Spatial/temporal svc code was removed. Verified using Borg test,
and the results before and after the change are matching.

Change-Id: I4c2ee5cd560428e3e50be02e57e5871ef4246390
This commit is contained in:
Yunqing Wang 2015-08-27 15:11:38 -07:00
Родитель 5c245a46d8
Коммит c147c4d65c
19 изменённых файлов: 111 добавлений и 1814 удалений

Просмотреть файл

@ -291,7 +291,7 @@ void vp10_cyclic_refresh_postencode(VP10_COMP *const cpi) {
}
}
// Set golden frame update interval, for non-svc 1 pass CBR mode.
// Set golden frame update interval, for 1 pass CBR mode.
void vp10_cyclic_refresh_set_golden_update(VP10_COMP *const cpi) {
RATE_CONTROL *const rc = &cpi->rc;
CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
@ -484,10 +484,7 @@ void vp10_cyclic_refresh_setup(VP10_COMP *const cpi) {
if (cm->current_video_frame == 0)
cr->low_content_avg = 0.0;
// Don't apply refresh on key frame or enhancement layer frames.
if (!apply_cyclic_refresh ||
(cm->frame_type == KEY_FRAME) ||
(cpi->svc.temporal_layer_id > 0) ||
(cpi->svc.spatial_layer_id > 0)) {
if (!apply_cyclic_refresh || cm->frame_type == KEY_FRAME) {
// Set segmentation map to 0 and disable.
unsigned char *const seg_map = cpi->segmentation_map;
memset(seg_map, 0, cm->mi_rows * cm->mi_cols);

Просмотреть файл

@ -61,7 +61,7 @@ void vp10_cyclic_refresh_update__map(struct VP10_COMP *const cpi);
// Update the actual number of blocks that were applied the segment delta q.
void vp10_cyclic_refresh_postencode(struct VP10_COMP *const cpi);
// Set golden frame update interval, for non-svc 1 pass CBR mode.
// Set golden frame update interval, for 1 pass CBR mode.
void vp10_cyclic_refresh_set_golden_update(struct VP10_COMP *const cpi);
// Check if we should not update golden reference, based on past refresh stats.

Просмотреть файл

@ -996,18 +996,7 @@ static void write_frame_size_with_refs(VP10_COMP *cpi,
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame);
// Set "found" to 0 for temporal svc and for spatial svc key frame
if (cpi->use_svc &&
((cpi->svc.number_temporal_layers > 1 &&
cpi->oxcf.rc_mode == VPX_CBR) ||
(cpi->svc.number_spatial_layers > 1 &&
cpi->svc.layer_context[cpi->svc.spatial_layer_id].is_key_frame) ||
(is_two_pass_svc(cpi) &&
cpi->svc.encode_empty_frame_state == ENCODING &&
cpi->svc.layer_context[0].frames_from_key_frame <
cpi->svc.number_temporal_layers + 1))) {
found = 0;
} else if (cfg != NULL) {
if (cfg != NULL) {
found = cm->width == cfg->y_crop_width &&
cm->height == cfg->y_crop_height;
}
@ -1093,14 +1082,6 @@ static void write_uncompressed_header(VP10_COMP *cpi,
write_bitdepth_colorspace_sampling(cm, wb);
write_frame_size(cm, wb);
} else {
// In spatial svc if it's not error_resilient_mode then we need to code all
// visible frames as invisible. But we need to keep the show_frame flag so
// that the publisher could know whether it is supposed to be visible.
// So we will code the show_frame flag as it is. Then code the intra_only
// bit here. This will make the bitstream incompatible. In the player we
// will change to show_frame flag to 0, then add an one byte frame with
// show_existing_frame flag which tells the decoder which frame we want to
// show.
if (!cm->show_frame)
vpx_wb_write_bit(wb, cm->intra_only);

Просмотреть файл

@ -22,12 +22,7 @@ void vp10_pack_bitstream(VP10_COMP *cpi, uint8_t *dest, size_t *size);
static INLINE int vp10_preserve_existing_gf(VP10_COMP *cpi) {
return !cpi->multi_arf_allowed && cpi->refresh_golden_frame &&
cpi->rc.is_src_frame_alt_ref &&
(!cpi->use_svc || // Add spatial svc base layer case here
(is_two_pass_svc(cpi) &&
cpi->svc.spatial_layer_id == 0 &&
cpi->svc.layer_context[0].gold_ref_idx >=0 &&
cpi->oxcf.ss_enable_auto_arf[0]));
cpi->rc.is_src_frame_alt_ref;
}
#ifdef __cplusplus

Просмотреть файл

@ -695,11 +695,7 @@ static int choose_partitioning(VP10_COMP *cpi,
s = x->plane[0].src.buf;
sp = x->plane[0].src.stride;
if (!is_key_frame && !(is_one_pass_cbr_svc(cpi) &&
cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame)) {
// In the case of spatial/temporal scalable coding, the assumption here is
// that the temporal reference frame will always be of type LAST_FRAME.
// TODO(marpan): If that assumption is broken, we need to revisit this code.
if (!is_key_frame) {
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
unsigned int uv_sad;
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
@ -710,12 +706,7 @@ static int choose_partitioning(VP10_COMP *cpi,
+ (mi_col + 4 < cm->mi_cols) * 2 + (mi_row + 4 < cm->mi_rows);
assert(yv12 != NULL);
if (!(is_one_pass_cbr_svc(cpi) && cpi->svc.spatial_layer_id)) {
// For now, GOLDEN will not be used for non-zero spatial layers, since
// it may not be a temporal reference.
yv12_g = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
}
yv12_g = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
if (yv12_g && yv12_g != yv12) {
vp10_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
@ -851,9 +842,7 @@ static int choose_partitioning(VP10_COMP *cpi,
}
}
}
// TODO(marpan): There is an issue with variance based on 4x4 average in
// svc mode, don't allow it for now.
if (is_key_frame || (low_res && !cpi->use_svc &&
if (is_key_frame || (low_res &&
vt.split[i].split[j].part_variances.none.variance >
(thresholds[1] << 1))) {
force_split[split_index] = 0;

Просмотреть файл

@ -42,7 +42,6 @@
#include "vp10/encoder/segmentation.h"
#include "vp10/encoder/skin_detection.h"
#include "vp10/encoder/speed_features.h"
#include "vp10/encoder/svc_layercontext.h"
#include "vp10/encoder/temporal_filter.h"
#include "./vp10_rtcd.h"
@ -238,13 +237,11 @@ static void setup_frame(VP10_COMP *cpi) {
if (frame_is_intra_only(cm) || cm->error_resilient_mode) {
vp10_setup_past_independence(cm);
} else {
if (!cpi->use_svc)
cm->frame_context_idx = cpi->refresh_alt_ref_frame;
cm->frame_context_idx = cpi->refresh_alt_ref_frame;
}
if (cm->frame_type == KEY_FRAME) {
if (!is_two_pass_svc(cpi))
cpi->refresh_golden_frame = 1;
cpi->refresh_golden_frame = 1;
cpi->refresh_alt_ref_frame = 1;
vp10_zero(cpi->interp_filter_selected);
} else {
@ -336,7 +333,6 @@ void vp10_initialize_enc(void) {
static void dealloc_compressor_data(VP10_COMP *cpi) {
VP10_COMMON *const cm = &cpi->common;
int i;
vpx_free(cpi->mbmi_ext_base);
cpi->mbmi_ext_base = NULL;
@ -393,26 +389,10 @@ static void dealloc_compressor_data(VP10_COMP *cpi) {
vp10_free_pc_tree(&cpi->td);
for (i = 0; i < cpi->svc.number_spatial_layers; ++i) {
LAYER_CONTEXT *const lc = &cpi->svc.layer_context[i];
vpx_free(lc->rc_twopass_stats_in.buf);
lc->rc_twopass_stats_in.buf = NULL;
lc->rc_twopass_stats_in.sz = 0;
}
if (cpi->source_diff_var != NULL) {
vpx_free(cpi->source_diff_var);
cpi->source_diff_var = NULL;
}
for (i = 0; i < MAX_LAG_BUFFERS; ++i) {
vpx_free_frame_buffer(&cpi->svc.scaled_frames[i]);
}
memset(&cpi->svc.scaled_frames[0], 0,
MAX_LAG_BUFFERS * sizeof(cpi->svc.scaled_frames[0]));
vpx_free_frame_buffer(&cpi->svc.empty_frame.img);
memset(&cpi->svc.empty_frame, 0, sizeof(cpi->svc.empty_frame));
}
static void save_coding_context(VP10_COMP *cpi) {
@ -717,16 +697,9 @@ static void set_tile_limits(VP10_COMP *cpi) {
int min_log2_tile_cols, max_log2_tile_cols;
vp10_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
if (is_two_pass_svc(cpi) &&
(cpi->svc.encode_empty_frame_state == ENCODING ||
cpi->svc.number_spatial_layers > 1)) {
cm->log2_tile_cols = 0;
cm->log2_tile_rows = 0;
} else {
cm->log2_tile_cols = clamp(cpi->oxcf.tile_columns,
min_log2_tile_cols, max_log2_tile_cols);
cm->log2_tile_rows = cpi->oxcf.tile_rows;
}
cm->log2_tile_cols = clamp(cpi->oxcf.tile_columns,
min_log2_tile_cols, max_log2_tile_cols);
cm->log2_tile_rows = cpi->oxcf.tile_rows;
}
static void update_frame_size(VP10_COMP *cpi) {
@ -741,19 +714,6 @@ static void update_frame_size(VP10_COMP *cpi) {
cm->mi_rows * cm->mi_cols * sizeof(*cpi->mbmi_ext_base));
set_tile_limits(cpi);
if (is_two_pass_svc(cpi)) {
if (vpx_realloc_frame_buffer(&cpi->alt_ref_buffer,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
NULL, NULL, NULL))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to reallocate alt_ref_buffer");
}
}
static void init_buffer_indices(VP10_COMP *cpi) {
@ -779,23 +739,9 @@ static void init_config(struct VP10_COMP *cpi, VP10EncoderConfig *oxcf) {
cm->height = oxcf->height;
vp10_alloc_compressor_data(cpi);
cpi->svc.temporal_layering_mode = oxcf->temporal_layering_mode;
// Single thread case: use counts in common.
cpi->td.counts = &cm->counts;
// Spatial scalability.
cpi->svc.number_spatial_layers = oxcf->ss_number_layers;
// Temporal scalability.
cpi->svc.number_temporal_layers = oxcf->ts_number_layers;
if ((cpi->svc.number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) ||
((cpi->svc.number_temporal_layers > 1 ||
cpi->svc.number_spatial_layers > 1) &&
cpi->oxcf.pass != 1)) {
vp10_init_layer_context(cpi);
}
// change includes all joint functionality
vp10_change_config(cpi, oxcf);
@ -1519,15 +1465,6 @@ void vp10_change_config(struct VP10_COMP *cpi, const VP10EncoderConfig *oxcf) {
}
update_frame_size(cpi);
if ((cpi->svc.number_temporal_layers > 1 &&
cpi->oxcf.rc_mode == VPX_CBR) ||
((cpi->svc.number_temporal_layers > 1 ||
cpi->svc.number_spatial_layers > 1) &&
cpi->oxcf.pass != 1)) {
vp10_update_layer_context_change_config(cpi,
(int)cpi->oxcf.target_bandwidth);
}
cpi->alt_ref_source = NULL;
rc->is_src_frame_alt_ref = 0;
@ -1618,7 +1555,6 @@ VP10_COMP *vp10_create_compressor(VP10EncoderConfig *oxcf,
(FRAME_CONTEXT *)vpx_calloc(FRAME_CONTEXTS,
sizeof(*cm->frame_contexts)));
cpi->use_svc = 0;
cpi->resize_state = 0;
cpi->resize_avg_qp = 0;
cpi->resize_buffer_underflow = 0;
@ -1757,63 +1693,24 @@ VP10_COMP *vp10_create_compressor(VP10EncoderConfig *oxcf,
const size_t packet_sz = sizeof(FIRSTPASS_STATS);
const int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz);
if (cpi->svc.number_spatial_layers > 1
|| cpi->svc.number_temporal_layers > 1) {
FIRSTPASS_STATS *const stats = oxcf->two_pass_stats_in.buf;
FIRSTPASS_STATS *stats_copy[VPX_SS_MAX_LAYERS] = {0};
int i;
for (i = 0; i < oxcf->ss_number_layers; ++i) {
FIRSTPASS_STATS *const last_packet_for_layer =
&stats[packets - oxcf->ss_number_layers + i];
const int layer_id = (int)last_packet_for_layer->spatial_layer_id;
const int packets_in_layer = (int)last_packet_for_layer->count + 1;
if (layer_id >= 0 && layer_id < oxcf->ss_number_layers) {
LAYER_CONTEXT *const lc = &cpi->svc.layer_context[layer_id];
vpx_free(lc->rc_twopass_stats_in.buf);
lc->rc_twopass_stats_in.sz = packets_in_layer * packet_sz;
CHECK_MEM_ERROR(cm, lc->rc_twopass_stats_in.buf,
vpx_malloc(lc->rc_twopass_stats_in.sz));
lc->twopass.stats_in_start = lc->rc_twopass_stats_in.buf;
lc->twopass.stats_in = lc->twopass.stats_in_start;
lc->twopass.stats_in_end = lc->twopass.stats_in_start
+ packets_in_layer - 1;
stats_copy[layer_id] = lc->rc_twopass_stats_in.buf;
}
}
for (i = 0; i < packets; ++i) {
const int layer_id = (int)stats[i].spatial_layer_id;
if (layer_id >= 0 && layer_id < oxcf->ss_number_layers
&& stats_copy[layer_id] != NULL) {
*stats_copy[layer_id] = stats[i];
++stats_copy[layer_id];
}
}
vp10_init_second_pass_spatial_svc(cpi);
} else {
#if CONFIG_FP_MB_STATS
if (cpi->use_fp_mb_stats) {
const size_t psz = cpi->common.MBs * sizeof(uint8_t);
const int ps = (int)(oxcf->firstpass_mb_stats_in.sz / psz);
if (cpi->use_fp_mb_stats) {
const size_t psz = cpi->common.MBs * sizeof(uint8_t);
const int ps = (int)(oxcf->firstpass_mb_stats_in.sz / psz);
cpi->twopass.firstpass_mb_stats.mb_stats_start =
oxcf->firstpass_mb_stats_in.buf;
cpi->twopass.firstpass_mb_stats.mb_stats_end =
cpi->twopass.firstpass_mb_stats.mb_stats_start +
(ps - 1) * cpi->common.MBs * sizeof(uint8_t);
}
cpi->twopass.firstpass_mb_stats.mb_stats_start =
oxcf->firstpass_mb_stats_in.buf;
cpi->twopass.firstpass_mb_stats.mb_stats_end =
cpi->twopass.firstpass_mb_stats.mb_stats_start +
(ps - 1) * cpi->common.MBs * sizeof(uint8_t);
}
#endif
cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf;
cpi->twopass.stats_in = cpi->twopass.stats_in_start;
cpi->twopass.stats_in_end = &cpi->twopass.stats_in[packets - 1];
cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf;
cpi->twopass.stats_in = cpi->twopass.stats_in_start;
cpi->twopass.stats_in_end = &cpi->twopass.stats_in[packets - 1];
vp10_init_second_pass(cpi);
}
vp10_init_second_pass(cpi);
}
vp10_set_speed_features_framesize_independent(cpi);
@ -2354,11 +2251,7 @@ static void generate_psnr_packet(VP10_COMP *cpi) {
pkt.data.psnr.psnr[i] = psnr.psnr[i];
}
pkt.kind = VPX_CODEC_PSNR_PKT;
if (cpi->use_svc)
cpi->svc.layer_context[cpi->svc.spatial_layer_id *
cpi->svc.number_temporal_layers].psnr_pkt = pkt.data.psnr;
else
vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt);
vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt);
}
int vp10_use_as_reference(VP10_COMP *cpi, int ref_frame_flags) {
@ -2687,11 +2580,6 @@ void vp10_update_reference_frames(VP10_COMP *cpi) {
tmp = cpi->alt_fb_idx;
cpi->alt_fb_idx = cpi->gld_fb_idx;
cpi->gld_fb_idx = tmp;
if (is_two_pass_svc(cpi)) {
cpi->svc.layer_context[0].gold_ref_idx = cpi->gld_fb_idx;
cpi->svc.layer_context[0].alt_ref_idx = cpi->alt_fb_idx;
}
} else { /* For non key/golden frames */
if (cpi->refresh_alt_ref_frame) {
int arf_idx = cpi->alt_fb_idx;
@ -2863,7 +2751,7 @@ void vp10_scale_references(VP10_COMP *cpi) {
++buf->ref_count;
}
} else {
if (cpi->oxcf.pass != 0 || cpi->use_svc)
if (cpi->oxcf.pass != 0)
cpi->scaled_ref_idx[ref_frame - 1] = INVALID_IDX;
}
}
@ -2872,7 +2760,7 @@ void vp10_scale_references(VP10_COMP *cpi) {
static void release_scaled_references(VP10_COMP *cpi) {
VP10_COMMON *cm = &cpi->common;
int i;
if (cpi->oxcf.pass == 0 && !cpi->use_svc) {
if (cpi->oxcf.pass == 0) {
// Only release scaled references under certain conditions:
// if reference will be updated, or if scaled reference has same resolution.
int refresh[3];
@ -3106,7 +2994,6 @@ static void set_frame_size(VP10_COMP *cpi) {
if (oxcf->pass == 0 &&
oxcf->rc_mode == VPX_CBR &&
!cpi->use_svc &&
oxcf->resize_mode == RESIZE_DYNAMIC) {
if (cpi->resize_pending == 1) {
oxcf->scaled_frame_width =
@ -3129,10 +3016,7 @@ static void set_frame_size(VP10_COMP *cpi) {
}
}
if ((oxcf->pass == 2) &&
(!cpi->use_svc ||
(is_two_pass_svc(cpi) &&
cpi->svc.encode_empty_frame_state != ENCODING))) {
if (oxcf->pass == 2) {
vp10_set_target_rate(cpi);
}
@ -3239,10 +3123,9 @@ static void encode_without_recode_loop(VP10_COMP *cpi) {
vp10_encode_frame(cpi);
// Update some stats from cyclic refresh, and check if we should not update
// golden reference, for non-SVC 1 pass CBR.
// golden reference, for 1 pass CBR.
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
cm->frame_type != KEY_FRAME &&
!cpi->use_svc &&
(cpi->oxcf.pass == 0 && cpi->oxcf.rc_mode == VPX_CBR))
vp10_cyclic_refresh_check_golden_update(cpi);
@ -3523,9 +3406,7 @@ static int get_ref_frame_flags(const VP10_COMP *cpi) {
if (gold_is_last)
flags &= ~VP9_GOLD_FLAG;
if (cpi->rc.frames_till_gf_update_due == INT_MAX &&
(cpi->svc.number_temporal_layers == 1 &&
cpi->svc.number_spatial_layers == 1))
if (cpi->rc.frames_till_gf_update_due == INT_MAX)
flags &= ~VP9_GOLD_FLAG;
if (alt_is_last)
@ -3677,44 +3558,6 @@ static void encode_frame_to_data_rate(VP10_COMP *cpi,
cm->reset_frame_context = 2;
}
}
if (is_two_pass_svc(cpi) && cm->error_resilient_mode == 0) {
// Use context 0 for intra only empty frame, but the last frame context
// for other empty frames.
if (cpi->svc.encode_empty_frame_state == ENCODING) {
if (cpi->svc.encode_intra_empty_frame != 0)
cm->frame_context_idx = 0;
else
cm->frame_context_idx = FRAME_CONTEXTS - 1;
} else {
cm->frame_context_idx =
cpi->svc.spatial_layer_id * cpi->svc.number_temporal_layers +
cpi->svc.temporal_layer_id;
}
cm->frame_parallel_decoding_mode = oxcf->frame_parallel_decoding_mode;
// The probs will be updated based on the frame type of its previous
// frame if frame_parallel_decoding_mode is 0. The type may vary for
// the frame after a key frame in base layer since we may drop enhancement
// layers. So set frame_parallel_decoding_mode to 1 in this case.
if (cm->frame_parallel_decoding_mode == 0) {
if (cpi->svc.number_temporal_layers == 1) {
if (cpi->svc.spatial_layer_id == 0 &&
cpi->svc.layer_context[0].last_frame_type == KEY_FRAME)
cm->frame_parallel_decoding_mode = 1;
} else if (cpi->svc.spatial_layer_id == 0) {
// Find the 2nd frame in temporal base layer and 1st frame in temporal
// enhancement layers from the key frame.
int i;
for (i = 0; i < cpi->svc.number_temporal_layers; ++i) {
if (cpi->svc.layer_context[0].frames_from_key_frame == 1 << i) {
cm->frame_parallel_decoding_mode = 1;
break;
}
}
}
}
}
// For 1 pass CBR, check if we are dropping this frame.
// Never drop on key frame.
@ -3819,8 +3662,7 @@ static void encode_frame_to_data_rate(VP10_COMP *cpi,
cm->last_frame_type = cm->frame_type;
if (!(is_two_pass_svc(cpi) && cpi->svc.encode_empty_frame_state == ENCODING))
vp10_rc_postencode_update(cpi, *size);
vp10_rc_postencode_update(cpi, *size);
#if 0
output_frame_level_debug_stats(cpi);
@ -3852,22 +3694,8 @@ static void encode_frame_to_data_rate(VP10_COMP *cpi,
// Don't increment frame counters if this was an altref buffer
// update not a real frame
++cm->current_video_frame;
if (cpi->use_svc)
vp10_inc_frame_in_layer(cpi);
}
cm->prev_frame = cm->cur_frame;
if (cpi->use_svc)
cpi->svc.layer_context[cpi->svc.spatial_layer_id *
cpi->svc.number_temporal_layers +
cpi->svc.temporal_layer_id].last_frame_type =
cm->frame_type;
}
static void SvcEncode(VP10_COMP *cpi, size_t *size, uint8_t *dest,
unsigned int *frame_flags) {
vp10_rc_get_svc_params(cpi);
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
}
static void Pass0Encode(VP10_COMP *cpi, size_t *size, uint8_t *dest,
@ -3885,8 +3713,7 @@ static void Pass2Encode(VP10_COMP *cpi, size_t *size,
cpi->allow_encode_breakout = ENCODE_BREAKOUT_ENABLED;
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
if (!(is_two_pass_svc(cpi) && cpi->svc.encode_empty_frame_state == ENCODING))
vp10_twopass_postencode_update(cpi);
vp10_twopass_postencode_update(cpi);
}
static void init_ref_frame_bufs(VP10_COMMON *cm) {
@ -4113,28 +3940,13 @@ int vp10_get_compressed_data(VP10_COMP *cpi, unsigned int *frame_flags,
int arf_src_index;
int i;
if (is_two_pass_svc(cpi)) {
#if CONFIG_SPATIAL_SVC
vp10_svc_start_frame(cpi);
// Use a small empty frame instead of a real frame
if (cpi->svc.encode_empty_frame_state == ENCODING)
source = &cpi->svc.empty_frame;
#endif
if (oxcf->pass == 2)
vp10_restore_layer_context(cpi);
} else if (is_one_pass_cbr_svc(cpi)) {
vp10_one_pass_cbr_svc_start_layer(cpi);
}
vpx_usec_timer_start(&cmptimer);
vp10_set_high_precision_mv(cpi, ALTREF_HIGH_PRECISION_MV);
// Is multi-arf enabled.
// Note that at the moment multi_arf is only configured for 2 pass VBR and
// will not work properly with svc.
if ((oxcf->pass == 2) && !cpi->use_svc &&
(cpi->oxcf.enable_auto_arf > 1))
// Note that at the moment multi_arf is only configured for 2 pass VBR
if ((oxcf->pass == 2) && (cpi->oxcf.enable_auto_arf > 1))
cpi->multi_arf_allowed = 1;
else
cpi->multi_arf_allowed = 0;
@ -4142,39 +3954,20 @@ int vp10_get_compressed_data(VP10_COMP *cpi, unsigned int *frame_flags,
// Normal defaults
cm->reset_frame_context = 0;
cm->refresh_frame_context = 1;
if (!is_one_pass_cbr_svc(cpi)) {
cpi->refresh_last_frame = 1;
cpi->refresh_golden_frame = 0;
cpi->refresh_alt_ref_frame = 0;
}
cpi->refresh_last_frame = 1;
cpi->refresh_golden_frame = 0;
cpi->refresh_alt_ref_frame = 0;
// Should we encode an arf frame.
arf_src_index = get_arf_src_index(cpi);
// Skip alt frame if we encode the empty frame
if (is_two_pass_svc(cpi) && source != NULL)
arf_src_index = 0;
if (arf_src_index) {
assert(arf_src_index <= rc->frames_to_key);
if ((source = vp10_lookahead_peek(cpi->lookahead, arf_src_index)) != NULL) {
cpi->alt_ref_source = source;
#if CONFIG_SPATIAL_SVC
if (is_two_pass_svc(cpi) && cpi->svc.spatial_layer_id > 0) {
int i;
// Reference a hidden frame from a lower layer
for (i = cpi->svc.spatial_layer_id - 1; i >= 0; --i) {
if (oxcf->ss_enable_auto_arf[i]) {
cpi->gld_fb_idx = cpi->svc.layer_context[i].alt_ref_idx;
break;
}
}
}
cpi->svc.layer_context[cpi->svc.spatial_layer_id].has_alt_frame = 1;
#endif
if (oxcf->arnr_max_frames > 0) {
// Produce the filtered ARF frame.
vp10_temporal_filter(cpi, arf_src_index);
@ -4202,21 +3995,11 @@ int vp10_get_compressed_data(VP10_COMP *cpi, unsigned int *frame_flags,
}
// Read in the source frame.
if (cpi->use_svc)
source = vp10_svc_lookahead_pop(cpi, cpi->lookahead, flush);
else
source = vp10_lookahead_pop(cpi->lookahead, flush);
source = vp10_lookahead_pop(cpi->lookahead, flush);
if (source != NULL) {
cm->show_frame = 1;
cm->intra_only = 0;
// if the flags indicate intra frame, but if the current picture is for
// non-zero spatial layer, it should not be an intra picture.
// TODO(Won Kap): this needs to change if per-layer intra frame is
// allowed.
if ((source->flags & VPX_EFLAG_FORCE_KF) && cpi->svc.spatial_layer_id) {
source->flags &= ~(unsigned int)(VPX_EFLAG_FORCE_KF);
}
// Check to see if the frame should be encoded as an arf overlay.
check_src_altref(cpi, source);
@ -4255,11 +4038,6 @@ int vp10_get_compressed_data(VP10_COMP *cpi, unsigned int *frame_flags,
adjust_frame_rate(cpi, source);
}
if (is_one_pass_cbr_svc(cpi)) {
vp10_update_temporal_layer_framerate(cpi);
vp10_restore_layer_context(cpi);
}
// Find a free buffer for the new frame, releasing the reference previously
// held.
if (cm->new_fb_idx != INVALID_IDX) {
@ -4272,7 +4050,7 @@ int vp10_get_compressed_data(VP10_COMP *cpi, unsigned int *frame_flags,
cm->cur_frame = &pool->frame_bufs[cm->new_fb_idx];
if (!cpi->use_svc && cpi->multi_arf_allowed) {
if (cpi->multi_arf_allowed) {
if (cm->frame_type == KEY_FRAME) {
init_buffer_indices(cpi);
} else if (oxcf->pass == 2) {
@ -4286,24 +4064,18 @@ int vp10_get_compressed_data(VP10_COMP *cpi, unsigned int *frame_flags,
cpi->frame_flags = *frame_flags;
if ((oxcf->pass == 2) &&
(!cpi->use_svc ||
(is_two_pass_svc(cpi) &&
cpi->svc.encode_empty_frame_state != ENCODING))) {
if (oxcf->pass == 2) {
vp10_rc_get_second_pass_params(cpi);
} else if (oxcf->pass == 1) {
set_frame_size(cpi);
}
if (cpi->oxcf.pass != 0 ||
cpi->use_svc ||
frame_is_intra_only(cm) == 1) {
if (cpi->oxcf.pass != 0 || frame_is_intra_only(cm) == 1) {
for (i = 0; i < MAX_REF_FRAMES; ++i)
cpi->scaled_ref_idx[i] = INVALID_IDX;
}
if (oxcf->pass == 1 &&
(!cpi->use_svc || is_two_pass_svc(cpi))) {
if (oxcf->pass == 1) {
const int lossless = is_lossless_requested(oxcf);
#if CONFIG_VP9_HIGHBITDEPTH
if (cpi->oxcf.use_highbitdepth)
@ -4318,11 +4090,8 @@ int vp10_get_compressed_data(VP10_COMP *cpi, unsigned int *frame_flags,
#endif // CONFIG_VP9_HIGHBITDEPTH
cpi->td.mb.itxm_add = lossless ? vp10_iwht4x4_add : vp10_idct4x4_add;
vp10_first_pass(cpi, source);
} else if (oxcf->pass == 2 &&
(!cpi->use_svc || is_two_pass_svc(cpi))) {
} else if (oxcf->pass == 2) {
Pass2Encode(cpi, size, dest, frame_flags);
} else if (cpi->use_svc) {
SvcEncode(cpi, size, dest, frame_flags);
} else {
// One pass encode
Pass0Encode(cpi, size, dest, frame_flags);
@ -4340,14 +4109,6 @@ int vp10_get_compressed_data(VP10_COMP *cpi, unsigned int *frame_flags,
cpi->droppable = !frame_is_reference(cpi);
}
// Save layer specific state.
if (is_one_pass_cbr_svc(cpi) ||
((cpi->svc.number_temporal_layers > 1 ||
cpi->svc.number_spatial_layers > 1) &&
oxcf->pass == 2)) {
vp10_save_layer_context(cpi);
}
vpx_usec_timer_mark(&cmptimer);
cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer);
@ -4526,27 +4287,6 @@ int vp10_get_compressed_data(VP10_COMP *cpi, unsigned int *frame_flags,
}
#endif
if (is_two_pass_svc(cpi)) {
if (cpi->svc.encode_empty_frame_state == ENCODING) {
cpi->svc.encode_empty_frame_state = ENCODED;
cpi->svc.encode_intra_empty_frame = 0;
}
if (cm->show_frame) {
++cpi->svc.spatial_layer_to_encode;
if (cpi->svc.spatial_layer_to_encode >= cpi->svc.number_spatial_layers)
cpi->svc.spatial_layer_to_encode = 0;
// May need the empty frame after an visible frame.
cpi->svc.encode_empty_frame_state = NEED_TO_ENCODE;
}
} else if (is_one_pass_cbr_svc(cpi)) {
if (cm->show_frame) {
++cpi->svc.spatial_layer_to_encode;
if (cpi->svc.spatial_layer_to_encode >= cpi->svc.number_spatial_layers)
cpi->svc.spatial_layer_to_encode = 0;
}
}
vpx_clear_system_state();
return 0;
}
@ -4639,11 +4379,6 @@ int vp10_set_size_literal(VP10_COMP *cpi, unsigned int width,
return 0;
}
void vp10_set_svc(VP10_COMP *cpi, int use_svc) {
cpi->use_svc = use_svc;
return;
}
int64_t vp10_get_y_sse(const YV12_BUFFER_CONFIG *a,
const YV12_BUFFER_CONFIG *b) {
assert(a->y_crop_width == b->y_crop_width);

Просмотреть файл

@ -33,7 +33,6 @@
#include "vp10/encoder/ratectrl.h"
#include "vp10/encoder/rd.h"
#include "vp10/encoder/speed_features.h"
#include "vp10/encoder/svc_layercontext.h"
#include "vp10/encoder/tokenize.h"
#if CONFIG_VP9_TEMPORAL_DENOISING
@ -116,7 +115,7 @@ typedef enum {
} AQ_MODE;
typedef enum {
RESIZE_NONE = 0, // No frame resizing allowed (except for SVC).
RESIZE_NONE = 0, // No frame resizing allowed.
RESIZE_FIXED = 1, // All frames are coded at the specified dimension.
RESIZE_DYNAMIC = 2 // Coded size of each frame is determined by the codec.
} RESIZE_TYPE;
@ -189,16 +188,6 @@ typedef struct VP10EncoderConfig {
// END DATARATE CONTROL OPTIONS
// ----------------------------------------------------------------
// Spatial and temporal scalability.
int ss_number_layers; // Number of spatial layers.
int ts_number_layers; // Number of temporal layers.
// Bitrate allocation for spatial layers.
int layer_target_bitrate[VPX_MAX_LAYERS];
int ss_target_bitrate[VPX_SS_MAX_LAYERS];
int ss_enable_auto_arf[VPX_SS_MAX_LAYERS];
// Bitrate allocation (CBR mode) and framerate factor, for temporal layers.
int ts_rate_decimator[VPX_TS_MAX_LAYERS];
int enable_auto_arf;
int encode_breakout; // early breakout : for video conf recommend 800
@ -239,7 +228,6 @@ typedef struct VP10EncoderConfig {
int use_highbitdepth;
#endif
vpx_color_space_t color_space;
VP9E_TEMPORAL_LAYERING_MODE temporal_layering_mode;
} VP10EncoderConfig;
static INLINE int is_lossless_requested(const VP10EncoderConfig *cfg) {
@ -451,10 +439,6 @@ typedef struct VP10_COMP {
// number of MBs in the current frame when the frame is
// scaled.
int use_svc;
SVC svc;
// Store frame variance info in SOURCE_VAR_BASED_PARTITION search type.
diff *source_diff_var;
// The threshold used in SOURCE_VAR_BASED_PARTITION search type.
@ -546,8 +530,6 @@ int vp10_set_internal_size(VP10_COMP *cpi,
int vp10_set_size_literal(VP10_COMP *cpi, unsigned int width,
unsigned int height);
void vp10_set_svc(VP10_COMP *cpi, int use_svc);
int vp10_get_quantizer(struct VP10_COMP *cpi);
static INLINE int frame_is_kf_gf_arf(const VP10_COMP *cpi) {
@ -624,19 +606,9 @@ YV12_BUFFER_CONFIG *vp10_scale_if_required(VP10_COMMON *cm,
void vp10_apply_encoding_flags(VP10_COMP *cpi, vpx_enc_frame_flags_t flags);
static INLINE int is_two_pass_svc(const struct VP10_COMP *const cpi) {
return cpi->use_svc && cpi->oxcf.pass != 0;
}
static INLINE int is_one_pass_cbr_svc(const struct VP10_COMP *const cpi) {
return (cpi->use_svc && cpi->oxcf.pass == 0);
}
static INLINE int is_altref_enabled(const VP10_COMP *const cpi) {
return cpi->oxcf.mode != REALTIME && cpi->oxcf.lag_in_frames > 0 &&
(cpi->oxcf.enable_auto_arf &&
(!is_two_pass_svc(cpi) ||
cpi->oxcf.ss_enable_auto_arf[cpi->svc.spatial_layer_id]));
cpi->oxcf.enable_auto_arf;
}
static INLINE void set_ref_ptrs(VP10_COMMON *cm, MACROBLOCKD *xd,

Просмотреть файл

@ -76,13 +76,6 @@ void vp10_encode_tiles_mt(VP10_COMP *cpi) {
if (cpi->num_workers == 0) {
int allocated_workers = num_workers;
// While using SVC, we need to allocate threads according to the highest
// resolution.
if (cpi->use_svc) {
int max_tile_cols = get_max_tile_cols(cpi);
allocated_workers = VPXMIN(cpi->oxcf.max_threads, max_tile_cols);
}
CHECK_MEM_ERROR(cm, cpi->workers,
vpx_malloc(allocated_workers * sizeof(*cpi->workers)));

Просмотреть файл

@ -55,7 +55,6 @@
#define MIN_DECAY_FACTOR 0.01
#define MIN_KF_BOOST 300
#define NEW_MV_MODE_PENALTY 32
#define SVC_FACTOR_PT_LOW 0.45
#define DARK_THRESH 64
#define DEFAULT_GRP_WEIGHT 1.0
#define RC_FACTOR_MIN 0.75
@ -177,14 +176,12 @@ static void zero_stats(FIRSTPASS_STATS *section) {
section->new_mv_count = 0.0;
section->count = 0.0;
section->duration = 1.0;
section->spatial_layer_id = 0;
}
static void accumulate_stats(FIRSTPASS_STATS *section,
const FIRSTPASS_STATS *frame) {
section->frame += frame->frame;
section->weight += frame->weight;
section->spatial_layer_id = frame->spatial_layer_id;
section->intra_error += frame->intra_error;
section->coded_error += frame->coded_error;
section->sr_coded_error += frame->sr_coded_error;
@ -292,15 +289,7 @@ void vp10_init_first_pass(VP10_COMP *cpi) {
}
void vp10_end_first_pass(VP10_COMP *cpi) {
if (is_two_pass_svc(cpi)) {
int i;
for (i = 0; i < cpi->svc.number_spatial_layers; ++i) {
output_stats(&cpi->svc.layer_context[i].twopass.total_stats,
cpi->output_pkt_list);
}
} else {
output_stats(&cpi->twopass.total_stats, cpi->output_pkt_list);
}
output_stats(&cpi->twopass.total_stats, cpi->output_pkt_list);
}
static vpx_variance_fn_t get_block_variance_fn(BLOCK_SIZE bsize) {
@ -530,16 +519,13 @@ void vp10_first_pass(VP10_COMP *cpi, const struct lookahead_entry *source) {
YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm);
const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12;
LAYER_CONTEXT *const lc = is_two_pass_svc(cpi) ?
&cpi->svc.layer_context[cpi->svc.spatial_layer_id] : NULL;
double intra_factor;
double brightness_factor;
BufferPool *const pool = cm->buffer_pool;
// First pass code requires valid last and new frame buffers.
assert(new_yv12 != NULL);
assert((lc != NULL) || frame_is_intra_only(cm) || (lst_yv12 != NULL));
assert(frame_is_intra_only(cm) || (lst_yv12 != NULL));
#if CONFIG_FP_MB_STATS
if (cpi->use_fp_mb_stats) {
@ -556,51 +542,6 @@ void vp10_first_pass(VP10_COMP *cpi, const struct lookahead_entry *source) {
set_first_pass_params(cpi);
vp10_set_quantizer(cm, find_fp_qindex(cm->bit_depth));
if (lc != NULL) {
twopass = &lc->twopass;
cpi->lst_fb_idx = cpi->svc.spatial_layer_id;
cpi->ref_frame_flags = VP9_LAST_FLAG;
if (cpi->svc.number_spatial_layers + cpi->svc.spatial_layer_id <
REF_FRAMES) {
cpi->gld_fb_idx =
cpi->svc.number_spatial_layers + cpi->svc.spatial_layer_id;
cpi->ref_frame_flags |= VP9_GOLD_FLAG;
cpi->refresh_golden_frame = (lc->current_video_frame_in_layer == 0);
} else {
cpi->refresh_golden_frame = 0;
}
if (lc->current_video_frame_in_layer == 0)
cpi->ref_frame_flags = 0;
vp10_scale_references(cpi);
// Use either last frame or alt frame for motion search.
if (cpi->ref_frame_flags & VP9_LAST_FLAG) {
first_ref_buf = vp10_get_scaled_ref_frame(cpi, LAST_FRAME);
if (first_ref_buf == NULL)
first_ref_buf = get_ref_frame_buffer(cpi, LAST_FRAME);
}
if (cpi->ref_frame_flags & VP9_GOLD_FLAG) {
gld_yv12 = vp10_get_scaled_ref_frame(cpi, GOLDEN_FRAME);
if (gld_yv12 == NULL) {
gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
}
} else {
gld_yv12 = NULL;
}
set_ref_ptrs(cm, xd,
(cpi->ref_frame_flags & VP9_LAST_FLAG) ? LAST_FRAME: NONE,
(cpi->ref_frame_flags & VP9_GOLD_FLAG) ? GOLDEN_FRAME : NONE);
cpi->Source = vp10_scale_if_required(cm, cpi->un_scaled_source,
&cpi->scaled_source);
}
vp10_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
vp10_setup_src_planes(x, cpi->Source, 0, 0);
@ -754,8 +695,7 @@ void vp10_first_pass(VP10_COMP *cpi, const struct lookahead_entry *source) {
x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + BORDER_MV_PIXELS_B16;
// Other than for the first frame do a motion search.
if ((lc == NULL && cm->current_video_frame > 0) ||
(lc != NULL && lc->current_video_frame_in_layer > 0)) {
if (cm->current_video_frame > 0) {
int tmp_err, motion_error, raw_motion_error;
// Assume 0,0 motion with no mv overhead.
MV mv = {0, 0} , tmp_mv = {0, 0};
@ -796,7 +736,7 @@ void vp10_first_pass(VP10_COMP *cpi, const struct lookahead_entry *source) {
#endif // CONFIG_VP9_HIGHBITDEPTH
// TODO(pengchong): Replace the hard-coded threshold
if (raw_motion_error > 25 || lc != NULL) {
if (raw_motion_error > 25) {
// Test last reference frame using the previous best mv as the
// starting point (best reference) for the search.
first_pass_motion_search(cpi, x, &best_ref_mv, &mv, &motion_error);
@ -814,9 +754,7 @@ void vp10_first_pass(VP10_COMP *cpi, const struct lookahead_entry *source) {
}
// Search in an older reference frame.
if (((lc == NULL && cm->current_video_frame > 1) ||
(lc != NULL && lc->current_video_frame_in_layer > 1))
&& gld_yv12 != NULL) {
if ((cm->current_video_frame > 1) && gld_yv12 != NULL) {
// Assume 0,0 motion with no mv overhead.
int gf_motion_error;
@ -1045,7 +983,6 @@ void vp10_first_pass(VP10_COMP *cpi, const struct lookahead_entry *source) {
fps.weight = intra_factor * brightness_factor;
fps.frame = cm->current_video_frame;
fps.spatial_layer_id = cpi->svc.spatial_layer_id;
fps.coded_error = (double)(coded_error >> 8) + min_err;
fps.sr_coded_error = (double)(sr_coded_error >> 8) + min_err;
fps.intra_error = (double)(intra_error >> 8) + min_err;
@ -1116,18 +1053,13 @@ void vp10_first_pass(VP10_COMP *cpi, const struct lookahead_entry *source) {
vpx_extend_frame_borders(new_yv12);
if (lc != NULL) {
vp10_update_reference_frames(cpi);
} else {
// The frame we just compressed now becomes the last frame.
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->lst_fb_idx],
cm->new_fb_idx);
}
// The frame we just compressed now becomes the last frame.
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->lst_fb_idx],
cm->new_fb_idx);
// Special case for the first frame. Copy into the GF buffer as a second
// reference.
if (cm->current_video_frame == 0 && cpi->gld_fb_idx != INVALID_IDX &&
lc == NULL) {
if (cm->current_video_frame == 0 && cpi->gld_fb_idx != INVALID_IDX) {
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx],
cm->ref_frame_map[cpi->lst_fb_idx]);
}
@ -1149,8 +1081,6 @@ void vp10_first_pass(VP10_COMP *cpi, const struct lookahead_entry *source) {
}
++cm->current_video_frame;
if (cpi->use_svc)
vp10_inc_frame_in_layer(cpi);
}
static double calc_correction_factor(double err_per_mb,
@ -1200,11 +1130,6 @@ static int get_twopass_worst_quality(const VP10_COMP *cpi,
BPER_MB_NORMBITS) / active_mbs;
int q;
int is_svc_upper_layer = 0;
if (is_two_pass_svc(cpi) && cpi->svc.spatial_layer_id > 0)
is_svc_upper_layer = 1;
// Try and pick a max Q that will be high enough to encode the
// content at the given rate.
@ -1212,7 +1137,6 @@ static int get_twopass_worst_quality(const VP10_COMP *cpi,
const double factor =
calc_correction_factor(av_err_per_mb,
ERR_DIVISOR - ediv_size_correction,
is_svc_upper_layer ? SVC_FACTOR_PT_LOW :
FACTOR_PT_LOW, FACTOR_PT_HIGH, q,
cpi->common.bit_depth);
const int bits_per_mb =
@ -1264,12 +1188,8 @@ void vp10_calculate_coded_size(VP10_COMP *cpi,
}
void vp10_init_second_pass(VP10_COMP *cpi) {
SVC *const svc = &cpi->svc;
const VP10EncoderConfig *const oxcf = &cpi->oxcf;
const int is_two_pass_svc = (svc->number_spatial_layers > 1) ||
(svc->number_temporal_layers > 1);
TWO_PASS *const twopass = is_two_pass_svc ?
&svc->layer_context[svc->spatial_layer_id].twopass : &cpi->twopass;
TWO_PASS *const twopass = &cpi->twopass;
double frame_rate;
FIRSTPASS_STATS *stats;
@ -1290,17 +1210,9 @@ void vp10_init_second_pass(VP10_COMP *cpi) {
// encoded in the second pass is a guess. However, the sum duration is not.
// It is calculated based on the actual durations of all frames from the
// first pass.
if (is_two_pass_svc) {
vp10_update_spatial_layer_framerate(cpi, frame_rate);
twopass->bits_left = (int64_t)(stats->duration *
svc->layer_context[svc->spatial_layer_id].target_bandwidth /
10000000.0);
} else {
vp10_new_framerate(cpi, frame_rate);
twopass->bits_left = (int64_t)(stats->duration * oxcf->target_bandwidth /
10000000.0);
}
vp10_new_framerate(cpi, frame_rate);
twopass->bits_left = (int64_t)(stats->duration * oxcf->target_bandwidth /
10000000.0);
// This variable monitors how far behind the second ref update is lagging.
twopass->sr_update_lag = 1;
@ -1701,15 +1613,8 @@ static void allocate_gf_group_bits(VP10_COMP *cpi, int64_t gf_group_bits,
int mid_frame_idx;
unsigned char arf_buffer_indices[MAX_ACTIVE_ARFS];
int alt_frame_index = frame_index;
int has_temporal_layers = is_two_pass_svc(cpi) &&
cpi->svc.number_temporal_layers > 1;
// Only encode alt reference frame in temporal base layer.
if (has_temporal_layers)
alt_frame_index = cpi->svc.number_temporal_layers;
key_frame = cpi->common.frame_type == KEY_FRAME ||
vp10_is_upper_layer_key_frame(cpi);
key_frame = cpi->common.frame_type == KEY_FRAME;
get_arf_buffer_indices(arf_buffer_indices);
@ -1746,20 +1651,14 @@ static void allocate_gf_group_bits(VP10_COMP *cpi, int64_t gf_group_bits,
gf_group->rf_level[alt_frame_index] = GF_ARF_STD;
gf_group->bit_allocation[alt_frame_index] = gf_arf_bits;
if (has_temporal_layers)
gf_group->arf_src_offset[alt_frame_index] =
(unsigned char)(rc->baseline_gf_interval -
cpi->svc.number_temporal_layers);
else
gf_group->arf_src_offset[alt_frame_index] =
(unsigned char)(rc->baseline_gf_interval - 1);
gf_group->arf_src_offset[alt_frame_index] =
(unsigned char)(rc->baseline_gf_interval - 1);
gf_group->arf_update_idx[alt_frame_index] = arf_buffer_indices[0];
gf_group->arf_ref_idx[alt_frame_index] =
arf_buffer_indices[cpi->multi_arf_last_grp_enabled &&
rc->source_alt_ref_active];
if (!has_temporal_layers)
++frame_index;
++frame_index;
if (cpi->multi_arf_enabled) {
// Set aside a slot for a level 1 arf.
@ -1782,10 +1681,6 @@ static void allocate_gf_group_bits(VP10_COMP *cpi, int64_t gf_group_bits,
if (EOF == input_stats(twopass, &frame_stats))
break;
if (has_temporal_layers && frame_index == alt_frame_index) {
++frame_index;
}
modified_err = calculate_modified_err(cpi, twopass, oxcf, &frame_stats);
if (group_error > 0)
@ -2047,26 +1942,6 @@ static void define_gf_group(VP10_COMP *cpi, FIRSTPASS_STATS *this_frame) {
// Set the interval until the next gf.
rc->baseline_gf_interval = i - (is_key_frame || rc->source_alt_ref_pending);
// Only encode alt reference frame in temporal base layer. So
// baseline_gf_interval should be multiple of a temporal layer group
// (typically the frame distance between two base layer frames)
if (is_two_pass_svc(cpi) && cpi->svc.number_temporal_layers > 1) {
int count = (1 << (cpi->svc.number_temporal_layers - 1)) - 1;
int new_gf_interval = (rc->baseline_gf_interval + count) & (~count);
int j;
for (j = 0; j < new_gf_interval - rc->baseline_gf_interval; ++j) {
if (EOF == input_stats(twopass, this_frame))
break;
gf_group_err += calculate_modified_err(cpi, twopass, oxcf, this_frame);
#if GROUP_ADAPTIVE_MAXQ
gf_group_raw_error += this_frame->coded_error;
#endif
gf_group_skip_pct += this_frame->intra_skip_pct;
gf_group_inactive_zone_rows += this_frame->inactive_zone_rows;
}
rc->baseline_gf_interval = new_gf_interval;
}
rc->frames_till_gf_update_due = rc->baseline_gf_interval;
// Reset the file position.
@ -2386,18 +2261,6 @@ static void find_next_key_frame(VP10_COMP *cpi, FIRSTPASS_STATS *this_frame) {
rc->next_key_frame_forced = 0;
}
if (is_two_pass_svc(cpi) && cpi->svc.number_temporal_layers > 1) {
int count = (1 << (cpi->svc.number_temporal_layers - 1)) - 1;
int new_frame_to_key = (rc->frames_to_key + count) & (~count);
int j;
for (j = 0; j < new_frame_to_key - rc->frames_to_key; ++j) {
if (EOF == input_stats(twopass, this_frame))
break;
kf_group_err += calculate_modified_err(cpi, twopass, oxcf, this_frame);
}
rc->frames_to_key = new_frame_to_key;
}
// Special case for the last key frame of the file.
if (twopass->stats_in >= twopass->stats_in_end) {
// Accumulate kf group error.
@ -2547,16 +2410,6 @@ static void configure_buffer_updates(VP10_COMP *cpi) {
assert(0);
break;
}
if (is_two_pass_svc(cpi)) {
if (cpi->svc.temporal_layer_id > 0) {
cpi->refresh_last_frame = 0;
cpi->refresh_golden_frame = 0;
}
if (cpi->svc.layer_context[cpi->svc.spatial_layer_id].gold_ref_idx < 0)
cpi->refresh_golden_frame = 0;
if (cpi->alt_ref_source == NULL)
cpi->refresh_alt_ref_frame = 0;
}
}
static int is_skippable_frame(const VP10_COMP *cpi) {
@ -2564,9 +2417,7 @@ static int is_skippable_frame(const VP10_COMP *cpi) {
// first pass, and so do its previous and forward frames, then this frame
// can be skipped for partition check, and the partition size is assigned
// according to the variance
const SVC *const svc = &cpi->svc;
const TWO_PASS *const twopass = is_two_pass_svc(cpi) ?
&svc->layer_context[svc->spatial_layer_id].twopass : &cpi->twopass;
const TWO_PASS *const twopass = &cpi->twopass;
return (!frame_is_intra_only(&cpi->common) &&
twopass->stats_in - 2 > twopass->stats_in_start &&
@ -2587,16 +2438,9 @@ void vp10_rc_get_second_pass_params(VP10_COMP *cpi) {
FIRSTPASS_STATS this_frame;
int target_rate;
LAYER_CONTEXT *const lc = is_two_pass_svc(cpi) ?
&cpi->svc.layer_context[cpi->svc.spatial_layer_id] : 0;
if (lc != NULL) {
frames_left = (int)(twopass->total_stats.count -
lc->current_video_frame_in_layer);
} else {
frames_left = (int)(twopass->total_stats.count -
cm->current_video_frame);
}
frames_left = (int)(twopass->total_stats.count -
cm->current_video_frame);
if (!twopass->stats_in)
return;
@ -2612,21 +2456,9 @@ void vp10_rc_get_second_pass_params(VP10_COMP *cpi) {
cm->frame_type = INTER_FRAME;
if (lc != NULL) {
if (cpi->svc.spatial_layer_id == 0) {
lc->is_key_frame = 0;
} else {
lc->is_key_frame = cpi->svc.layer_context[0].is_key_frame;
if (lc->is_key_frame)
cpi->ref_frame_flags &= (~VP9_LAST_FLAG);
}
}
// Do the firstpass stats indicate that this frame is skippable for the
// partition search?
if (cpi->sf.allow_partition_search_skip &&
cpi->oxcf.pass == 2 && (!cpi->use_svc || is_two_pass_svc(cpi))) {
if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2) {
cpi->partition_search_skippable_frame = is_skippable_frame(cpi);
}
@ -2637,8 +2469,7 @@ void vp10_rc_get_second_pass_params(VP10_COMP *cpi) {
if (cpi->oxcf.rc_mode == VPX_Q) {
twopass->active_worst_quality = cpi->oxcf.cq_level;
} else if (cm->current_video_frame == 0 ||
(lc != NULL && lc->current_video_frame_in_layer == 0)) {
} else if (cm->current_video_frame == 0) {
// Special case code for first frame.
const int section_target_bandwidth = (int)(twopass->bits_left /
frames_left);
@ -2685,34 +2516,11 @@ void vp10_rc_get_second_pass_params(VP10_COMP *cpi) {
cm->frame_type = INTER_FRAME;
}
if (lc != NULL) {
if (cpi->svc.spatial_layer_id == 0) {
lc->is_key_frame = (cm->frame_type == KEY_FRAME);
if (lc->is_key_frame) {
cpi->ref_frame_flags &=
(~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG);
lc->frames_from_key_frame = 0;
// Encode an intra only empty frame since we have a key frame.
cpi->svc.encode_intra_empty_frame = 1;
}
} else {
cm->frame_type = INTER_FRAME;
lc->is_key_frame = cpi->svc.layer_context[0].is_key_frame;
if (lc->is_key_frame) {
cpi->ref_frame_flags &= (~VP9_LAST_FLAG);
lc->frames_from_key_frame = 0;
}
}
}
// Define a new GF/ARF group. (Should always enter here for key frames).
if (rc->frames_till_gf_update_due == 0) {
define_gf_group(cpi, &this_frame);
rc->frames_till_gf_update_due = rc->baseline_gf_interval;
if (lc != NULL)
cpi->refresh_golden_frame = 1;
#if ARF_STATS_OUTPUT
{
@ -2732,8 +2540,7 @@ void vp10_rc_get_second_pass_params(VP10_COMP *cpi) {
// Do the firstpass stats indicate that this frame is skippable for the
// partition search?
if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2 &&
(!cpi->use_svc || is_two_pass_svc(cpi))) {
if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2) {
cpi->partition_search_skippable_frame = is_skippable_frame(cpi);
}
@ -2783,8 +2590,7 @@ void vp10_twopass_postencode_update(VP10_COMP *cpi) {
rc->rate_error_estimate = 0;
}
if (cpi->common.frame_type != KEY_FRAME &&
!vp10_is_upper_layer_key_frame(cpi)) {
if (cpi->common.frame_type != KEY_FRAME) {
twopass->kf_group_bits -= bits_used;
twopass->last_kfgroup_zeromotion_pct = twopass->kf_zeromotion_pct;
}

Просмотреть файл

@ -64,7 +64,6 @@ typedef struct {
double new_mv_count;
double duration;
double count;
int64_t spatial_layer_id;
} FIRSTPASS_STATS;
typedef enum {

Просмотреть файл

@ -14,11 +14,6 @@
#include "vpx_scale/yv12config.h"
#include "vpx/vpx_integer.h"
#if CONFIG_SPATIAL_SVC
#include "vpx/vp8cx.h"
#include "vpx/vpx_encoder.h"
#endif
#ifdef __cplusplus
extern "C" {
#endif

Просмотреть файл

@ -233,28 +233,6 @@ int vp10_rc_clamp_iframe_target_size(const VP10_COMP *const cpi, int target) {
return target;
}
// Update the buffer level for higher temporal layers, given the encoded current
// temporal layer.
static void update_layer_buffer_level(SVC *svc, int encoded_frame_size) {
int i = 0;
int current_temporal_layer = svc->temporal_layer_id;
for (i = current_temporal_layer + 1;
i < svc->number_temporal_layers; ++i) {
const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, i,
svc->number_temporal_layers);
LAYER_CONTEXT *lc = &svc->layer_context[layer];
RATE_CONTROL *lrc = &lc->rc;
int bits_off_for_this_layer = (int)(lc->target_bandwidth / lc->framerate -
encoded_frame_size);
lrc->bits_off_target += bits_off_for_this_layer;
// Clip buffer level to maximum buffer size for the layer.
lrc->bits_off_target =
VPXMIN(lrc->bits_off_target, lrc->maximum_buffer_size);
lrc->buffer_level = lrc->bits_off_target;
}
}
// Update the buffer level: leaky bucket model.
static void update_buffer_level(VP10_COMP *cpi, int encoded_frame_size) {
const VP10_COMMON *const cm = &cpi->common;
@ -270,10 +248,6 @@ static void update_buffer_level(VP10_COMP *cpi, int encoded_frame_size) {
// Clip the buffer level to the maximum specified buffer size.
rc->bits_off_target = VPXMIN(rc->bits_off_target, rc->maximum_buffer_size);
rc->buffer_level = rc->bits_off_target;
if (is_one_pass_cbr_svc(cpi)) {
update_layer_buffer_level(&cpi->svc, encoded_frame_size);
}
}
int vp10_rc_get_default_min_gf_interval(
@ -408,7 +382,7 @@ static double get_rate_correction_factor(const VP10_COMP *cpi) {
rcf = rc->rate_correction_factors[rf_lvl];
} else {
if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
!rc->is_src_frame_alt_ref && !cpi->use_svc &&
!rc->is_src_frame_alt_ref &&
(cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 20))
rcf = rc->rate_correction_factors[GF_ARF_STD];
else
@ -434,7 +408,7 @@ static void set_rate_correction_factor(VP10_COMP *cpi, double factor) {
rc->rate_correction_factors[rf_lvl] = factor;
} else {
if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
!rc->is_src_frame_alt_ref && !cpi->use_svc &&
!rc->is_src_frame_alt_ref &&
(cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 20))
rc->rate_correction_factors[GF_ARF_STD] = factor;
else
@ -529,10 +503,7 @@ int vp10_rc_regulate_q(const VP10_COMP *cpi, int target_bits_per_frame,
i = active_best_quality;
do {
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
cm->seg.enabled &&
cpi->svc.temporal_layer_id == 0 &&
cpi->svc.spatial_layer_id == 0) {
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) {
bits_per_mb_at_this_q =
(int)vp10_cyclic_refresh_rc_bits_per_mb(cpi, i, correction_factor);
} else {
@ -722,7 +693,6 @@ static int rc_pick_q_and_bounds_one_pass_cbr(const VP10_COMP *cpi,
cm->bit_depth);
}
} else if (!rc->is_src_frame_alt_ref &&
!cpi->use_svc &&
(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
// Use the lower of active_worst_quality and recent
// average Q as basis for GF/ARF best Q limit unless last frame was
@ -992,7 +962,7 @@ static int rc_pick_q_and_bounds_two_pass(const VP10_COMP *cpi,
int *inter_minq;
ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq);
if (frame_is_intra_only(cm) || vp10_is_upper_layer_key_frame(cpi)) {
if (frame_is_intra_only(cm)) {
// Handle the special case for key frames forced when we have reached
// the maximum key frame interval. Here force the Q to a range
// based on the ambient Q to reduce the risk of popping.
@ -1111,7 +1081,7 @@ static int rc_pick_q_and_bounds_two_pass(const VP10_COMP *cpi,
#if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
vpx_clear_system_state();
// Static forced key frames Q restrictions dealt with elsewhere.
if (!((frame_is_intra_only(cm) || vp10_is_upper_layer_key_frame(cpi))) ||
if (!(frame_is_intra_only(cm)) ||
!rc->this_key_frame_forced ||
(cpi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH)) {
int qdelta = vp10_frame_type_qdelta(cpi, gf_group->rf_level[gf_group->index],
@ -1138,8 +1108,7 @@ static int rc_pick_q_and_bounds_two_pass(const VP10_COMP *cpi,
if (oxcf->rc_mode == VPX_Q) {
q = active_best_quality;
// Special case code to try and match quality with forced key frames.
} else if ((frame_is_intra_only(cm) || vp10_is_upper_layer_key_frame(cpi)) &&
rc->this_key_frame_forced) {
} else if (frame_is_intra_only(cm) && rc->this_key_frame_forced) {
// If static since last kf use better of last boosted and last kf q.
if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
q = VPXMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
@ -1281,8 +1250,7 @@ void vp10_rc_postencode_update(VP10_COMP *cpi, uint64_t bytes_used) {
ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[KEY_FRAME] + qindex, 2);
} else {
if (rc->is_src_frame_alt_ref ||
!(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) ||
(cpi->use_svc && oxcf->rc_mode == VPX_CBR)) {
!(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
rc->last_q[INTER_FRAME] = qindex;
rc->avg_frame_qindex[INTER_FRAME] =
ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[INTER_FRAME] + qindex, 2);
@ -1434,7 +1402,6 @@ void vp10_rc_get_one_pass_vbr_params(VP10_COMP *cpi) {
static int calc_pframe_target_size_one_pass_cbr(const VP10_COMP *cpi) {
const VP10EncoderConfig *oxcf = &cpi->oxcf;
const RATE_CONTROL *rc = &cpi->rc;
const SVC *const svc = &cpi->svc;
const int64_t diff = rc->optimal_buffer_level - rc->buffer_level;
const int64_t one_pct_bits = 1 + rc->optimal_buffer_level / 100;
int min_frame_target =
@ -1451,17 +1418,7 @@ static int calc_pframe_target_size_one_pass_cbr(const VP10_COMP *cpi) {
} else {
target = rc->avg_frame_bandwidth;
}
if (is_one_pass_cbr_svc(cpi)) {
// Note that for layers, avg_frame_bandwidth is the cumulative
// per-frame-bandwidth. For the target size of this frame, use the
// layer average frame size (i.e., non-cumulative per-frame-bw).
int layer =
LAYER_IDS_TO_IDX(svc->spatial_layer_id,
svc->temporal_layer_id, svc->number_temporal_layers);
const LAYER_CONTEXT *lc = &svc->layer_context[layer];
target = lc->avg_frame_size;
min_frame_target = VPXMAX(lc->avg_frame_size >> 4, FRAME_OVERHEAD_BITS);
}
if (diff > 0) {
// Lower the target bandwidth for this frame.
const int pct_low = (int)VPXMIN(diff / one_pct_bits, oxcf->under_shoot_pct);
@ -1482,8 +1439,6 @@ static int calc_pframe_target_size_one_pass_cbr(const VP10_COMP *cpi) {
static int calc_iframe_target_size_one_pass_cbr(const VP10_COMP *cpi) {
const RATE_CONTROL *rc = &cpi->rc;
const VP10EncoderConfig *oxcf = &cpi->oxcf;
const SVC *const svc = &cpi->svc;
int target;
if (cpi->common.current_video_frame == 0) {
target = ((rc->starting_buffer_level / 2) > INT_MAX)
@ -1491,14 +1446,7 @@ static int calc_iframe_target_size_one_pass_cbr(const VP10_COMP *cpi) {
} else {
int kf_boost = 32;
double framerate = cpi->framerate;
if (svc->number_temporal_layers > 1 &&
oxcf->rc_mode == VPX_CBR) {
// Use the layer framerate for temporal layers CBR mode.
const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id,
svc->temporal_layer_id, svc->number_temporal_layers);
const LAYER_CONTEXT *lc = &svc->layer_context[layer];
framerate = lc->framerate;
}
kf_boost = VPXMAX(kf_boost, (int)(2 * framerate - 16));
if (rc->frames_since_key < framerate / 2) {
kf_boost = (int)(kf_boost * rc->frames_since_key /
@ -1509,82 +1457,6 @@ static int calc_iframe_target_size_one_pass_cbr(const VP10_COMP *cpi) {
return vp10_rc_clamp_iframe_target_size(cpi, target);
}
// Reset information needed to set proper reference frames and buffer updates
// for temporal layering. This is called when a key frame is encoded.
static void reset_temporal_layer_to_zero(VP10_COMP *cpi) {
int sl;
LAYER_CONTEXT *lc = NULL;
cpi->svc.temporal_layer_id = 0;
for (sl = 0; sl < cpi->svc.number_spatial_layers; ++sl) {
lc = &cpi->svc.layer_context[sl * cpi->svc.number_temporal_layers];
lc->current_video_frame_in_layer = 0;
lc->frames_from_key_frame = 0;
}
}
void vp10_rc_get_svc_params(VP10_COMP *cpi) {
VP10_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
int target = rc->avg_frame_bandwidth;
const int layer = LAYER_IDS_TO_IDX(cpi->svc.spatial_layer_id,
cpi->svc.temporal_layer_id, cpi->svc.number_temporal_layers);
if ((cm->current_video_frame == 0) ||
(cpi->frame_flags & FRAMEFLAGS_KEY) ||
(cpi->oxcf.auto_key && (rc->frames_since_key %
cpi->oxcf.key_freq == 0))) {
cm->frame_type = KEY_FRAME;
rc->source_alt_ref_active = 0;
if (is_two_pass_svc(cpi)) {
cpi->svc.layer_context[layer].is_key_frame = 1;
cpi->ref_frame_flags &=
(~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG);
} else if (is_one_pass_cbr_svc(cpi)) {
cpi->svc.layer_context[layer].is_key_frame = 1;
reset_temporal_layer_to_zero(cpi);
cpi->ref_frame_flags &=
(~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG);
// Assumption here is that LAST_FRAME is being updated for a keyframe.
// Thus no change in update flags.
target = calc_iframe_target_size_one_pass_cbr(cpi);
}
} else {
cm->frame_type = INTER_FRAME;
if (is_two_pass_svc(cpi)) {
LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer];
if (cpi->svc.spatial_layer_id == 0) {
lc->is_key_frame = 0;
} else {
lc->is_key_frame =
cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame;
if (lc->is_key_frame)
cpi->ref_frame_flags &= (~VP9_LAST_FLAG);
}
cpi->ref_frame_flags &= (~VP9_ALT_FLAG);
} else if (is_one_pass_cbr_svc(cpi)) {
LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer];
if (cpi->svc.spatial_layer_id == 0) {
lc->is_key_frame = 0;
} else {
lc->is_key_frame =
cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame;
}
target = calc_pframe_target_size_one_pass_cbr(cpi);
}
}
// Any update/change of global cyclic refresh parameters (amount/delta-qp)
// should be done here, before the frame qp is selected.
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
vp10_cyclic_refresh_update_parameters(cpi);
vp10_rc_set_frame_target(cpi, target);
rc->frames_till_gf_update_due = INT_MAX;
rc->baseline_gf_interval = INT_MAX;
}
void vp10_rc_get_one_pass_cbr_params(VP10_COMP *cpi) {
VP10_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;

Просмотреть файл

@ -169,7 +169,6 @@ int vp10_rc_get_default_max_gf_interval(double framerate, int min_frame_rate);
// First call per frame, one of:
// vp10_rc_get_one_pass_vbr_params()
// vp10_rc_get_one_pass_cbr_params()
// vp10_rc_get_svc_params()
// vp10_rc_get_first_pass_params()
// vp10_rc_get_second_pass_params()
// depending on the usage to set the rate control encode parameters desired.
@ -190,7 +189,6 @@ int vp10_rc_get_default_max_gf_interval(double framerate, int min_frame_rate);
// encode_frame_to_data_rate() function.
void vp10_rc_get_one_pass_vbr_params(struct VP10_COMP *cpi);
void vp10_rc_get_one_pass_cbr_params(struct VP10_COMP *cpi);
void vp10_rc_get_svc_params(struct VP10_COMP *cpi);
// Post encode update of the rate control parameters based
// on bytes used

Просмотреть файл

@ -18,7 +18,7 @@
// Intra only frames, golden frames (except alt ref overlays) and
// alt ref frames tend to be coded at a higher than ambient quality
static int frame_is_boosted(const VP10_COMP *cpi) {
return frame_is_kf_gf_arf(cpi) || vp10_is_upper_layer_key_frame(cpi);
return frame_is_kf_gf_arf(cpi);
}
// Sets a partition size down to which the auto partition code will always
@ -284,8 +284,7 @@ static void set_rt_speed_feature(VP10_COMP *cpi, SPEED_FEATURES *sf,
// pred_mv_sad will not be set (since vp10_mv_pred will not
// be called).
// TODO(marpan/agrange): Fix this condition.
sf->reference_masking = (cpi->oxcf.resize_mode != RESIZE_DYNAMIC &&
cpi->svc.number_spatial_layers == 1) ? 1 : 0;
sf->reference_masking = (cpi->oxcf.resize_mode != RESIZE_DYNAMIC) ? 1 : 0;
sf->disable_filter_search_var_thresh = 50;
sf->comp_inter_joint_search_thresh = BLOCK_SIZES;

Просмотреть файл

@ -1,646 +0,0 @@
/*
* Copyright (c) 2014 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include "vp10/encoder/encoder.h"
#include "vp10/encoder/svc_layercontext.h"
#include "vp10/encoder/extend.h"
#define SMALL_FRAME_FB_IDX 7
#define SMALL_FRAME_WIDTH 16
#define SMALL_FRAME_HEIGHT 16
void vp10_init_layer_context(VP10_COMP *const cpi) {
SVC *const svc = &cpi->svc;
const VP10EncoderConfig *const oxcf = &cpi->oxcf;
int sl, tl;
int alt_ref_idx = svc->number_spatial_layers;
svc->spatial_layer_id = 0;
svc->temporal_layer_id = 0;
if (cpi->oxcf.error_resilient_mode == 0 && cpi->oxcf.pass == 2) {
if (vpx_realloc_frame_buffer(&cpi->svc.empty_frame.img,
SMALL_FRAME_WIDTH, SMALL_FRAME_HEIGHT,
cpi->common.subsampling_x,
cpi->common.subsampling_y,
#if CONFIG_VP9_HIGHBITDEPTH
cpi->common.use_highbitdepth,
#endif
VP9_ENC_BORDER_IN_PIXELS,
cpi->common.byte_alignment,
NULL, NULL, NULL))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate empty frame for multiple frame "
"contexts");
memset(cpi->svc.empty_frame.img.buffer_alloc, 0x80,
cpi->svc.empty_frame.img.buffer_alloc_sz);
}
for (sl = 0; sl < oxcf->ss_number_layers; ++sl) {
for (tl = 0; tl < oxcf->ts_number_layers; ++tl) {
int layer = LAYER_IDS_TO_IDX(sl, tl, oxcf->ts_number_layers);
LAYER_CONTEXT *const lc = &svc->layer_context[layer];
RATE_CONTROL *const lrc = &lc->rc;
int i;
lc->current_video_frame_in_layer = 0;
lc->layer_size = 0;
lc->frames_from_key_frame = 0;
lc->last_frame_type = FRAME_TYPES;
lrc->ni_av_qi = oxcf->worst_allowed_q;
lrc->total_actual_bits = 0;
lrc->total_target_vs_actual = 0;
lrc->ni_tot_qi = 0;
lrc->tot_q = 0.0;
lrc->avg_q = 0.0;
lrc->ni_frames = 0;
lrc->decimation_count = 0;
lrc->decimation_factor = 0;
for (i = 0; i < RATE_FACTOR_LEVELS; ++i) {
lrc->rate_correction_factors[i] = 1.0;
}
if (cpi->oxcf.rc_mode == VPX_CBR) {
lc->target_bandwidth = oxcf->layer_target_bitrate[layer];
lrc->last_q[INTER_FRAME] = oxcf->worst_allowed_q;
lrc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q;
lrc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q;
} else {
lc->target_bandwidth = oxcf->layer_target_bitrate[layer];
lrc->last_q[KEY_FRAME] = oxcf->best_allowed_q;
lrc->last_q[INTER_FRAME] = oxcf->best_allowed_q;
lrc->avg_frame_qindex[KEY_FRAME] = (oxcf->worst_allowed_q +
oxcf->best_allowed_q) / 2;
lrc->avg_frame_qindex[INTER_FRAME] = (oxcf->worst_allowed_q +
oxcf->best_allowed_q) / 2;
if (oxcf->ss_enable_auto_arf[sl])
lc->alt_ref_idx = alt_ref_idx++;
else
lc->alt_ref_idx = INVALID_IDX;
lc->gold_ref_idx = INVALID_IDX;
}
lrc->buffer_level = oxcf->starting_buffer_level_ms *
lc->target_bandwidth / 1000;
lrc->bits_off_target = lrc->buffer_level;
}
}
// Still have extra buffer for base layer golden frame
if (!(svc->number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR)
&& alt_ref_idx < REF_FRAMES)
svc->layer_context[0].gold_ref_idx = alt_ref_idx;
}
// Update the layer context from a change_config() call.
void vp10_update_layer_context_change_config(VP10_COMP *const cpi,
const int target_bandwidth) {
SVC *const svc = &cpi->svc;
const VP10EncoderConfig *const oxcf = &cpi->oxcf;
const RATE_CONTROL *const rc = &cpi->rc;
int sl, tl, layer = 0, spatial_layer_target;
float bitrate_alloc = 1.0;
if (svc->temporal_layering_mode != VP9E_TEMPORAL_LAYERING_MODE_NOLAYERING) {
for (sl = 0; sl < oxcf->ss_number_layers; ++sl) {
spatial_layer_target = 0;
for (tl = 0; tl < oxcf->ts_number_layers; ++tl) {
layer = LAYER_IDS_TO_IDX(sl, tl, oxcf->ts_number_layers);
svc->layer_context[layer].target_bandwidth =
oxcf->layer_target_bitrate[layer];
}
layer = LAYER_IDS_TO_IDX(sl, ((oxcf->ts_number_layers - 1) < 0 ?
0 : (oxcf->ts_number_layers - 1)), oxcf->ts_number_layers);
spatial_layer_target =
svc->layer_context[layer].target_bandwidth =
oxcf->layer_target_bitrate[layer];
for (tl = 0; tl < oxcf->ts_number_layers; ++tl) {
LAYER_CONTEXT *const lc =
&svc->layer_context[sl * oxcf->ts_number_layers + tl];
RATE_CONTROL *const lrc = &lc->rc;
lc->spatial_layer_target_bandwidth = spatial_layer_target;
bitrate_alloc = (float)lc->target_bandwidth / spatial_layer_target;
lrc->starting_buffer_level =
(int64_t)(rc->starting_buffer_level * bitrate_alloc);
lrc->optimal_buffer_level =
(int64_t)(rc->optimal_buffer_level * bitrate_alloc);
lrc->maximum_buffer_size =
(int64_t)(rc->maximum_buffer_size * bitrate_alloc);
lrc->bits_off_target =
VPXMIN(lrc->bits_off_target, lrc->maximum_buffer_size);
lrc->buffer_level = VPXMIN(lrc->buffer_level, lrc->maximum_buffer_size);
lc->framerate = cpi->framerate / oxcf->ts_rate_decimator[tl];
lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate);
lrc->max_frame_bandwidth = rc->max_frame_bandwidth;
lrc->worst_quality = rc->worst_quality;
lrc->best_quality = rc->best_quality;
}
}
} else {
int layer_end;
if (svc->number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) {
layer_end = svc->number_temporal_layers;
} else {
layer_end = svc->number_spatial_layers;
}
for (layer = 0; layer < layer_end; ++layer) {
LAYER_CONTEXT *const lc = &svc->layer_context[layer];
RATE_CONTROL *const lrc = &lc->rc;
lc->target_bandwidth = oxcf->layer_target_bitrate[layer];
bitrate_alloc = (float)lc->target_bandwidth / target_bandwidth;
// Update buffer-related quantities.
lrc->starting_buffer_level =
(int64_t)(rc->starting_buffer_level * bitrate_alloc);
lrc->optimal_buffer_level =
(int64_t)(rc->optimal_buffer_level * bitrate_alloc);
lrc->maximum_buffer_size =
(int64_t)(rc->maximum_buffer_size * bitrate_alloc);
lrc->bits_off_target = VPXMIN(lrc->bits_off_target,
lrc->maximum_buffer_size);
lrc->buffer_level = VPXMIN(lrc->buffer_level, lrc->maximum_buffer_size);
// Update framerate-related quantities.
if (svc->number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) {
lc->framerate = cpi->framerate / oxcf->ts_rate_decimator[layer];
} else {
lc->framerate = cpi->framerate;
}
lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate);
lrc->max_frame_bandwidth = rc->max_frame_bandwidth;
// Update qp-related quantities.
lrc->worst_quality = rc->worst_quality;
lrc->best_quality = rc->best_quality;
}
}
}
static LAYER_CONTEXT *get_layer_context(VP10_COMP *const cpi) {
if (is_one_pass_cbr_svc(cpi))
return &cpi->svc.layer_context[cpi->svc.spatial_layer_id *
cpi->svc.number_temporal_layers + cpi->svc.temporal_layer_id];
else
return (cpi->svc.number_temporal_layers > 1 &&
cpi->oxcf.rc_mode == VPX_CBR) ?
&cpi->svc.layer_context[cpi->svc.temporal_layer_id] :
&cpi->svc.layer_context[cpi->svc.spatial_layer_id];
}
void vp10_update_temporal_layer_framerate(VP10_COMP *const cpi) {
SVC *const svc = &cpi->svc;
const VP10EncoderConfig *const oxcf = &cpi->oxcf;
LAYER_CONTEXT *const lc = get_layer_context(cpi);
RATE_CONTROL *const lrc = &lc->rc;
// Index into spatial+temporal arrays.
const int st_idx = svc->spatial_layer_id * svc->number_temporal_layers +
svc->temporal_layer_id;
const int tl = svc->temporal_layer_id;
lc->framerate = cpi->framerate / oxcf->ts_rate_decimator[tl];
lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate);
lrc->max_frame_bandwidth = cpi->rc.max_frame_bandwidth;
// Update the average layer frame size (non-cumulative per-frame-bw).
if (tl == 0) {
lc->avg_frame_size = lrc->avg_frame_bandwidth;
} else {
const double prev_layer_framerate =
cpi->framerate / oxcf->ts_rate_decimator[tl - 1];
const int prev_layer_target_bandwidth =
oxcf->layer_target_bitrate[st_idx - 1];
lc->avg_frame_size =
(int)((lc->target_bandwidth - prev_layer_target_bandwidth) /
(lc->framerate - prev_layer_framerate));
}
}
void vp10_update_spatial_layer_framerate(VP10_COMP *const cpi,
double framerate) {
const VP10EncoderConfig *const oxcf = &cpi->oxcf;
LAYER_CONTEXT *const lc = get_layer_context(cpi);
RATE_CONTROL *const lrc = &lc->rc;
lc->framerate = framerate;
lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate);
lrc->min_frame_bandwidth = (int)(lrc->avg_frame_bandwidth *
oxcf->two_pass_vbrmin_section / 100);
lrc->max_frame_bandwidth = (int)(((int64_t)lrc->avg_frame_bandwidth *
oxcf->two_pass_vbrmax_section) / 100);
vp10_rc_set_gf_interval_range(cpi, lrc);
}
void vp10_restore_layer_context(VP10_COMP *const cpi) {
LAYER_CONTEXT *const lc = get_layer_context(cpi);
const int old_frame_since_key = cpi->rc.frames_since_key;
const int old_frame_to_key = cpi->rc.frames_to_key;
cpi->rc = lc->rc;
cpi->twopass = lc->twopass;
cpi->oxcf.target_bandwidth = lc->target_bandwidth;
cpi->alt_ref_source = lc->alt_ref_source;
// Reset the frames_since_key and frames_to_key counters to their values
// before the layer restore. Keep these defined for the stream (not layer).
if (cpi->svc.number_temporal_layers > 1) {
cpi->rc.frames_since_key = old_frame_since_key;
cpi->rc.frames_to_key = old_frame_to_key;
}
}
void vp10_save_layer_context(VP10_COMP *const cpi) {
const VP10EncoderConfig *const oxcf = &cpi->oxcf;
LAYER_CONTEXT *const lc = get_layer_context(cpi);
lc->rc = cpi->rc;
lc->twopass = cpi->twopass;
lc->target_bandwidth = (int)oxcf->target_bandwidth;
lc->alt_ref_source = cpi->alt_ref_source;
}
void vp10_init_second_pass_spatial_svc(VP10_COMP *cpi) {
SVC *const svc = &cpi->svc;
int i;
for (i = 0; i < svc->number_spatial_layers; ++i) {
TWO_PASS *const twopass = &svc->layer_context[i].twopass;
svc->spatial_layer_id = i;
vp10_init_second_pass(cpi);
twopass->total_stats.spatial_layer_id = i;
twopass->total_left_stats.spatial_layer_id = i;
}
svc->spatial_layer_id = 0;
}
void vp10_inc_frame_in_layer(VP10_COMP *const cpi) {
LAYER_CONTEXT *const lc =
&cpi->svc.layer_context[cpi->svc.spatial_layer_id *
cpi->svc.number_temporal_layers];
++lc->current_video_frame_in_layer;
++lc->frames_from_key_frame;
}
int vp10_is_upper_layer_key_frame(const VP10_COMP *const cpi) {
return is_two_pass_svc(cpi) &&
cpi->svc.spatial_layer_id > 0 &&
cpi->svc.layer_context[cpi->svc.spatial_layer_id *
cpi->svc.number_temporal_layers +
cpi->svc.temporal_layer_id].is_key_frame;
}
static void get_layer_resolution(const int width_org, const int height_org,
const int num, const int den,
int *width_out, int *height_out) {
int w, h;
if (width_out == NULL || height_out == NULL || den == 0)
return;
w = width_org * num / den;
h = height_org * num / den;
// make height and width even to make chrome player happy
w += w % 2;
h += h % 2;
*width_out = w;
*height_out = h;
}
// The function sets proper ref_frame_flags, buffer indices, and buffer update
// variables for temporal layering mode 3 - that does 0-2-1-2 temporal layering
// scheme.
static void set_flags_and_fb_idx_for_temporal_mode3(VP10_COMP *const cpi) {
int frame_num_within_temporal_struct = 0;
int spatial_id, temporal_id;
spatial_id = cpi->svc.spatial_layer_id = cpi->svc.spatial_layer_to_encode;
frame_num_within_temporal_struct =
cpi->svc.layer_context[cpi->svc.spatial_layer_id *
cpi->svc.number_temporal_layers].current_video_frame_in_layer % 4;
temporal_id = cpi->svc.temporal_layer_id =
(frame_num_within_temporal_struct & 1) ? 2 :
(frame_num_within_temporal_struct >> 1);
cpi->ext_refresh_last_frame = cpi->ext_refresh_golden_frame =
cpi->ext_refresh_alt_ref_frame = 0;
if (!temporal_id) {
cpi->ext_refresh_frame_flags_pending = 1;
cpi->ext_refresh_last_frame = 1;
if (!spatial_id) {
cpi->ref_frame_flags = VP9_LAST_FLAG;
} else if (cpi->svc.layer_context[temporal_id].is_key_frame) {
// base layer is a key frame.
cpi->ref_frame_flags = VP9_GOLD_FLAG;
} else {
cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
}
} else if (temporal_id == 1) {
cpi->ext_refresh_frame_flags_pending = 1;
cpi->ext_refresh_alt_ref_frame = 1;
if (!spatial_id) {
cpi->ref_frame_flags = VP9_LAST_FLAG;
} else {
cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
}
} else {
if (frame_num_within_temporal_struct == 1) {
// the first tl2 picture
if (!spatial_id) {
cpi->ext_refresh_frame_flags_pending = 1;
cpi->ext_refresh_alt_ref_frame = 1;
cpi->ref_frame_flags = VP9_LAST_FLAG;
} else if (spatial_id < cpi->svc.number_spatial_layers - 1) {
cpi->ext_refresh_frame_flags_pending = 1;
cpi->ext_refresh_alt_ref_frame = 1;
cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
} else { // Top layer
cpi->ext_refresh_frame_flags_pending = 0;
cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
}
} else {
// The second tl2 picture
if (!spatial_id) {
cpi->ext_refresh_frame_flags_pending = 1;
cpi->ref_frame_flags = VP9_LAST_FLAG;
cpi->ext_refresh_last_frame = 1;
} else if (spatial_id < cpi->svc.number_spatial_layers - 1) {
cpi->ext_refresh_frame_flags_pending = 1;
cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
cpi->ext_refresh_last_frame = 1;
} else { // top layer
cpi->ext_refresh_frame_flags_pending = 0;
cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
}
}
}
if (temporal_id == 0) {
cpi->lst_fb_idx = spatial_id;
if (spatial_id)
cpi->gld_fb_idx = spatial_id - 1;
else
cpi->gld_fb_idx = 0;
cpi->alt_fb_idx = 0;
} else if (temporal_id == 1) {
cpi->lst_fb_idx = spatial_id;
cpi->gld_fb_idx = cpi->svc.number_spatial_layers + spatial_id - 1;
cpi->alt_fb_idx = cpi->svc.number_spatial_layers + spatial_id;
} else if (frame_num_within_temporal_struct == 1) {
cpi->lst_fb_idx = spatial_id;
cpi->gld_fb_idx = cpi->svc.number_spatial_layers + spatial_id - 1;
cpi->alt_fb_idx = cpi->svc.number_spatial_layers + spatial_id;
} else {
cpi->lst_fb_idx = cpi->svc.number_spatial_layers + spatial_id;
cpi->gld_fb_idx = cpi->svc.number_spatial_layers + spatial_id - 1;
cpi->alt_fb_idx = 0;
}
}
// The function sets proper ref_frame_flags, buffer indices, and buffer update
// variables for temporal layering mode 2 - that does 0-1-0-1 temporal layering
// scheme.
static void set_flags_and_fb_idx_for_temporal_mode2(VP10_COMP *const cpi) {
int spatial_id, temporal_id;
spatial_id = cpi->svc.spatial_layer_id = cpi->svc.spatial_layer_to_encode;
temporal_id = cpi->svc.temporal_layer_id =
cpi->svc.layer_context[cpi->svc.spatial_layer_id *
cpi->svc.number_temporal_layers].current_video_frame_in_layer & 1;
cpi->ext_refresh_last_frame = cpi->ext_refresh_golden_frame =
cpi->ext_refresh_alt_ref_frame = 0;
if (!temporal_id) {
cpi->ext_refresh_frame_flags_pending = 1;
cpi->ext_refresh_last_frame = 1;
if (!spatial_id) {
cpi->ref_frame_flags = VP9_LAST_FLAG;
} else if (cpi->svc.layer_context[temporal_id].is_key_frame) {
// base layer is a key frame.
cpi->ref_frame_flags = VP9_GOLD_FLAG;
} else {
cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
}
} else if (temporal_id == 1) {
cpi->ext_refresh_frame_flags_pending = 1;
cpi->ext_refresh_alt_ref_frame = 1;
if (!spatial_id) {
cpi->ref_frame_flags = VP9_LAST_FLAG;
} else {
cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
}
}
if (temporal_id == 0) {
cpi->lst_fb_idx = spatial_id;
if (spatial_id)
cpi->gld_fb_idx = spatial_id - 1;
else
cpi->gld_fb_idx = 0;
cpi->alt_fb_idx = 0;
} else if (temporal_id == 1) {
cpi->lst_fb_idx = spatial_id;
cpi->gld_fb_idx = cpi->svc.number_spatial_layers + spatial_id - 1;
cpi->alt_fb_idx = cpi->svc.number_spatial_layers + spatial_id;
}
}
// The function sets proper ref_frame_flags, buffer indices, and buffer update
// variables for temporal layering mode 0 - that has no temporal layering.
static void set_flags_and_fb_idx_for_temporal_mode_noLayering(
VP10_COMP *const cpi) {
int spatial_id;
spatial_id = cpi->svc.spatial_layer_id = cpi->svc.spatial_layer_to_encode;
cpi->ext_refresh_last_frame =
cpi->ext_refresh_golden_frame = cpi->ext_refresh_alt_ref_frame = 0;
cpi->ext_refresh_frame_flags_pending = 1;
cpi->ext_refresh_last_frame = 1;
if (!spatial_id) {
cpi->ref_frame_flags = VP9_LAST_FLAG;
} else if (cpi->svc.layer_context[0].is_key_frame) {
cpi->ref_frame_flags = VP9_GOLD_FLAG;
} else {
cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
}
cpi->lst_fb_idx = spatial_id;
if (spatial_id)
cpi->gld_fb_idx = spatial_id - 1;
else
cpi->gld_fb_idx = 0;
}
int vp10_one_pass_cbr_svc_start_layer(VP10_COMP *const cpi) {
int width = 0, height = 0;
LAYER_CONTEXT *lc = NULL;
if (cpi->svc.temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_0212) {
set_flags_and_fb_idx_for_temporal_mode3(cpi);
} else if (cpi->svc.temporal_layering_mode ==
VP9E_TEMPORAL_LAYERING_MODE_NOLAYERING) {
set_flags_and_fb_idx_for_temporal_mode_noLayering(cpi);
} else if (cpi->svc.temporal_layering_mode ==
VP9E_TEMPORAL_LAYERING_MODE_0101) {
set_flags_and_fb_idx_for_temporal_mode2(cpi);
} else if (cpi->svc.temporal_layering_mode ==
VP9E_TEMPORAL_LAYERING_MODE_BYPASS) {
// VP9E_TEMPORAL_LAYERING_MODE_BYPASS :
// if the code goes here, it means the encoder will be relying on the
// flags from outside for layering.
// However, since when spatial+temporal layering is used, the buffer indices
// cannot be derived automatically, the bypass mode will only work when the
// number of spatial layers equals 1.
assert(cpi->svc.number_spatial_layers == 1);
}
lc = &cpi->svc.layer_context[cpi->svc.spatial_layer_id *
cpi->svc.number_temporal_layers +
cpi->svc.temporal_layer_id];
get_layer_resolution(cpi->oxcf.width, cpi->oxcf.height,
lc->scaling_factor_num, lc->scaling_factor_den,
&width, &height);
if (vp10_set_size_literal(cpi, width, height) != 0)
return VPX_CODEC_INVALID_PARAM;
return 0;
}
#if CONFIG_SPATIAL_SVC
int vp10_svc_start_frame(VP10_COMP *const cpi) {
int width = 0, height = 0;
LAYER_CONTEXT *lc;
struct lookahead_entry *buf;
int count = 1 << (cpi->svc.number_temporal_layers - 1);
cpi->svc.spatial_layer_id = cpi->svc.spatial_layer_to_encode;
lc = &cpi->svc.layer_context[cpi->svc.spatial_layer_id];
cpi->svc.temporal_layer_id = 0;
while ((lc->current_video_frame_in_layer % count) != 0) {
++cpi->svc.temporal_layer_id;
count >>= 1;
}
cpi->ref_frame_flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG;
cpi->lst_fb_idx = cpi->svc.spatial_layer_id;
if (cpi->svc.spatial_layer_id == 0)
cpi->gld_fb_idx = (lc->gold_ref_idx >= 0) ?
lc->gold_ref_idx : cpi->lst_fb_idx;
else
cpi->gld_fb_idx = cpi->svc.spatial_layer_id - 1;
if (lc->current_video_frame_in_layer == 0) {
if (cpi->svc.spatial_layer_id >= 2) {
cpi->alt_fb_idx = cpi->svc.spatial_layer_id - 2;
} else {
cpi->alt_fb_idx = cpi->lst_fb_idx;
cpi->ref_frame_flags &= (~VP9_LAST_FLAG & ~VP9_ALT_FLAG);
}
} else {
if (cpi->oxcf.ss_enable_auto_arf[cpi->svc.spatial_layer_id]) {
cpi->alt_fb_idx = lc->alt_ref_idx;
if (!lc->has_alt_frame)
cpi->ref_frame_flags &= (~VP9_ALT_FLAG);
} else {
// Find a proper alt_fb_idx for layers that don't have alt ref frame
if (cpi->svc.spatial_layer_id == 0) {
cpi->alt_fb_idx = cpi->lst_fb_idx;
} else {
LAYER_CONTEXT *lc_lower =
&cpi->svc.layer_context[cpi->svc.spatial_layer_id - 1];
if (cpi->oxcf.ss_enable_auto_arf[cpi->svc.spatial_layer_id - 1] &&
lc_lower->alt_ref_source != NULL)
cpi->alt_fb_idx = lc_lower->alt_ref_idx;
else if (cpi->svc.spatial_layer_id >= 2)
cpi->alt_fb_idx = cpi->svc.spatial_layer_id - 2;
else
cpi->alt_fb_idx = cpi->lst_fb_idx;
}
}
}
get_layer_resolution(cpi->oxcf.width, cpi->oxcf.height,
lc->scaling_factor_num, lc->scaling_factor_den,
&width, &height);
// Workaround for multiple frame contexts. In some frames we can't use prev_mi
// since its previous frame could be changed during decoding time. The idea is
// we put a empty invisible frame in front of them, then we will not use
// prev_mi when encoding these frames.
buf = vp10_lookahead_peek(cpi->lookahead, 0);
if (cpi->oxcf.error_resilient_mode == 0 && cpi->oxcf.pass == 2 &&
cpi->svc.encode_empty_frame_state == NEED_TO_ENCODE &&
lc->rc.frames_to_key != 0 &&
!(buf != NULL && (buf->flags & VPX_EFLAG_FORCE_KF))) {
if ((cpi->svc.number_temporal_layers > 1 &&
cpi->svc.temporal_layer_id < cpi->svc.number_temporal_layers - 1) ||
(cpi->svc.number_spatial_layers > 1 &&
cpi->svc.spatial_layer_id == 0)) {
struct lookahead_entry *buf = vp10_lookahead_peek(cpi->lookahead, 0);
if (buf != NULL) {
cpi->svc.empty_frame.ts_start = buf->ts_start;
cpi->svc.empty_frame.ts_end = buf->ts_end;
cpi->svc.encode_empty_frame_state = ENCODING;
cpi->common.show_frame = 0;
cpi->ref_frame_flags = 0;
cpi->common.frame_type = INTER_FRAME;
cpi->lst_fb_idx =
cpi->gld_fb_idx = cpi->alt_fb_idx = SMALL_FRAME_FB_IDX;
if (cpi->svc.encode_intra_empty_frame != 0)
cpi->common.intra_only = 1;
width = SMALL_FRAME_WIDTH;
height = SMALL_FRAME_HEIGHT;
}
}
}
cpi->oxcf.worst_allowed_q = vp10_quantizer_to_qindex(lc->max_q);
cpi->oxcf.best_allowed_q = vp10_quantizer_to_qindex(lc->min_q);
vp10_change_config(cpi, &cpi->oxcf);
if (vp10_set_size_literal(cpi, width, height) != 0)
return VPX_CODEC_INVALID_PARAM;
vp10_set_high_precision_mv(cpi, 1);
cpi->alt_ref_source = get_layer_context(cpi)->alt_ref_source;
return 0;
}
#endif
struct lookahead_entry *vp10_svc_lookahead_pop(VP10_COMP *const cpi,
struct lookahead_ctx *ctx,
int drain) {
struct lookahead_entry *buf = NULL;
if (ctx->sz && (drain || ctx->sz == ctx->max_sz - MAX_PRE_FRAMES)) {
buf = vp10_lookahead_peek(ctx, 0);
if (buf != NULL) {
// Only remove the buffer when pop the highest layer.
if (cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) {
vp10_lookahead_pop(ctx, drain);
}
}
}
return buf;
}

Просмотреть файл

@ -1,122 +0,0 @@
/*
* Copyright (c) 2014 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef VP10_ENCODER_SVC_LAYERCONTEXT_H_
#define VP10_ENCODER_SVC_LAYERCONTEXT_H_
#include "vpx/vpx_encoder.h"
#include "vp10/encoder/ratectrl.h"
#ifdef __cplusplus
extern "C" {
#endif
typedef struct {
RATE_CONTROL rc;
int target_bandwidth;
int spatial_layer_target_bandwidth; // Target for the spatial layer.
double framerate;
int avg_frame_size;
int max_q;
int min_q;
int scaling_factor_num;
int scaling_factor_den;
TWO_PASS twopass;
vpx_fixed_buf_t rc_twopass_stats_in;
unsigned int current_video_frame_in_layer;
int is_key_frame;
int frames_from_key_frame;
FRAME_TYPE last_frame_type;
struct lookahead_entry *alt_ref_source;
int alt_ref_idx;
int gold_ref_idx;
int has_alt_frame;
size_t layer_size;
struct vpx_psnr_pkt psnr_pkt;
} LAYER_CONTEXT;
typedef struct {
int spatial_layer_id;
int temporal_layer_id;
int number_spatial_layers;
int number_temporal_layers;
int spatial_layer_to_encode;
// Workaround for multiple frame contexts
enum {
ENCODED = 0,
ENCODING,
NEED_TO_ENCODE
}encode_empty_frame_state;
struct lookahead_entry empty_frame;
int encode_intra_empty_frame;
// Store scaled source frames to be used for temporal filter to generate
// a alt ref frame.
YV12_BUFFER_CONFIG scaled_frames[MAX_LAG_BUFFERS];
// Layer context used for rate control in one pass temporal CBR mode or
// two pass spatial mode.
LAYER_CONTEXT layer_context[VPX_MAX_LAYERS];
// Indicates what sort of temporal layering is used.
// Currently, this only works for CBR mode.
VP9E_TEMPORAL_LAYERING_MODE temporal_layering_mode;
} SVC;
struct VP10_COMP;
// Initialize layer context data from init_config().
void vp10_init_layer_context(struct VP10_COMP *const cpi);
// Update the layer context from a change_config() call.
void vp10_update_layer_context_change_config(struct VP10_COMP *const cpi,
const int target_bandwidth);
// Prior to encoding the frame, update framerate-related quantities
// for the current temporal layer.
void vp10_update_temporal_layer_framerate(struct VP10_COMP *const cpi);
// Update framerate-related quantities for the current spatial layer.
void vp10_update_spatial_layer_framerate(struct VP10_COMP *const cpi,
double framerate);
// Prior to encoding the frame, set the layer context, for the current layer
// to be encoded, to the cpi struct.
void vp10_restore_layer_context(struct VP10_COMP *const cpi);
// Save the layer context after encoding the frame.
void vp10_save_layer_context(struct VP10_COMP *const cpi);
// Initialize second pass rc for spatial svc.
void vp10_init_second_pass_spatial_svc(struct VP10_COMP *cpi);
// Increment number of video frames in layer
void vp10_inc_frame_in_layer(struct VP10_COMP *const cpi);
// Check if current layer is key frame in spatial upper layer
int vp10_is_upper_layer_key_frame(const struct VP10_COMP *const cpi);
// Get the next source buffer to encode
struct lookahead_entry *vp10_svc_lookahead_pop(struct VP10_COMP *const cpi,
struct lookahead_ctx *ctx,
int drain);
// Start a frame and initialize svc parameters
int vp10_svc_start_frame(struct VP10_COMP *const cpi);
int vp10_one_pass_cbr_svc_start_layer(struct VP10_COMP *const cpi);
#ifdef __cplusplus
} // extern "C"
#endif
#endif // VP10_ENCODER_SVC_LAYERCONTEXT_

Просмотреть файл

@ -652,9 +652,7 @@ static void adjust_arnr_filter(VP10_COMP *cpi,
}
void vp10_temporal_filter(VP10_COMP *cpi, int distance) {
VP10_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
int frame;
int frames_to_blur;
int start_frame;
@ -681,67 +679,21 @@ void vp10_temporal_filter(VP10_COMP *cpi, int distance) {
if (frames_to_blur > 0) {
// Setup scaling factors. Scaling on each of the arnr frames is not
// supported.
if (cpi->use_svc) {
// In spatial svc the scaling factors might be less then 1/2.
// So we will use non-normative scaling.
int frame_used = 0;
// ARF is produced at the native frame size and resized when coded.
#if CONFIG_VP9_HIGHBITDEPTH
vp10_setup_scale_factors_for_frame(
&sf,
get_frame_new_buffer(cm)->y_crop_width,
get_frame_new_buffer(cm)->y_crop_height,
get_frame_new_buffer(cm)->y_crop_width,
get_frame_new_buffer(cm)->y_crop_height,
cm->use_highbitdepth);
vp10_setup_scale_factors_for_frame(&sf,
frames[0]->y_crop_width,
frames[0]->y_crop_height,
frames[0]->y_crop_width,
frames[0]->y_crop_height,
cm->use_highbitdepth);
#else
vp10_setup_scale_factors_for_frame(
&sf,
get_frame_new_buffer(cm)->y_crop_width,
get_frame_new_buffer(cm)->y_crop_height,
get_frame_new_buffer(cm)->y_crop_width,
get_frame_new_buffer(cm)->y_crop_height);
vp10_setup_scale_factors_for_frame(&sf,
frames[0]->y_crop_width,
frames[0]->y_crop_height,
frames[0]->y_crop_width,
frames[0]->y_crop_height);
#endif // CONFIG_VP9_HIGHBITDEPTH
for (frame = 0; frame < frames_to_blur; ++frame) {
if (cm->mi_cols * MI_SIZE != frames[frame]->y_width ||
cm->mi_rows * MI_SIZE != frames[frame]->y_height) {
if (vpx_realloc_frame_buffer(&cpi->svc.scaled_frames[frame_used],
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
VP9_ENC_BORDER_IN_PIXELS,
cm->byte_alignment,
NULL, NULL, NULL)) {
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to reallocate alt_ref_buffer");
}
frames[frame] = vp10_scale_if_required(
cm, frames[frame], &cpi->svc.scaled_frames[frame_used]);
++frame_used;
}
}
cm->mi = cm->mip + cm->mi_stride + 1;
xd->mi = cm->mi_grid_visible;
xd->mi[0] = cm->mi;
} else {
// ARF is produced at the native frame size and resized when coded.
#if CONFIG_VP9_HIGHBITDEPTH
vp10_setup_scale_factors_for_frame(&sf,
frames[0]->y_crop_width,
frames[0]->y_crop_height,
frames[0]->y_crop_width,
frames[0]->y_crop_height,
cm->use_highbitdepth);
#else
vp10_setup_scale_factors_for_frame(&sf,
frames[0]->y_crop_width,
frames[0]->y_crop_height,
frames[0]->y_crop_width,
frames[0]->y_crop_height);
#endif // CONFIG_VP9_HIGHBITDEPTH
}
}
temporal_filter_iterate_c(cpi, frames, frames_to_blur,

Просмотреть файл

@ -186,46 +186,10 @@ static vpx_codec_err_t validate_config(vpx_codec_alg_priv_t *ctx,
RANGE_CHECK(cfg, rc_scaled_height, 0, cfg->g_h);
}
RANGE_CHECK(cfg, ss_number_layers, 1, VPX_SS_MAX_LAYERS);
RANGE_CHECK(cfg, ts_number_layers, 1, VPX_TS_MAX_LAYERS);
if (cfg->ss_number_layers * cfg->ts_number_layers > VPX_MAX_LAYERS)
ERROR("ss_number_layers * ts_number_layers is out of range");
if (cfg->ts_number_layers > 1) {
unsigned int sl, tl;
for (sl = 1; sl < cfg->ss_number_layers; ++sl) {
for (tl = 1; tl < cfg->ts_number_layers; ++tl) {
const int layer =
LAYER_IDS_TO_IDX(sl, tl, cfg->ts_number_layers);
if (cfg->layer_target_bitrate[layer] <
cfg->layer_target_bitrate[layer - 1])
ERROR("ts_target_bitrate entries are not increasing");
}
}
RANGE_CHECK(cfg, ts_rate_decimator[cfg->ts_number_layers - 1], 1, 1);
for (tl = cfg->ts_number_layers - 2; tl > 0; --tl)
if (cfg->ts_rate_decimator[tl - 1] != 2 * cfg->ts_rate_decimator[tl])
ERROR("ts_rate_decimator factors are not powers of 2");
}
#if CONFIG_SPATIAL_SVC
if ((cfg->ss_number_layers > 1 || cfg->ts_number_layers > 1) &&
cfg->g_pass == VPX_RC_LAST_PASS) {
unsigned int i, alt_ref_sum = 0;
for (i = 0; i < cfg->ss_number_layers; ++i) {
if (cfg->ss_enable_auto_alt_ref[i])
++alt_ref_sum;
}
if (alt_ref_sum > REF_FRAMES - cfg->ss_number_layers)
ERROR("Not enough ref buffers for svc alt ref frames");
if (cfg->ss_number_layers * cfg->ts_number_layers > 3 &&
cfg->g_error_resilient == 0)
ERROR("Multiple frame context are not supported for more than 3 layers");
}
#endif
// Spatial/temporal scalability are not yet supported in VP10.
// Only accept the default value for range checking.
RANGE_CHECK(cfg, ss_number_layers, 1, 1);
RANGE_CHECK(cfg, ts_number_layers, 1, 1);
// VP9 does not support a lower bound on the keyframe interval in
// automatic keyframe placement mode.
if (cfg->kf_mode != VPX_KF_DISABLED &&
@ -263,44 +227,14 @@ static vpx_codec_err_t validate_config(vpx_codec_alg_priv_t *ctx,
if (cfg->rc_twopass_stats_in.sz % packet_sz)
ERROR("rc_twopass_stats_in.sz indicates truncated packet.");
if (cfg->ss_number_layers > 1 || cfg->ts_number_layers > 1) {
int i;
unsigned int n_packets_per_layer[VPX_SS_MAX_LAYERS] = {0};
if (cfg->rc_twopass_stats_in.sz < 2 * packet_sz)
ERROR("rc_twopass_stats_in requires at least two packets.");
stats = cfg->rc_twopass_stats_in.buf;
for (i = 0; i < n_packets; ++i) {
const int layer_id = (int)stats[i].spatial_layer_id;
if (layer_id >= 0 && layer_id < (int)cfg->ss_number_layers) {
++n_packets_per_layer[layer_id];
}
}
stats =
(const FIRSTPASS_STATS *)cfg->rc_twopass_stats_in.buf + n_packets - 1;
for (i = 0; i < (int)cfg->ss_number_layers; ++i) {
unsigned int layer_id;
if (n_packets_per_layer[i] < 2) {
ERROR("rc_twopass_stats_in requires at least two packets for each "
"layer.");
}
stats = (const FIRSTPASS_STATS *)cfg->rc_twopass_stats_in.buf +
n_packets - cfg->ss_number_layers + i;
layer_id = (int)stats->spatial_layer_id;
if (layer_id >= cfg->ss_number_layers
||(unsigned int)(stats->count + 0.5) !=
n_packets_per_layer[layer_id] - 1)
ERROR("rc_twopass_stats_in missing EOS stats packet");
}
} else {
if (cfg->rc_twopass_stats_in.sz < 2 * packet_sz)
ERROR("rc_twopass_stats_in requires at least two packets.");
stats =
(const FIRSTPASS_STATS *)cfg->rc_twopass_stats_in.buf + n_packets - 1;
if ((int)(stats->count + 0.5) != n_packets - 1)
ERROR("rc_twopass_stats_in missing EOS stats packet");
}
if ((int)(stats->count + 0.5) != n_packets - 1)
ERROR("rc_twopass_stats_in missing EOS stats packet");
}
#if !CONFIG_VP9_HIGHBITDEPTH
@ -381,7 +315,6 @@ static vpx_codec_err_t set_encoder_config(
const vpx_codec_enc_cfg_t *cfg,
const struct vp10_extracfg *extra_cfg) {
const int is_vbr = cfg->rc_end_usage == VPX_VBR;
int sl, tl;
oxcf->profile = cfg->g_profile;
oxcf->max_threads = (int)cfg->g_threads;
oxcf->width = cfg->g_w;
@ -483,34 +416,6 @@ static vpx_codec_err_t set_encoder_config(
oxcf->frame_periodic_boost = extra_cfg->frame_periodic_boost;
oxcf->ss_number_layers = cfg->ss_number_layers;
oxcf->ts_number_layers = cfg->ts_number_layers;
oxcf->temporal_layering_mode = (enum vp9e_temporal_layering_mode)
cfg->temporal_layering_mode;
for (sl = 0; sl < oxcf->ss_number_layers; ++sl) {
#if CONFIG_SPATIAL_SVC
oxcf->ss_enable_auto_arf[sl] = cfg->ss_enable_auto_alt_ref[sl];
#endif
for (tl = 0; tl < oxcf->ts_number_layers; ++tl) {
oxcf->layer_target_bitrate[sl * oxcf->ts_number_layers + tl] =
1000 * cfg->layer_target_bitrate[sl * oxcf->ts_number_layers + tl];
}
}
if (oxcf->ss_number_layers == 1 && oxcf->pass != 0) {
oxcf->ss_target_bitrate[0] = (int)oxcf->target_bandwidth;
#if CONFIG_SPATIAL_SVC
oxcf->ss_enable_auto_arf[0] = extra_cfg->enable_auto_alt_ref;
#endif
}
if (oxcf->ts_number_layers > 1) {
for (tl = 0; tl < VPX_TS_MAX_LAYERS; ++tl) {
oxcf->ts_rate_decimator[tl] = cfg->ts_rate_decimator[tl] ?
cfg->ts_rate_decimator[tl] : 1;
}
} else if (oxcf->ts_number_layers == 1) {
oxcf->ts_rate_decimator[0] = 1;
}
/*
printf("Current VP9 Settings: \n");
printf("target_bandwidth: %d\n", oxcf->target_bandwidth);
@ -938,12 +843,7 @@ static vpx_codec_frame_flags_t get_frame_pkt_flags(const VP10_COMP *cpi,
unsigned int lib_flags) {
vpx_codec_frame_flags_t flags = lib_flags << 16;
if (lib_flags & FRAMEFLAGS_KEY ||
(cpi->use_svc &&
cpi->svc.layer_context[cpi->svc.spatial_layer_id *
cpi->svc.number_temporal_layers +
cpi->svc.temporal_layer_id].is_key_frame)
)
if (lib_flags & FRAMEFLAGS_KEY)
flags |= VPX_FRAME_IS_KEY;
if (cpi->droppable)
@ -1058,17 +958,8 @@ static vpx_codec_err_t encoder_encode(vpx_codec_alg_priv_t *ctx,
if (size) {
vpx_codec_cx_pkt_t pkt;
#if CONFIG_SPATIAL_SVC
if (cpi->use_svc)
cpi->svc.layer_context[cpi->svc.spatial_layer_id *
cpi->svc.number_temporal_layers].layer_size += size;
#endif
// Pack invisible frames with the next visible frame
if (!cpi->common.show_frame ||
(cpi->use_svc &&
cpi->svc.spatial_layer_id < cpi->svc.number_spatial_layers - 1)
) {
if (!cpi->common.show_frame) {
if (ctx->pending_cx_data == 0)
ctx->pending_cx_data = cx_data;
ctx->pending_cx_data_sz += size;
@ -1132,34 +1023,6 @@ static vpx_codec_err_t encoder_encode(vpx_codec_alg_priv_t *ctx,
cx_data += size;
cx_data_sz -= size;
#if VPX_ENCODER_ABI_VERSION > (5 + VPX_CODEC_ABI_VERSION)
#if CONFIG_SPATIAL_SVC
if (cpi->use_svc && !ctx->output_cx_pkt_cb.output_cx_pkt) {
vpx_codec_cx_pkt_t pkt_sizes, pkt_psnr;
int sl;
vp10_zero(pkt_sizes);
vp10_zero(pkt_psnr);
pkt_sizes.kind = VPX_CODEC_SPATIAL_SVC_LAYER_SIZES;
pkt_psnr.kind = VPX_CODEC_SPATIAL_SVC_LAYER_PSNR;
for (sl = 0; sl < cpi->svc.number_spatial_layers; ++sl) {
LAYER_CONTEXT *lc =
&cpi->svc.layer_context[sl * cpi->svc.number_temporal_layers];
pkt_sizes.data.layer_sizes[sl] = lc->layer_size;
pkt_psnr.data.layer_psnr[sl] = lc->psnr_pkt;
lc->layer_size = 0;
}
vpx_codec_pkt_list_add(&ctx->pkt_list.head, &pkt_sizes);
vpx_codec_pkt_list_add(&ctx->pkt_list.head, &pkt_psnr);
}
#endif
#endif
if (is_one_pass_cbr_svc(cpi) &&
(cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1)) {
// Encoded all spatial layers; exit loop.
break;
}
}
}
}
@ -1334,84 +1197,6 @@ static vpx_codec_err_t ctrl_set_scale_mode(vpx_codec_alg_priv_t *ctx,
}
}
static vpx_codec_err_t ctrl_set_svc(vpx_codec_alg_priv_t *ctx, va_list args) {
int data = va_arg(args, int);
const vpx_codec_enc_cfg_t *cfg = &ctx->cfg;
// Both one-pass and two-pass RC are supported now.
// User setting this has to make sure of the following.
// In two-pass setting: either (but not both)
// cfg->ss_number_layers > 1, or cfg->ts_number_layers > 1
// In one-pass setting:
// either or both cfg->ss_number_layers > 1, or cfg->ts_number_layers > 1
vp10_set_svc(ctx->cpi, data);
if (data == 1 &&
(cfg->g_pass == VPX_RC_FIRST_PASS ||
cfg->g_pass == VPX_RC_LAST_PASS) &&
cfg->ss_number_layers > 1 &&
cfg->ts_number_layers > 1) {
return VPX_CODEC_INVALID_PARAM;
}
return VPX_CODEC_OK;
}
static vpx_codec_err_t ctrl_set_svc_layer_id(vpx_codec_alg_priv_t *ctx,
va_list args) {
vpx_svc_layer_id_t *const data = va_arg(args, vpx_svc_layer_id_t *);
VP10_COMP *const cpi = (VP10_COMP *)ctx->cpi;
SVC *const svc = &cpi->svc;
svc->spatial_layer_id = data->spatial_layer_id;
svc->temporal_layer_id = data->temporal_layer_id;
// Checks on valid layer_id input.
if (svc->temporal_layer_id < 0 ||
svc->temporal_layer_id >= (int)ctx->cfg.ts_number_layers) {
return VPX_CODEC_INVALID_PARAM;
}
if (svc->spatial_layer_id < 0 ||
svc->spatial_layer_id >= (int)ctx->cfg.ss_number_layers) {
return VPX_CODEC_INVALID_PARAM;
}
return VPX_CODEC_OK;
}
static vpx_codec_err_t ctrl_get_svc_layer_id(vpx_codec_alg_priv_t *ctx,
va_list args) {
vpx_svc_layer_id_t *data = va_arg(args, vpx_svc_layer_id_t *);
VP10_COMP *const cpi = (VP10_COMP *)ctx->cpi;
SVC *const svc = &cpi->svc;
data->spatial_layer_id = svc->spatial_layer_id;
data->temporal_layer_id = svc->temporal_layer_id;
return VPX_CODEC_OK;
}
static vpx_codec_err_t ctrl_set_svc_parameters(vpx_codec_alg_priv_t *ctx,
va_list args) {
VP10_COMP *const cpi = ctx->cpi;
vpx_svc_extra_cfg_t *const params = va_arg(args, vpx_svc_extra_cfg_t *);
int sl, tl;
// Number of temporal layers and number of spatial layers have to be set
// properly before calling this control function.
for (sl = 0; sl < cpi->svc.number_spatial_layers; ++sl) {
for (tl = 0; tl < cpi->svc.number_temporal_layers; ++tl) {
const int layer =
LAYER_IDS_TO_IDX(sl, tl, cpi->svc.number_temporal_layers);
LAYER_CONTEXT *lc =
&cpi->svc.layer_context[layer];
lc->max_q = params->max_quantizers[sl];
lc->min_q = params->min_quantizers[sl];
lc->scaling_factor_num = params->scaling_factor_num[sl];
lc->scaling_factor_den = params->scaling_factor_den[sl];
}
}
return VPX_CODEC_OK;
}
static vpx_codec_err_t ctrl_register_cx_callback(vpx_codec_alg_priv_t *ctx,
va_list args) {
vpx_codec_priv_output_cx_pkt_cb_pair_t *cbp =
@ -1466,10 +1251,7 @@ static vpx_codec_ctrl_fn_map_t encoder_ctrl_maps[] = {
{VP9E_SET_FRAME_PARALLEL_DECODING, ctrl_set_frame_parallel_decoding_mode},
{VP9E_SET_AQ_MODE, ctrl_set_aq_mode},
{VP9E_SET_FRAME_PERIODIC_BOOST, ctrl_set_frame_periodic_boost},
{VP9E_SET_SVC, ctrl_set_svc},
{VP9E_SET_SVC_PARAMETERS, ctrl_set_svc_parameters},
{VP9E_REGISTER_CX_CALLBACK, ctrl_register_cx_callback},
{VP9E_SET_SVC_LAYER_ID, ctrl_set_svc_layer_id},
{VP9E_SET_TUNE_CONTENT, ctrl_set_tune_content},
{VP9E_SET_COLOR_SPACE, ctrl_set_color_space},
{VP9E_SET_NOISE_SENSITIVITY, ctrl_set_noise_sensitivity},
@ -1480,7 +1262,6 @@ static vpx_codec_ctrl_fn_map_t encoder_ctrl_maps[] = {
{VP8E_GET_LAST_QUANTIZER, ctrl_get_quantizer},
{VP8E_GET_LAST_QUANTIZER_64, ctrl_get_quantizer64},
{VP9_GET_REFERENCE, ctrl_get_reference},
{VP9E_GET_SVC_LAYER_ID, ctrl_get_svc_layer_id},
{VP9E_GET_ACTIVEMAP, ctrl_get_active_map},
{ -1, NULL},
@ -1536,7 +1317,10 @@ static vpx_codec_enc_cfg_map_t encoder_usage_cfg_map[] = {
0, // kf_min_dist
9999, // kf_max_dist
VPX_SS_DEFAULT_LAYERS, // ss_number_layers
// TODO(yunqingwang): Spatial/temporal scalability are not supported
// in VP10. The following 10 parameters are not used, which should
// be removed later.
1, // ss_number_layers
{0},
{0}, // ss_target_bitrate
1, // ts_number_layers

Просмотреть файл

@ -48,7 +48,6 @@ VP10_CX_SRCS-yes += encoder/quantize.h
VP10_CX_SRCS-yes += encoder/ratectrl.h
VP10_CX_SRCS-yes += encoder/rd.h
VP10_CX_SRCS-yes += encoder/rdopt.h
VP10_CX_SRCS-yes += encoder/svc_layercontext.h
VP10_CX_SRCS-yes += encoder/tokenize.h
VP10_CX_SRCS-yes += encoder/treewriter.h
VP10_CX_SRCS-yes += encoder/mcomp.c
@ -65,7 +64,6 @@ VP10_CX_SRCS-yes += encoder/speed_features.c
VP10_CX_SRCS-yes += encoder/speed_features.h
VP10_CX_SRCS-yes += encoder/subexp.c
VP10_CX_SRCS-yes += encoder/subexp.h
VP10_CX_SRCS-yes += encoder/svc_layercontext.c
VP10_CX_SRCS-yes += encoder/resize.c
VP10_CX_SRCS-yes += encoder/resize.h
VP10_CX_SRCS-$(CONFIG_INTERNAL_STATS) += encoder/blockiness.c