make buid_inter_predictors block size agnostic (chroma)

Updates to make non-SPLITMV inter predictors work for all
plane types.

Change-Id: I25dbef40b7ffcac30254b43eed1e22fc732378ae
This commit is contained in:
John Koleszar 2013-04-16 16:26:26 -07:00
Родитель 2987fa1dc1
Коммит fc49a377d7
3 изменённых файлов: 54 добавлений и 157 удалений

Просмотреть файл

@ -907,7 +907,7 @@ static INLINE void foreach_predicted_block_in_plane(
int i;
assert(pred_b <= block_size_b);
assert(pred_b == ss_block_size);
assert(pred_b == (mode == SPLITMV ? 0 : ss_block_size));
for (i = 0; i < (1 << ss_block_size); i += step) {
visit(plane, i, bsize, pred_w, pred_h, arg);
}

Просмотреть файл

@ -358,9 +358,6 @@ void vp9_build_inter_predictor(const uint8_t *src, int src_stride,
w, h);
}
/* Like vp9_build_inter_predictor, but takes the full-pel part of the
* mv separately, and the fractional part as a q4.
*/
void vp9_build_inter_predictor_q4(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride,
const int_mv *mv_q4,
@ -527,33 +524,38 @@ static void clamp_uvmv_to_umv_border(MV *mv, const MACROBLOCKD *xd) {
#if !CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT
// TODO(jkoleszar): yet another mv clamping function :-(
MV clamp_mv_to_umv_border_sb(const MV *src_mv,
int bwl, int bhl,
int bwl, int bhl, int ss_x, int ss_y,
int mb_to_left_edge, int mb_to_top_edge,
int mb_to_right_edge, int mb_to_bottom_edge) {
/* If the MV points so far into the UMV border that no visible pixels
* are used for reconstruction, the subpel part of the MV can be
* discarded and the MV limited to 16 pixels with equivalent results.
*/
const int epel_left = (VP9_INTERP_EXTEND + (4 << bwl)) << 3;
const int epel_right = epel_left - (1 << 3);
const int epel_top = (VP9_INTERP_EXTEND + (4 << bhl)) << 3;
const int epel_bottom = epel_top - (1 << 3);
const int spel_left = (VP9_INTERP_EXTEND + (4 << bwl)) << 4;
const int spel_right = spel_left - (1 << 4);
const int spel_top = (VP9_INTERP_EXTEND + (4 << bhl)) << 4;
const int spel_bottom = spel_top - (1 << 4);
MV clamped_mv;
clamped_mv.col = clamp(src_mv->col,
mb_to_left_edge - epel_left,
mb_to_right_edge + epel_right);
clamped_mv.row = clamp(src_mv->row,
mb_to_top_edge - epel_top,
mb_to_bottom_edge + epel_bottom);
assert(ss_x <= 1);
assert(ss_y <= 1);
clamped_mv.col = clamp(src_mv->col << (1 - ss_x),
(mb_to_left_edge << (1 - ss_x)) - spel_left,
(mb_to_right_edge << (1 - ss_x)) + spel_right);
clamped_mv.row = clamp(src_mv->row << (1 - ss_y),
(mb_to_top_edge << (1 - ss_y)) - spel_top,
(mb_to_bottom_edge << (1 - ss_y)) + spel_bottom);
return clamped_mv;
}
struct build_inter_predictors_args {
MACROBLOCKD *xd;
uint8_t* dst[MAX_MB_PLANE];
int dst_stride[MAX_MB_PLANE];
int x;
int y;
uint8_t* dst[MAX_MB_PLANE];
int dst_stride[MAX_MB_PLANE];
uint8_t* pre[2][MAX_MB_PLANE];
int pre_stride[2][MAX_MB_PLANE];
};
static void build_inter_predictors(int plane, int block,
BLOCK_SIZE_TYPE bsize,
@ -572,18 +574,23 @@ static void build_inter_predictors(int plane, int block,
const MV* const mv = (xd->mode_info_context->mbmi.mode == SPLITMV)
? &xd->block[block].bmi.as_mv[which_mv].as_mv
: &xd->mode_info_context->mbmi.mv[which_mv].as_mv;
const uint8_t * const base_pre = which_mv ? xd->second_pre.y_buffer
: xd->pre.y_buffer;
const int pre_stride = which_mv ? xd->second_pre.y_stride
: xd->pre.y_stride;
const uint8_t * const base_pre = arg->pre[which_mv][plane];
const int pre_stride = arg->pre_stride[which_mv][plane];
const uint8_t *const pre = base_pre +
scaled_buffer_offset(x, y, pre_stride, &xd->scale_factor[which_mv]);
struct scale_factors * const scale =
plane == 0 ? &xd->scale_factor[which_mv] : &xd->scale_factor_uv[which_mv];
int_mv clamped_mv;
/* TODO(jkoleszar): This clamping is done in the incorrect place for the
* scaling case. It needs to be done on the scaled MV, not the pre-scaling
* MV. Note however that it performs the subsampling aware scaling so
* that the result is always q4.
*/
clamped_mv.as_mv = clamp_mv_to_umv_border_sb(mv, bwl, bhl,
xd->plane[plane].subsampling_x,
xd->plane[plane].subsampling_y,
xd->mb_to_left_edge,
xd->mb_to_top_edge,
xd->mb_to_right_edge,
@ -591,10 +598,10 @@ static void build_inter_predictors(int plane, int block,
scale->set_scaled_offsets(scale, arg->y + y, arg->x + x);
vp9_build_inter_predictor(pre, pre_stride,
arg->dst[plane], arg->dst_stride[plane],
&clamped_mv, &xd->scale_factor[which_mv],
bw, bh, which_mv, &xd->subpix);
vp9_build_inter_predictor_q4(pre, pre_stride,
arg->dst[plane], arg->dst_stride[plane],
&clamped_mv, &xd->scale_factor[which_mv],
bw, bh, which_mv, &xd->subpix);
}
}
void vp9_build_inter_predictors_sby(MACROBLOCKD *xd,
@ -604,10 +611,30 @@ void vp9_build_inter_predictors_sby(MACROBLOCKD *xd,
int mb_col,
BLOCK_SIZE_TYPE bsize) {
struct build_inter_predictors_args args = {
xd, {dst_y, NULL, NULL}, {dst_ystride, 0, 0}, mb_col * 16, mb_row * 16
xd, mb_col * 16, mb_row * 16,
{dst_y, NULL, NULL}, {dst_ystride, 0, 0},
{{xd->pre.y_buffer, NULL, NULL}, {xd->second_pre.y_buffer, NULL, NULL}},
{{xd->pre.y_stride, 0, 0}, {xd->second_pre.y_stride, 0, 0}},
};
foreach_predicted_block_in_plane(xd, bsize, 0, build_inter_predictors, &args);
}
void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd,
uint8_t *dst_u,
uint8_t *dst_v,
int dst_uvstride,
int mb_row,
int mb_col,
BLOCK_SIZE_TYPE bsize) {
struct build_inter_predictors_args args = {
xd, mb_col * 16, mb_row * 16,
{NULL, dst_u, dst_v}, {0, dst_uvstride, dst_uvstride},
{{NULL, xd->pre.u_buffer, xd->pre.v_buffer},
{NULL, xd->second_pre.u_buffer, xd->second_pre.v_buffer}},
{{0, xd->pre.uv_stride, xd->pre.uv_stride},
{0, xd->second_pre.uv_stride, xd->second_pre.uv_stride}},
};
foreach_predicted_block_uv(xd, bsize, build_inter_predictors, &args);
}
#endif
#define AVERAGE_WEIGHT (1 << (2 * CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT))
@ -993,65 +1020,6 @@ static void build_inter16x16_predictors_mbuv_w(MACROBLOCKD *xd,
scale, 8, 8, which_mv ? weight : 0, &xd->subpix);
}
}
void vp9_build_inter16x16_predictors_mbuv(MACROBLOCKD *xd,
uint8_t *dst_u,
uint8_t *dst_v,
int dst_uvstride,
int mb_row,
int mb_col) {
#ifdef USE_IMPLICIT_WEIGHT_UV
int weight = get_implicit_compoundinter_weight(xd, mb_row, mb_col);
#else
int weight = AVERAGE_WEIGHT;
#endif
build_inter16x16_predictors_mbuv_w(xd, dst_u, dst_v, dst_uvstride,
weight, mb_row, mb_col);
}
#else
void vp9_build_inter16x16_predictors_mbuv(MACROBLOCKD *xd,
uint8_t *dst_u,
uint8_t *dst_v,
int dst_uvstride,
int mb_row,
int mb_col) {
const int use_second_ref = xd->mode_info_context->mbmi.second_ref_frame > 0;
int which_mv;
for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) {
const int clamp_mvs =
which_mv ? xd->mode_info_context->mbmi.need_to_clamp_secondmv
: xd->mode_info_context->mbmi.need_to_clamp_mvs;
uint8_t *uptr, *vptr;
int pre_stride = which_mv ? xd->second_pre.uv_stride
: xd->pre.uv_stride;
int_mv mv;
struct scale_factors *scale = &xd->scale_factor_uv[which_mv];
mv.as_int = xd->mode_info_context->mbmi.mv[which_mv].as_int;
if (clamp_mvs)
clamp_mv_to_umv_border(&mv.as_mv, xd);
uptr = (which_mv ? xd->second_pre.u_buffer : xd->pre.u_buffer);
vptr = (which_mv ? xd->second_pre.v_buffer : xd->pre.v_buffer);
scale->set_scaled_offsets(scale, mb_row * 16, mb_col * 16);
vp9_build_inter_predictor_q4(
uptr, pre_stride, dst_u, dst_uvstride, &mv,
scale, 8, 8,
which_mv << (2 * CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT), &xd->subpix);
vp9_build_inter_predictor_q4(
vptr, pre_stride, dst_v, dst_uvstride, &mv,
scale, 8, 8,
which_mv << (2 * CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT), &xd->subpix);
}
}
#endif
#if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT
@ -1198,70 +1166,6 @@ void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd,
build_inter_predictors_sbuv_w(xd, dst_u, dst_v, dst_uvstride,
weight, mb_row, mb_col, bsize);
}
#else
void vp9_build_inter_predictors_sbuv(MACROBLOCKD *x,
uint8_t *dst_u,
uint8_t *dst_v,
int dst_uvstride,
int mb_row,
int mb_col,
BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize), bw = 1 << bwl;
const int bhl = mb_height_log2(bsize), bh = 1 << bhl;
uint8_t *u1 = x->pre.u_buffer, *v1 = x->pre.v_buffer;
uint8_t *u2 = x->second_pre.u_buffer, *v2 = x->second_pre.v_buffer;
int edge[4], n;
edge[0] = x->mb_to_top_edge;
edge[1] = x->mb_to_bottom_edge;
edge[2] = x->mb_to_left_edge;
edge[3] = x->mb_to_right_edge;
for (n = 0; n < bw * bh; n++) {
int scaled_uv_offset;
const int x_idx = n & (bw - 1), y_idx = n >> bwl;
x->mb_to_top_edge = edge[0] - ((y_idx * 16) << 3);
x->mb_to_bottom_edge = edge[1] + (((bh - 1 - y_idx) * 16) << 3);
x->mb_to_left_edge = edge[2] - ((x_idx * 16) << 3);
x->mb_to_right_edge = edge[3] + (((bw - 1 - x_idx) * 16) << 3);
scaled_uv_offset = scaled_buffer_offset(x_idx * 8,
y_idx * 8,
x->pre.uv_stride,
&x->scale_factor_uv[0]);
x->pre.u_buffer = u1 + scaled_uv_offset;
x->pre.v_buffer = v1 + scaled_uv_offset;
if (x->mode_info_context->mbmi.second_ref_frame > 0) {
scaled_uv_offset = scaled_buffer_offset(x_idx * 8,
y_idx * 8,
x->second_pre.uv_stride,
&x->scale_factor_uv[1]);
x->second_pre.u_buffer = u2 + scaled_uv_offset;
x->second_pre.v_buffer = v2 + scaled_uv_offset;
}
vp9_build_inter16x16_predictors_mbuv(x,
dst_u + y_idx * 8 * dst_uvstride + x_idx * 8,
dst_v + y_idx * 8 * dst_uvstride + x_idx * 8,
dst_uvstride, mb_row + y_idx, mb_col + x_idx);
}
x->mb_to_top_edge = edge[0];
x->mb_to_bottom_edge = edge[1];
x->mb_to_left_edge = edge[2];
x->mb_to_right_edge = edge[3];
x->pre.u_buffer = u1;
x->pre.v_buffer = v1;
if (x->mode_info_context->mbmi.second_ref_frame > 0) {
x->second_pre.u_buffer = u2;
x->second_pre.v_buffer = v2;
}
}
#endif
void vp9_build_inter_predictors_sb(MACROBLOCKD *mb,

Просмотреть файл

@ -16,13 +16,6 @@
struct subpix_fn_table;
void vp9_build_inter16x16_predictors_mbuv(MACROBLOCKD *xd,
uint8_t *dst_u,
uint8_t *dst_v,
int dst_uvstride,
int mb_row,
int mb_col);
void vp9_build_inter_predictors_sby(MACROBLOCKD *x,
uint8_t *dst_y,
int dst_ystride,