Combine fdct8x8 and quantization process
This commit reworks the forward transform and quantization process for 8x8 block coding. It combines the two operations in a single function to save a store/load stage of the original transform coefficients. Overall the speed -6 is slightly faster (around 1% range). The compression performance of speed -6 is improved by 3.4%. Change-Id: Id6628daef123f3e4649248735ec2ad7423629387
This commit is contained in:
Родитель
2d3cc8ea2b
Коммит
c6908fd5f7
|
@ -1132,6 +1132,9 @@ if (vpx_config("CONFIG_VP9_TEMPORAL_DENOISING") eq "yes") {
|
|||
specialize qw/vp9_denoiser_filter sse2/;
|
||||
}
|
||||
|
||||
add_proto qw/void vp9_fdct8x8_quant/, "const int16_t *input, int stride, tran_low_t *coeff_ptr, intptr_t n_coeffs, int skip_block, const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, int zbin_oq_value, uint16_t *eob_ptr, const int16_t *scan, const int16_t *iscan";
|
||||
specialize qw/vp9_fdct8x8_quant sse2/;
|
||||
|
||||
if (vpx_config("CONFIG_VP9_HIGHBITDEPTH") eq "yes") {
|
||||
# the transform coefficients are held in 32-bit
|
||||
# values, so the assembler code for vp9_block_error can no longer be used.
|
||||
|
|
|
@ -337,6 +337,119 @@ void vp9_fdct8x8_c(const int16_t *input, tran_low_t *final_output, int stride) {
|
|||
}
|
||||
}
|
||||
|
||||
void vp9_fdct8x8_quant_c(const int16_t *input, int stride,
|
||||
tran_low_t *coeff_ptr, intptr_t n_coeffs,
|
||||
int skip_block,
|
||||
const int16_t *zbin_ptr, const int16_t *round_ptr,
|
||||
const int16_t *quant_ptr,
|
||||
const int16_t *quant_shift_ptr,
|
||||
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
|
||||
const int16_t *dequant_ptr,
|
||||
int zbin_oq_value, uint16_t *eob_ptr,
|
||||
const int16_t *scan, const int16_t *iscan) {
|
||||
int eob = -1;
|
||||
|
||||
int i, j;
|
||||
tran_low_t intermediate[64];
|
||||
|
||||
// Transform columns
|
||||
{
|
||||
tran_low_t *output = intermediate;
|
||||
tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16
|
||||
tran_high_t t0, t1, t2, t3; // needs32
|
||||
tran_high_t x0, x1, x2, x3; // canbe16
|
||||
|
||||
int i;
|
||||
for (i = 0; i < 8; i++) {
|
||||
// stage 1
|
||||
s0 = (input[0 * stride] + input[7 * stride]) * 4;
|
||||
s1 = (input[1 * stride] + input[6 * stride]) * 4;
|
||||
s2 = (input[2 * stride] + input[5 * stride]) * 4;
|
||||
s3 = (input[3 * stride] + input[4 * stride]) * 4;
|
||||
s4 = (input[3 * stride] - input[4 * stride]) * 4;
|
||||
s5 = (input[2 * stride] - input[5 * stride]) * 4;
|
||||
s6 = (input[1 * stride] - input[6 * stride]) * 4;
|
||||
s7 = (input[0 * stride] - input[7 * stride]) * 4;
|
||||
|
||||
// fdct4(step, step);
|
||||
x0 = s0 + s3;
|
||||
x1 = s1 + s2;
|
||||
x2 = s1 - s2;
|
||||
x3 = s0 - s3;
|
||||
t0 = (x0 + x1) * cospi_16_64;
|
||||
t1 = (x0 - x1) * cospi_16_64;
|
||||
t2 = x2 * cospi_24_64 + x3 * cospi_8_64;
|
||||
t3 = -x2 * cospi_8_64 + x3 * cospi_24_64;
|
||||
output[0 * 8] = (tran_low_t)fdct_round_shift(t0);
|
||||
output[2 * 8] = (tran_low_t)fdct_round_shift(t2);
|
||||
output[4 * 8] = (tran_low_t)fdct_round_shift(t1);
|
||||
output[6 * 8] = (tran_low_t)fdct_round_shift(t3);
|
||||
|
||||
// Stage 2
|
||||
t0 = (s6 - s5) * cospi_16_64;
|
||||
t1 = (s6 + s5) * cospi_16_64;
|
||||
t2 = fdct_round_shift(t0);
|
||||
t3 = fdct_round_shift(t1);
|
||||
|
||||
// Stage 3
|
||||
x0 = s4 + t2;
|
||||
x1 = s4 - t2;
|
||||
x2 = s7 - t3;
|
||||
x3 = s7 + t3;
|
||||
|
||||
// Stage 4
|
||||
t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
|
||||
t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
|
||||
t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
|
||||
t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
|
||||
output[1 * 8] = (tran_low_t)fdct_round_shift(t0);
|
||||
output[3 * 8] = (tran_low_t)fdct_round_shift(t2);
|
||||
output[5 * 8] = (tran_low_t)fdct_round_shift(t1);
|
||||
output[7 * 8] = (tran_low_t)fdct_round_shift(t3);
|
||||
input++;
|
||||
output++;
|
||||
}
|
||||
}
|
||||
|
||||
// Rows
|
||||
for (i = 0; i < 8; ++i) {
|
||||
fdct8(&intermediate[i * 8], &coeff_ptr[i * 8]);
|
||||
for (j = 0; j < 8; ++j)
|
||||
coeff_ptr[j + i * 8] /= 2;
|
||||
}
|
||||
|
||||
// TODO(jingning) Decide the need of these arguments after the
|
||||
// quantization process is completed.
|
||||
(void)zbin_ptr;
|
||||
(void)quant_shift_ptr;
|
||||
(void)zbin_oq_value;
|
||||
(void)iscan;
|
||||
|
||||
vpx_memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
|
||||
vpx_memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
|
||||
|
||||
if (!skip_block) {
|
||||
// Quantization pass: All coefficients with index >= zero_flag are
|
||||
// skippable. Note: zero_flag can be zero.
|
||||
for (i = 0; i < n_coeffs; i++) {
|
||||
const int rc = scan[i];
|
||||
const int coeff = coeff_ptr[rc];
|
||||
const int coeff_sign = (coeff >> 31);
|
||||
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
|
||||
|
||||
int tmp = clamp(abs_coeff + round_ptr[rc != 0], INT16_MIN, INT16_MAX);
|
||||
tmp = (tmp * quant_ptr[rc != 0]) >> 16;
|
||||
|
||||
qcoeff_ptr[rc] = (tmp ^ coeff_sign) - coeff_sign;
|
||||
dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0];
|
||||
|
||||
if (tmp)
|
||||
eob = i;
|
||||
}
|
||||
}
|
||||
*eob_ptr = eob + 1;
|
||||
}
|
||||
|
||||
void vp9_fdct16x16_1_c(const int16_t *input, tran_low_t *output, int stride) {
|
||||
int r, c;
|
||||
tran_low_t sum = 0;
|
||||
|
|
|
@ -438,11 +438,11 @@ void vp9_xform_quant_fp(MACROBLOCK *x, int plane, int block,
|
|||
scan_order->scan, scan_order->iscan);
|
||||
break;
|
||||
case TX_8X8:
|
||||
vp9_fdct8x8(src_diff, coeff, diff_stride);
|
||||
vp9_quantize_fp(coeff, 64, x->skip_block, p->zbin, p->round_fp,
|
||||
p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
|
||||
pd->dequant, p->zbin_extra, eob,
|
||||
scan_order->scan, scan_order->iscan);
|
||||
vp9_fdct8x8_quant(src_diff, diff_stride, coeff, 64,
|
||||
x->skip_block, p->zbin, p->round_fp,
|
||||
p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
|
||||
pd->dequant, p->zbin_extra, eob,
|
||||
scan_order->scan, scan_order->iscan);
|
||||
break;
|
||||
case TX_4X4:
|
||||
x->fwd_txm4x4(src_diff, coeff, diff_stride);
|
||||
|
@ -652,6 +652,10 @@ static void encode_block(int plane, int block, BLOCK_SIZE plane_bsize,
|
|||
return;
|
||||
}
|
||||
|
||||
#if CONFIG_VP9_HIGHBITDEPTH
|
||||
if (!x->skip_recode)
|
||||
vp9_xform_quant(x, plane, block, plane_bsize, tx_size);
|
||||
#else
|
||||
if (!x->skip_recode) {
|
||||
if (max_txsize_lookup[plane_bsize] == tx_size) {
|
||||
if (x->skip_txfm[(plane << 2) + (block >> (tx_size << 1))] == 0) {
|
||||
|
@ -670,9 +674,13 @@ static void encode_block(int plane, int block, BLOCK_SIZE plane_bsize,
|
|||
return;
|
||||
}
|
||||
} else {
|
||||
vp9_xform_quant(x, plane, block, plane_bsize, tx_size);
|
||||
if (x->quant_fp)
|
||||
vp9_xform_quant_fp(x, plane, block, plane_bsize, tx_size);
|
||||
else
|
||||
vp9_xform_quant(x, plane, block, plane_bsize, tx_size);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
if (x->optimize && (!x->skip_recode || !x->skip_optimize)) {
|
||||
const int ctx = combine_entropy_contexts(*a, *l);
|
||||
|
|
|
@ -704,6 +704,448 @@ void vp9_fdct8x8_sse2(const int16_t *input, int16_t *output, int stride) {
|
|||
}
|
||||
}
|
||||
|
||||
void vp9_fdct8x8_quant_sse2(const int16_t *input, int stride,
|
||||
int16_t* coeff_ptr, intptr_t n_coeffs,
|
||||
int skip_block, const int16_t* zbin_ptr,
|
||||
const int16_t* round_ptr, const int16_t* quant_ptr,
|
||||
const int16_t* quant_shift_ptr, int16_t* qcoeff_ptr,
|
||||
int16_t* dqcoeff_ptr, const int16_t* dequant_ptr,
|
||||
int zbin_oq_value, uint16_t* eob_ptr,
|
||||
const int16_t* scan_ptr,
|
||||
const int16_t* iscan_ptr) {
|
||||
__m128i zero;
|
||||
int pass;
|
||||
// Constants
|
||||
// When we use them, in one case, they are all the same. In all others
|
||||
// it's a pair of them that we need to repeat four times. This is done
|
||||
// by constructing the 32 bit constant corresponding to that pair.
|
||||
const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
|
||||
const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
|
||||
const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
|
||||
const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
|
||||
const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
|
||||
const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
|
||||
const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
|
||||
const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
|
||||
const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
|
||||
// Load input
|
||||
__m128i in0 = _mm_load_si128((const __m128i *)(input + 0 * stride));
|
||||
__m128i in1 = _mm_load_si128((const __m128i *)(input + 1 * stride));
|
||||
__m128i in2 = _mm_load_si128((const __m128i *)(input + 2 * stride));
|
||||
__m128i in3 = _mm_load_si128((const __m128i *)(input + 3 * stride));
|
||||
__m128i in4 = _mm_load_si128((const __m128i *)(input + 4 * stride));
|
||||
__m128i in5 = _mm_load_si128((const __m128i *)(input + 5 * stride));
|
||||
__m128i in6 = _mm_load_si128((const __m128i *)(input + 6 * stride));
|
||||
__m128i in7 = _mm_load_si128((const __m128i *)(input + 7 * stride));
|
||||
__m128i *in[8];
|
||||
int index = 0;
|
||||
|
||||
(void)scan_ptr;
|
||||
(void)zbin_ptr;
|
||||
(void)quant_shift_ptr;
|
||||
(void)zbin_oq_value;
|
||||
(void)coeff_ptr;
|
||||
|
||||
// Pre-condition input (shift by two)
|
||||
in0 = _mm_slli_epi16(in0, 2);
|
||||
in1 = _mm_slli_epi16(in1, 2);
|
||||
in2 = _mm_slli_epi16(in2, 2);
|
||||
in3 = _mm_slli_epi16(in3, 2);
|
||||
in4 = _mm_slli_epi16(in4, 2);
|
||||
in5 = _mm_slli_epi16(in5, 2);
|
||||
in6 = _mm_slli_epi16(in6, 2);
|
||||
in7 = _mm_slli_epi16(in7, 2);
|
||||
|
||||
in[0] = &in0;
|
||||
in[1] = &in1;
|
||||
in[2] = &in2;
|
||||
in[3] = &in3;
|
||||
in[4] = &in4;
|
||||
in[5] = &in5;
|
||||
in[6] = &in6;
|
||||
in[7] = &in7;
|
||||
|
||||
// We do two passes, first the columns, then the rows. The results of the
|
||||
// first pass are transposed so that the same column code can be reused. The
|
||||
// results of the second pass are also transposed so that the rows (processed
|
||||
// as columns) are put back in row positions.
|
||||
for (pass = 0; pass < 2; pass++) {
|
||||
// To store results of each pass before the transpose.
|
||||
__m128i res0, res1, res2, res3, res4, res5, res6, res7;
|
||||
// Add/subtract
|
||||
const __m128i q0 = _mm_add_epi16(in0, in7);
|
||||
const __m128i q1 = _mm_add_epi16(in1, in6);
|
||||
const __m128i q2 = _mm_add_epi16(in2, in5);
|
||||
const __m128i q3 = _mm_add_epi16(in3, in4);
|
||||
const __m128i q4 = _mm_sub_epi16(in3, in4);
|
||||
const __m128i q5 = _mm_sub_epi16(in2, in5);
|
||||
const __m128i q6 = _mm_sub_epi16(in1, in6);
|
||||
const __m128i q7 = _mm_sub_epi16(in0, in7);
|
||||
// Work on first four results
|
||||
{
|
||||
// Add/subtract
|
||||
const __m128i r0 = _mm_add_epi16(q0, q3);
|
||||
const __m128i r1 = _mm_add_epi16(q1, q2);
|
||||
const __m128i r2 = _mm_sub_epi16(q1, q2);
|
||||
const __m128i r3 = _mm_sub_epi16(q0, q3);
|
||||
// Interleave to do the multiply by constants which gets us into 32bits
|
||||
const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
|
||||
const __m128i t1 = _mm_unpackhi_epi16(r0, r1);
|
||||
const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
|
||||
const __m128i t3 = _mm_unpackhi_epi16(r2, r3);
|
||||
const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16);
|
||||
const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16);
|
||||
const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16);
|
||||
const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16);
|
||||
const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08);
|
||||
const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08);
|
||||
const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24);
|
||||
const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24);
|
||||
// dct_const_round_shift
|
||||
const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
|
||||
const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
|
||||
const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
|
||||
const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
|
||||
const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
|
||||
const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
|
||||
const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
|
||||
const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
|
||||
const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
|
||||
const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
|
||||
const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
|
||||
const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
|
||||
const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
|
||||
const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
|
||||
const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
|
||||
const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
|
||||
// Combine
|
||||
res0 = _mm_packs_epi32(w0, w1);
|
||||
res4 = _mm_packs_epi32(w2, w3);
|
||||
res2 = _mm_packs_epi32(w4, w5);
|
||||
res6 = _mm_packs_epi32(w6, w7);
|
||||
}
|
||||
// Work on next four results
|
||||
{
|
||||
// Interleave to do the multiply by constants which gets us into 32bits
|
||||
const __m128i d0 = _mm_unpacklo_epi16(q6, q5);
|
||||
const __m128i d1 = _mm_unpackhi_epi16(q6, q5);
|
||||
const __m128i e0 = _mm_madd_epi16(d0, k__cospi_p16_m16);
|
||||
const __m128i e1 = _mm_madd_epi16(d1, k__cospi_p16_m16);
|
||||
const __m128i e2 = _mm_madd_epi16(d0, k__cospi_p16_p16);
|
||||
const __m128i e3 = _mm_madd_epi16(d1, k__cospi_p16_p16);
|
||||
// dct_const_round_shift
|
||||
const __m128i f0 = _mm_add_epi32(e0, k__DCT_CONST_ROUNDING);
|
||||
const __m128i f1 = _mm_add_epi32(e1, k__DCT_CONST_ROUNDING);
|
||||
const __m128i f2 = _mm_add_epi32(e2, k__DCT_CONST_ROUNDING);
|
||||
const __m128i f3 = _mm_add_epi32(e3, k__DCT_CONST_ROUNDING);
|
||||
const __m128i s0 = _mm_srai_epi32(f0, DCT_CONST_BITS);
|
||||
const __m128i s1 = _mm_srai_epi32(f1, DCT_CONST_BITS);
|
||||
const __m128i s2 = _mm_srai_epi32(f2, DCT_CONST_BITS);
|
||||
const __m128i s3 = _mm_srai_epi32(f3, DCT_CONST_BITS);
|
||||
// Combine
|
||||
const __m128i r0 = _mm_packs_epi32(s0, s1);
|
||||
const __m128i r1 = _mm_packs_epi32(s2, s3);
|
||||
// Add/subtract
|
||||
const __m128i x0 = _mm_add_epi16(q4, r0);
|
||||
const __m128i x1 = _mm_sub_epi16(q4, r0);
|
||||
const __m128i x2 = _mm_sub_epi16(q7, r1);
|
||||
const __m128i x3 = _mm_add_epi16(q7, r1);
|
||||
// Interleave to do the multiply by constants which gets us into 32bits
|
||||
const __m128i t0 = _mm_unpacklo_epi16(x0, x3);
|
||||
const __m128i t1 = _mm_unpackhi_epi16(x0, x3);
|
||||
const __m128i t2 = _mm_unpacklo_epi16(x1, x2);
|
||||
const __m128i t3 = _mm_unpackhi_epi16(x1, x2);
|
||||
const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04);
|
||||
const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04);
|
||||
const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28);
|
||||
const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28);
|
||||
const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20);
|
||||
const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20);
|
||||
const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12);
|
||||
const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12);
|
||||
// dct_const_round_shift
|
||||
const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
|
||||
const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
|
||||
const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
|
||||
const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
|
||||
const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
|
||||
const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
|
||||
const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
|
||||
const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
|
||||
const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
|
||||
const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
|
||||
const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
|
||||
const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
|
||||
const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
|
||||
const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
|
||||
const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
|
||||
const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
|
||||
// Combine
|
||||
res1 = _mm_packs_epi32(w0, w1);
|
||||
res7 = _mm_packs_epi32(w2, w3);
|
||||
res5 = _mm_packs_epi32(w4, w5);
|
||||
res3 = _mm_packs_epi32(w6, w7);
|
||||
}
|
||||
// Transpose the 8x8.
|
||||
{
|
||||
// 00 01 02 03 04 05 06 07
|
||||
// 10 11 12 13 14 15 16 17
|
||||
// 20 21 22 23 24 25 26 27
|
||||
// 30 31 32 33 34 35 36 37
|
||||
// 40 41 42 43 44 45 46 47
|
||||
// 50 51 52 53 54 55 56 57
|
||||
// 60 61 62 63 64 65 66 67
|
||||
// 70 71 72 73 74 75 76 77
|
||||
const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1);
|
||||
const __m128i tr0_1 = _mm_unpacklo_epi16(res2, res3);
|
||||
const __m128i tr0_2 = _mm_unpackhi_epi16(res0, res1);
|
||||
const __m128i tr0_3 = _mm_unpackhi_epi16(res2, res3);
|
||||
const __m128i tr0_4 = _mm_unpacklo_epi16(res4, res5);
|
||||
const __m128i tr0_5 = _mm_unpacklo_epi16(res6, res7);
|
||||
const __m128i tr0_6 = _mm_unpackhi_epi16(res4, res5);
|
||||
const __m128i tr0_7 = _mm_unpackhi_epi16(res6, res7);
|
||||
// 00 10 01 11 02 12 03 13
|
||||
// 20 30 21 31 22 32 23 33
|
||||
// 04 14 05 15 06 16 07 17
|
||||
// 24 34 25 35 26 36 27 37
|
||||
// 40 50 41 51 42 52 43 53
|
||||
// 60 70 61 71 62 72 63 73
|
||||
// 54 54 55 55 56 56 57 57
|
||||
// 64 74 65 75 66 76 67 77
|
||||
const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
|
||||
const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
|
||||
const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
|
||||
const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
|
||||
const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
|
||||
const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
|
||||
const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
|
||||
const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
|
||||
// 00 10 20 30 01 11 21 31
|
||||
// 40 50 60 70 41 51 61 71
|
||||
// 02 12 22 32 03 13 23 33
|
||||
// 42 52 62 72 43 53 63 73
|
||||
// 04 14 24 34 05 15 21 36
|
||||
// 44 54 64 74 45 55 61 76
|
||||
// 06 16 26 36 07 17 27 37
|
||||
// 46 56 66 76 47 57 67 77
|
||||
in0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
|
||||
in1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
|
||||
in2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
|
||||
in3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
|
||||
in4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
|
||||
in5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
|
||||
in6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
|
||||
in7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
|
||||
// 00 10 20 30 40 50 60 70
|
||||
// 01 11 21 31 41 51 61 71
|
||||
// 02 12 22 32 42 52 62 72
|
||||
// 03 13 23 33 43 53 63 73
|
||||
// 04 14 24 34 44 54 64 74
|
||||
// 05 15 25 35 45 55 65 75
|
||||
// 06 16 26 36 46 56 66 76
|
||||
// 07 17 27 37 47 57 67 77
|
||||
}
|
||||
}
|
||||
// Post-condition output and store it
|
||||
{
|
||||
// Post-condition (division by two)
|
||||
// division of two 16 bits signed numbers using shifts
|
||||
// n / 2 = (n - (n >> 15)) >> 1
|
||||
const __m128i sign_in0 = _mm_srai_epi16(in0, 15);
|
||||
const __m128i sign_in1 = _mm_srai_epi16(in1, 15);
|
||||
const __m128i sign_in2 = _mm_srai_epi16(in2, 15);
|
||||
const __m128i sign_in3 = _mm_srai_epi16(in3, 15);
|
||||
const __m128i sign_in4 = _mm_srai_epi16(in4, 15);
|
||||
const __m128i sign_in5 = _mm_srai_epi16(in5, 15);
|
||||
const __m128i sign_in6 = _mm_srai_epi16(in6, 15);
|
||||
const __m128i sign_in7 = _mm_srai_epi16(in7, 15);
|
||||
in0 = _mm_sub_epi16(in0, sign_in0);
|
||||
in1 = _mm_sub_epi16(in1, sign_in1);
|
||||
in2 = _mm_sub_epi16(in2, sign_in2);
|
||||
in3 = _mm_sub_epi16(in3, sign_in3);
|
||||
in4 = _mm_sub_epi16(in4, sign_in4);
|
||||
in5 = _mm_sub_epi16(in5, sign_in5);
|
||||
in6 = _mm_sub_epi16(in6, sign_in6);
|
||||
in7 = _mm_sub_epi16(in7, sign_in7);
|
||||
in0 = _mm_srai_epi16(in0, 1);
|
||||
in1 = _mm_srai_epi16(in1, 1);
|
||||
in2 = _mm_srai_epi16(in2, 1);
|
||||
in3 = _mm_srai_epi16(in3, 1);
|
||||
in4 = _mm_srai_epi16(in4, 1);
|
||||
in5 = _mm_srai_epi16(in5, 1);
|
||||
in6 = _mm_srai_epi16(in6, 1);
|
||||
in7 = _mm_srai_epi16(in7, 1);
|
||||
}
|
||||
|
||||
iscan_ptr += n_coeffs;
|
||||
qcoeff_ptr += n_coeffs;
|
||||
dqcoeff_ptr += n_coeffs;
|
||||
n_coeffs = -n_coeffs;
|
||||
zero = _mm_setzero_si128();
|
||||
|
||||
if (!skip_block) {
|
||||
__m128i eob;
|
||||
__m128i round, quant, dequant;
|
||||
{
|
||||
__m128i coeff0, coeff1;
|
||||
|
||||
// Setup global values
|
||||
{
|
||||
round = _mm_load_si128((const __m128i*)round_ptr);
|
||||
quant = _mm_load_si128((const __m128i*)quant_ptr);
|
||||
dequant = _mm_load_si128((const __m128i*)dequant_ptr);
|
||||
}
|
||||
|
||||
{
|
||||
__m128i coeff0_sign, coeff1_sign;
|
||||
__m128i qcoeff0, qcoeff1;
|
||||
__m128i qtmp0, qtmp1;
|
||||
// Do DC and first 15 AC
|
||||
coeff0 = *in[0];
|
||||
coeff1 = *in[1];
|
||||
|
||||
// Poor man's sign extract
|
||||
coeff0_sign = _mm_srai_epi16(coeff0, 15);
|
||||
coeff1_sign = _mm_srai_epi16(coeff1, 15);
|
||||
qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign);
|
||||
qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign);
|
||||
qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
|
||||
qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
|
||||
|
||||
qcoeff0 = _mm_adds_epi16(qcoeff0, round);
|
||||
round = _mm_unpackhi_epi64(round, round);
|
||||
qcoeff1 = _mm_adds_epi16(qcoeff1, round);
|
||||
qtmp0 = _mm_mulhi_epi16(qcoeff0, quant);
|
||||
quant = _mm_unpackhi_epi64(quant, quant);
|
||||
qtmp1 = _mm_mulhi_epi16(qcoeff1, quant);
|
||||
|
||||
// Reinsert signs
|
||||
qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign);
|
||||
qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign);
|
||||
qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
|
||||
qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
|
||||
|
||||
_mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), qcoeff0);
|
||||
_mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, qcoeff1);
|
||||
|
||||
coeff0 = _mm_mullo_epi16(qcoeff0, dequant);
|
||||
dequant = _mm_unpackhi_epi64(dequant, dequant);
|
||||
coeff1 = _mm_mullo_epi16(qcoeff1, dequant);
|
||||
|
||||
_mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), coeff0);
|
||||
_mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, coeff1);
|
||||
}
|
||||
|
||||
{
|
||||
// Scan for eob
|
||||
__m128i zero_coeff0, zero_coeff1;
|
||||
__m128i nzero_coeff0, nzero_coeff1;
|
||||
__m128i iscan0, iscan1;
|
||||
__m128i eob1;
|
||||
zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero);
|
||||
zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero);
|
||||
nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero);
|
||||
nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero);
|
||||
iscan0 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs));
|
||||
iscan1 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs) + 1);
|
||||
// Add one to convert from indices to counts
|
||||
iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0);
|
||||
iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1);
|
||||
eob = _mm_and_si128(iscan0, nzero_coeff0);
|
||||
eob1 = _mm_and_si128(iscan1, nzero_coeff1);
|
||||
eob = _mm_max_epi16(eob, eob1);
|
||||
}
|
||||
n_coeffs += 8 * 2;
|
||||
}
|
||||
|
||||
// AC only loop
|
||||
index = 2;
|
||||
while (n_coeffs < 0) {
|
||||
__m128i coeff0, coeff1;
|
||||
{
|
||||
__m128i coeff0_sign, coeff1_sign;
|
||||
__m128i qcoeff0, qcoeff1;
|
||||
__m128i qtmp0, qtmp1;
|
||||
|
||||
coeff0 = *in[index];
|
||||
coeff1 = *in[index + 1];
|
||||
|
||||
// Poor man's sign extract
|
||||
coeff0_sign = _mm_srai_epi16(coeff0, 15);
|
||||
coeff1_sign = _mm_srai_epi16(coeff1, 15);
|
||||
qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign);
|
||||
qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign);
|
||||
qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
|
||||
qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
|
||||
|
||||
qcoeff0 = _mm_adds_epi16(qcoeff0, round);
|
||||
qcoeff1 = _mm_adds_epi16(qcoeff1, round);
|
||||
qtmp0 = _mm_mulhi_epi16(qcoeff0, quant);
|
||||
qtmp1 = _mm_mulhi_epi16(qcoeff1, quant);
|
||||
|
||||
// Reinsert signs
|
||||
qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign);
|
||||
qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign);
|
||||
qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
|
||||
qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
|
||||
|
||||
_mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), qcoeff0);
|
||||
_mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, qcoeff1);
|
||||
|
||||
coeff0 = _mm_mullo_epi16(qcoeff0, dequant);
|
||||
coeff1 = _mm_mullo_epi16(qcoeff1, dequant);
|
||||
|
||||
_mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), coeff0);
|
||||
_mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, coeff1);
|
||||
}
|
||||
|
||||
{
|
||||
// Scan for eob
|
||||
__m128i zero_coeff0, zero_coeff1;
|
||||
__m128i nzero_coeff0, nzero_coeff1;
|
||||
__m128i iscan0, iscan1;
|
||||
__m128i eob0, eob1;
|
||||
zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero);
|
||||
zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero);
|
||||
nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero);
|
||||
nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero);
|
||||
iscan0 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs));
|
||||
iscan1 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs) + 1);
|
||||
// Add one to convert from indices to counts
|
||||
iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0);
|
||||
iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1);
|
||||
eob0 = _mm_and_si128(iscan0, nzero_coeff0);
|
||||
eob1 = _mm_and_si128(iscan1, nzero_coeff1);
|
||||
eob0 = _mm_max_epi16(eob0, eob1);
|
||||
eob = _mm_max_epi16(eob, eob0);
|
||||
}
|
||||
n_coeffs += 8 * 2;
|
||||
index += 2;
|
||||
}
|
||||
|
||||
// Accumulate EOB
|
||||
{
|
||||
__m128i eob_shuffled;
|
||||
eob_shuffled = _mm_shuffle_epi32(eob, 0xe);
|
||||
eob = _mm_max_epi16(eob, eob_shuffled);
|
||||
eob_shuffled = _mm_shufflelo_epi16(eob, 0xe);
|
||||
eob = _mm_max_epi16(eob, eob_shuffled);
|
||||
eob_shuffled = _mm_shufflelo_epi16(eob, 0x1);
|
||||
eob = _mm_max_epi16(eob, eob_shuffled);
|
||||
*eob_ptr = _mm_extract_epi16(eob, 1);
|
||||
}
|
||||
} else {
|
||||
do {
|
||||
_mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), zero);
|
||||
_mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, zero);
|
||||
_mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), zero);
|
||||
_mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, zero);
|
||||
n_coeffs += 8 * 2;
|
||||
} while (n_coeffs < 0);
|
||||
*eob_ptr = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// load 8x8 array
|
||||
static INLINE void load_buffer_8x8(const int16_t *input, __m128i *in,
|
||||
int stride) {
|
||||
|
|
Загрузка…
Ссылка в новой задаче