/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "av1/common/clpf.h" #include "./aom_dsp_rtcd.h" #include "aom/aom_image.h" #include "aom/aom_integer.h" #include "av1/common/quant_common.h" // Calculate the error of a filtered and unfiltered block void aom_clpf_detect_c(const uint8_t *rec, const uint8_t *org, int rstride, int ostride, int x0, int y0, int width, int height, int *sum0, int *sum1, unsigned int strength, int size) { int x, y; for (y = y0; y < y0 + size; y++) { for (x = x0; x < x0 + size; x++) { int O = org[y * ostride + x]; int X = rec[y * rstride + x]; int A = rec[AOMMAX(0, y - 1) * rstride + x]; int B = rec[y * rstride + AOMMAX(0, x - 2)]; int C = rec[y * rstride + AOMMAX(0, x - 1)]; int D = rec[y * rstride + AOMMIN(width - 1, x + 1)]; int E = rec[y * rstride + AOMMIN(width - 1, x + 2)]; int F = rec[AOMMIN(height - 1, y + 1) * rstride + x]; int delta = av1_clpf_sample(X, A, B, C, D, E, F, strength); int Y = X + delta; *sum0 += (O - X) * (O - X); *sum1 += (O - Y) * (O - Y); } } } void aom_clpf_detect_multi_c(const uint8_t *rec, const uint8_t *org, int rstride, int ostride, int x0, int y0, int width, int height, int *sum, int size) { int x, y; for (y = y0; y < y0 + size; y++) { for (x = x0; x < x0 + size; x++) { int O = org[y * ostride + x]; int X = rec[y * rstride + x]; int A = rec[AOMMAX(0, y - 1) * rstride + x]; int B = rec[y * rstride + AOMMAX(0, x - 2)]; int C = rec[y * rstride + AOMMAX(0, x - 1)]; int D = rec[y * rstride + AOMMIN(width - 1, x + 1)]; int E = rec[y * rstride + AOMMIN(width - 1, x + 2)]; int F = rec[AOMMIN(height - 1, y + 1) * rstride + x]; int delta1 = av1_clpf_sample(X, A, B, C, D, E, F, 1); int delta2 = av1_clpf_sample(X, A, B, C, D, E, F, 2); int delta3 = av1_clpf_sample(X, A, B, C, D, E, F, 4); int F1 = X + delta1; int F2 = X + delta2; int F3 = X + delta3; sum[0] += (O - X) * (O - X); sum[1] += (O - F1) * (O - F1); sum[2] += (O - F2) * (O - F2); sum[3] += (O - F3) * (O - F3); } } } #if CONFIG_AOM_HIGHBITDEPTH // Identical to aom_clpf_detect_c() apart from "rec" and "org". void aom_clpf_detect_hbd_c(const uint16_t *rec, const uint16_t *org, int rstride, int ostride, int x0, int y0, int width, int height, int *sum0, int *sum1, unsigned int strength, int shift, int size) { int x, y; for (y = y0; y < y0 + size; y++) { for (x = x0; x < x0 + size; x++) { int O = org[y * ostride + x] >> shift; int X = rec[y * rstride + x] >> shift; int A = rec[AOMMAX(0, y - 1) * rstride + x] >> shift; int B = rec[y * rstride + AOMMAX(0, x - 2)] >> shift; int C = rec[y * rstride + AOMMAX(0, x - 1)] >> shift; int D = rec[y * rstride + AOMMIN(width - 1, x + 1)] >> shift; int E = rec[y * rstride + AOMMIN(width - 1, x + 2)] >> shift; int F = rec[AOMMIN(height - 1, y + 1) * rstride + x] >> shift; int delta = av1_clpf_sample(X, A, B, C, D, E, F, strength >> shift); int Y = X + delta; *sum0 += (O - X) * (O - X); *sum1 += (O - Y) * (O - Y); } } } // aom_clpf_detect_multi_c() apart from "rec" and "org". void aom_clpf_detect_multi_hbd_c(const uint16_t *rec, const uint16_t *org, int rstride, int ostride, int x0, int y0, int width, int height, int *sum, int shift, int size) { int x, y; for (y = y0; y < y0 + size; y++) { for (x = x0; x < x0 + size; x++) { int O = org[y * ostride + x] >> shift; int X = rec[y * rstride + x] >> shift; int A = rec[AOMMAX(0, y - 1) * rstride + x] >> shift; int B = rec[y * rstride + AOMMAX(0, x - 2)] >> shift; int C = rec[y * rstride + AOMMAX(0, x - 1)] >> shift; int D = rec[y * rstride + AOMMIN(width - 1, x + 1)] >> shift; int E = rec[y * rstride + AOMMIN(width - 1, x + 2)] >> shift; int F = rec[AOMMIN(height - 1, y + 1) * rstride + x] >> shift; int delta1 = av1_clpf_sample(X, A, B, C, D, E, F, 1); int delta2 = av1_clpf_sample(X, A, B, C, D, E, F, 2); int delta3 = av1_clpf_sample(X, A, B, C, D, E, F, 4); int F1 = X + delta1; int F2 = X + delta2; int F3 = X + delta3; sum[0] += (O - X) * (O - X); sum[1] += (O - F1) * (O - F1); sum[2] += (O - F2) * (O - F2); sum[3] += (O - F3) * (O - F3); } } } #endif int av1_clpf_decision(int k, int l, const YV12_BUFFER_CONFIG *rec, const YV12_BUFFER_CONFIG *org, const AV1_COMMON *cm, int block_size, int w, int h, unsigned int strength, unsigned int fb_size_log2, int8_t *res) { int m, n, sum0 = 0, sum1 = 0; for (m = 0; m < h; m++) { for (n = 0; n < w; n++) { int xpos = (l << fb_size_log2) + n * block_size; int ypos = (k << fb_size_log2) + m * block_size; if (fb_size_log2 == MAX_FB_SIZE_LOG2 || !cm->mi_grid_visible[ypos / MI_SIZE * cm->mi_stride + xpos / MI_SIZE] ->mbmi.skip) { #if CONFIG_AOM_HIGHBITDEPTH if (cm->use_highbitdepth) { aom_clpf_detect_hbd(CONVERT_TO_SHORTPTR(rec->y_buffer), CONVERT_TO_SHORTPTR(org->y_buffer), rec->y_stride, org->y_stride, xpos, ypos, rec->y_crop_width, rec->y_crop_height, &sum0, &sum1, strength, cm->bit_depth - 8, block_size); } else { aom_clpf_detect(rec->y_buffer, org->y_buffer, rec->y_stride, org->y_stride, xpos, ypos, rec->y_crop_width, rec->y_crop_height, &sum0, &sum1, strength, block_size); } #else aom_clpf_detect(rec->y_buffer, org->y_buffer, rec->y_stride, org->y_stride, xpos, ypos, rec->y_crop_width, rec->y_crop_height, &sum0, &sum1, strength, block_size); #endif } } } *res = sum1 < sum0; return *res; } // Calculate the square error of all filter settings. Result: // res[0][0] : unfiltered // res[0][1-3] : strength=1,2,4, no signals // (Only for luma:) // res[1][0] : (bit count, fb size = 128) // res[1][1-3] : strength=1,2,4, fb size = 128 // res[1][4] : unfiltered, including skip // res[1][5-7] : strength=1,2,4, including skip, fb_size = 128 // res[2][0] : (bit count, fb size = 64) // res[2][1-3] : strength=1,2,4, fb size = 64 // res[3][0] : (bit count, fb size = 32) // res[3][1-3] : strength=1,2,4, fb size = 32 static int clpf_rdo(int y, int x, const YV12_BUFFER_CONFIG *rec, const YV12_BUFFER_CONFIG *org, const AV1_COMMON *cm, unsigned int block_size, unsigned int fb_size_log2, int w, int h, int64_t res[4][8], int plane) { int c, m, n, filtered = 0; int sum[8]; const int subx = plane != AOM_PLANE_Y && rec->subsampling_x; const int suby = plane != AOM_PLANE_Y && rec->subsampling_y; int bslog = get_msb(block_size); uint8_t *rec_buffer = plane != AOM_PLANE_Y ? (plane == AOM_PLANE_U ? rec->u_buffer : rec->v_buffer) : rec->y_buffer; uint8_t *org_buffer = plane != AOM_PLANE_Y ? (plane == AOM_PLANE_U ? org->u_buffer : org->v_buffer) : org->y_buffer; int rec_width = plane != AOM_PLANE_Y ? rec->uv_crop_width : rec->y_crop_width; int rec_height = plane != AOM_PLANE_Y ? rec->uv_crop_height : rec->y_crop_height; int rec_stride = plane != AOM_PLANE_Y ? rec->uv_stride : rec->y_stride; int org_stride = plane != AOM_PLANE_Y ? org->uv_stride : org->y_stride; sum[0] = sum[1] = sum[2] = sum[3] = sum[4] = sum[5] = sum[6] = sum[7] = 0; if (plane == AOM_PLANE_Y && fb_size_log2 > (unsigned int)get_msb(MAX_FB_SIZE) - 3) { int w1, h1, w2, h2, i, sum1, sum2, sum3, oldfiltered; filtered = fb_size_log2-- == MAX_FB_SIZE_LOG2; w1 = AOMMIN(1 << (fb_size_log2 - bslog), w); h1 = AOMMIN(1 << (fb_size_log2 - bslog), h); w2 = AOMMIN(w - (1 << (fb_size_log2 - bslog)), w >> 1); h2 = AOMMIN(h - (1 << (fb_size_log2 - bslog)), h >> 1); i = get_msb(MAX_FB_SIZE) - fb_size_log2; sum1 = (int)res[i][1]; sum2 = (int)res[i][2]; sum3 = (int)res[i][3]; oldfiltered = (int)res[i][0]; res[i][0] = 0; filtered |= clpf_rdo(y, x, rec, org, cm, block_size, fb_size_log2, w1, h1, res, plane); if (1 << (fb_size_log2 - bslog) < w) filtered |= clpf_rdo(y, x + (1 << fb_size_log2), rec, org, cm, block_size, fb_size_log2, w2, h1, res, plane); if (1 << (fb_size_log2 - bslog) < h) { filtered |= clpf_rdo(y + (1 << fb_size_log2), x, rec, org, cm, block_size, fb_size_log2, w1, h2, res, plane); filtered |= clpf_rdo(y + (1 << fb_size_log2), x + (1 << fb_size_log2), rec, org, cm, block_size, fb_size_log2, w2, h2, res, plane); } // Correct sums for unfiltered blocks res[i][1] = AOMMIN(sum1 + res[i][0], res[i][1]); res[i][2] = AOMMIN(sum2 + res[i][0], res[i][2]); res[i][3] = AOMMIN(sum3 + res[i][0], res[i][3]); if (i == 1) { res[i][5] = AOMMIN(sum1 + res[i][4], res[i][5]); res[i][6] = AOMMIN(sum2 + res[i][4], res[i][6]); res[i][7] = AOMMIN(sum3 + res[i][4], res[i][7]); } res[i][0] = oldfiltered + filtered; // Number of signal bits return filtered; } for (m = 0; m < h; m++) { for (n = 0; n < w; n++) { int xpos = x + n * block_size; int ypos = y + m * block_size; int skip = // Filtered skip blocks stored only for fb_size == 128 4 * !!cm->mi_grid_visible[(ypos << suby) / MI_SIZE * cm->mi_stride + (xpos << subx) / MI_SIZE] ->mbmi.skip; #if CONFIG_AOM_HIGHBITDEPTH if (cm->use_highbitdepth) { aom_clpf_detect_multi_hbd(CONVERT_TO_SHORTPTR(rec_buffer), CONVERT_TO_SHORTPTR(org_buffer), rec_stride, org_stride, xpos, ypos, rec_width, rec_height, sum + skip, cm->bit_depth - 8, block_size); } else { aom_clpf_detect_multi(rec_buffer, org_buffer, rec_stride, org_stride, xpos, ypos, rec_width, rec_height, sum + skip, block_size); } #else aom_clpf_detect_multi(rec_buffer, org_buffer, rec_stride, org_stride, xpos, ypos, rec_width, rec_height, sum + skip, block_size); #endif filtered |= !skip; } } for (c = 0; c < (plane == AOM_PLANE_Y ? 4 : 1); c++) { res[c][0] += sum[0]; res[c][1] += sum[1]; res[c][2] += sum[2]; res[c][3] += sum[3]; if (c != 1) continue; // Only needed when fb_size == 128 res[c][4] += sum[4]; res[c][5] += sum[5]; res[c][6] += sum[6]; res[c][7] += sum[7]; } return filtered; } void av1_clpf_test_frame(const YV12_BUFFER_CONFIG *rec, const YV12_BUFFER_CONFIG *org, const AV1_COMMON *cm, int *best_strength, int *best_bs, int plane) { int c, j, k, l; int64_t best, sums[4][8]; int width = plane != AOM_PLANE_Y ? rec->uv_crop_width : rec->y_crop_width; int height = plane != AOM_PLANE_Y ? rec->uv_crop_height : rec->y_crop_height; const int bs = MI_SIZE; const int bslog = get_msb(bs); int fb_size_log2 = get_msb(MAX_FB_SIZE); int num_fb_ver = (height + (1 << fb_size_log2) - bs) >> fb_size_log2; int num_fb_hor = (width + (1 << fb_size_log2) - bs) >> fb_size_log2; memset(sums, 0, sizeof(sums)); if (plane != AOM_PLANE_Y) // Use a block size of MI_SIZE regardless of the subsampling. This // This is accurate enough to determine the best strength and // we don't need to add SIMD optimisations for 4x4 blocks. clpf_rdo(0, 0, rec, org, cm, bs, fb_size_log2, width >> bslog, height >> bslog, sums, plane); else for (k = 0; k < num_fb_ver; k++) { for (l = 0; l < num_fb_hor; l++) { // Calculate the block size after frame border clipping int h = AOMMIN(height, (k + 1) << fb_size_log2) & ((1 << fb_size_log2) - 1); int w = AOMMIN(width, (l + 1) << fb_size_log2) & ((1 << fb_size_log2) - 1); h += !h << fb_size_log2; w += !w << fb_size_log2; clpf_rdo(k << fb_size_log2, l << fb_size_log2, rec, org, cm, MI_SIZE, fb_size_log2, w >> bslog, h >> bslog, sums, plane); } } // For fb_size == 128 skip blocks are included in the result. if (plane == AOM_PLANE_Y) { sums[1][1] += sums[1][5] - sums[1][4]; sums[1][2] += sums[1][6] - sums[1][4]; sums[1][3] += sums[1][7] - sums[1][4]; } else { // Slightly favour unfiltered chroma sums[0][0] -= sums[0][0] >> 7; } for (j = 0; j < 4; j++) { static const double lambda_square[] = { // exp(x / 8.5) 1.0000, 1.1248, 1.2653, 1.4232, 1.6009, 1.8008, 2.0256, 2.2785, 2.5630, 2.8830, 3.2429, 3.6478, 4.1032, 4.6155, 5.1917, 5.8399, 6.5689, 7.3891, 8.3116, 9.3492, 10.516, 11.829, 13.306, 14.967, 16.836, 18.938, 21.302, 23.962, 26.953, 30.318, 34.103, 38.361, 43.151, 48.538, 54.598, 61.414, 69.082, 77.706, 87.408, 98.320, 110.59, 124.40, 139.93, 157.40, 177.05, 199.16, 224.02, 251.99, 283.45, 318.84, 358.65, 403.42, 453.79, 510.45, 574.17, 645.86, 726.49, 817.19, 919.22, 1033.9, 1163.0, 1308.2, 1471.6, 1655.3 }; // Estimate the bit costs and adjust the square errors double lambda = lambda_square[av1_get_qindex(&cm->seg, 0, cm->base_qindex) >> 2]; int i, cost = (int)((lambda * (sums[j][0] + 6 + 2 * (j > 0)) + 0.5)); for (i = 0; i < 4; i++) sums[j][i] = ((sums[j][i] + (i && j) * cost) << 4) + j * 4 + i; } best = (int64_t)1 << 62; for (c = 0; c < (plane == AOM_PLANE_Y ? 4 : 1); c++) for (j = 0; j < 4; j++) if ((!c || j) && sums[c][j] < best) best = sums[c][j]; best &= 15; if (best_bs) *best_bs = (best > 3) * (5 + (best < 12) + (best < 8)); *best_strength = best ? 1 << ((best - 1) & 3) : 0; }