRED) / log(pNoOutliers));
if (temp > 0 && temp < N) {
N = AOMMAX(temp, MIN_TRIALS);
}
assert(npoints > 0);
fracinliers = (double)num_inliers / (double)npoints;
pNoOutliers = 1 - pow(fracinliers, minpts);
pNoOutliers = fmax(EPS, pNoOutliers);
pNoOutliers = fmin(1 - EPS, pNoOutliers);
assert(fabs(1.0 - pNoOutliers) > 0.00001);
temp = (int)(log(1.0 - PROBABILITY_REQUIRED) / log(pNoOutliers));
if (temp > 0 && temp < N) {
N = AOMMAX(temp, MIN_TRIALS);
}
}
}
@ -356,6 +361,7 @@ int ransac_homography(double *matched_points, int npoints,
// normalize so that H33 = 1
int i;
const double m = 1.0 / best_params[8];
assert(fabs(best_params[8]) > 0.00001);
for (i = 0; i < 8; ++i) best_params[i] *= m;
best_params[8] = 1.0;
}