/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "./aomenc.h" #include "./aom_config.h" #include #include #include #include #include #include #include #if CONFIG_LIBYUV #include "third_party/libyuv/include/libyuv/scale.h" #endif #include "aom/aom_encoder.h" #if CONFIG_DECODERS #include "aom/aom_decoder.h" #endif #include "./args.h" #include "./ivfenc.h" #include "./tools_common.h" #if CONFIG_AV1_ENCODER #include "aom/aomcx.h" #endif #if CONFIG_AV1_DECODER #include "aom/aomdx.h" #endif #include "./aomstats.h" #include "./rate_hist.h" #include "./warnings.h" #include "aom/aom_integer.h" #include "aom_ports/aom_timer.h" #include "aom_ports/mem_ops.h" #if CONFIG_WEBM_IO #include "./webmenc.h" #endif #include "./y4minput.h" /* Swallow warnings about unused results of fread/fwrite */ static size_t wrap_fread(void *ptr, size_t size, size_t nmemb, FILE *stream) { return fread(ptr, size, nmemb, stream); } #define fread wrap_fread static size_t wrap_fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream) { return fwrite(ptr, size, nmemb, stream); } #define fwrite wrap_fwrite static const char *exec_name; static void warn_or_exit_on_errorv(aom_codec_ctx_t *ctx, int fatal, const char *s, va_list ap) { if (ctx->err) { const char *detail = aom_codec_error_detail(ctx); vfprintf(stderr, s, ap); fprintf(stderr, ": %s\n", aom_codec_error(ctx)); if (detail) fprintf(stderr, " %s\n", detail); if (fatal) exit(EXIT_FAILURE); } } static void ctx_exit_on_error(aom_codec_ctx_t *ctx, const char *s, ...) { va_list ap; va_start(ap, s); warn_or_exit_on_errorv(ctx, 1, s, ap); va_end(ap); } static void warn_or_exit_on_error(aom_codec_ctx_t *ctx, int fatal, const char *s, ...) { va_list ap; va_start(ap, s); warn_or_exit_on_errorv(ctx, fatal, s, ap); va_end(ap); } static int read_frame(struct AvxInputContext *input_ctx, aom_image_t *img) { FILE *f = input_ctx->file; y4m_input *y4m = &input_ctx->y4m; int shortread = 0; if (input_ctx->file_type == FILE_TYPE_Y4M) { if (y4m_input_fetch_frame(y4m, f, img) < 1) return 0; } else { shortread = read_yuv_frame(input_ctx, img); } return !shortread; } static int file_is_y4m(const char detect[4]) { if (memcmp(detect, "YUV4", 4) == 0) { return 1; } return 0; } static int fourcc_is_ivf(const char detect[4]) { if (memcmp(detect, "DKIF", 4) == 0) { return 1; } return 0; } static const arg_def_t debugmode = ARG_DEF("D", "debug", 0, "Debug mode (makes output deterministic)"); static const arg_def_t outputfile = ARG_DEF("o", "output", 1, "Output filename"); static const arg_def_t use_yv12 = ARG_DEF(NULL, "yv12", 0, "Input file is YV12 "); static const arg_def_t use_i420 = ARG_DEF(NULL, "i420", 0, "Input file is I420 (default)"); static const arg_def_t use_i422 = ARG_DEF(NULL, "i422", 0, "Input file is I422"); static const arg_def_t use_i444 = ARG_DEF(NULL, "i444", 0, "Input file is I444"); static const arg_def_t use_i440 = ARG_DEF(NULL, "i440", 0, "Input file is I440"); static const arg_def_t codecarg = ARG_DEF(NULL, "codec", 1, "Codec to use"); static const arg_def_t passes = ARG_DEF("p", "passes", 1, "Number of passes (1/2)"); static const arg_def_t pass_arg = ARG_DEF(NULL, "pass", 1, "Pass to execute (1/2)"); static const arg_def_t fpf_name = ARG_DEF(NULL, "fpf", 1, "First pass statistics file name"); #if CONFIG_FP_MB_STATS static const arg_def_t fpmbf_name = ARG_DEF(NULL, "fpmbf", 1, "First pass block statistics file name"); #endif static const arg_def_t limit = ARG_DEF(NULL, "limit", 1, "Stop encoding after n input frames"); static const arg_def_t skip = ARG_DEF(NULL, "skip", 1, "Skip the first n input frames"); static const arg_def_t deadline = ARG_DEF("d", "deadline", 1, "Deadline per frame (usec)"); static const arg_def_t best_dl = ARG_DEF(NULL, "best", 0, "Use Best Quality Deadline"); static const arg_def_t good_dl = ARG_DEF(NULL, "good", 0, "Use Good Quality Deadline"); static const arg_def_t rt_dl = ARG_DEF(NULL, "rt", 0, "Use Realtime Quality Deadline"); static const arg_def_t quietarg = ARG_DEF("q", "quiet", 0, "Do not print encode progress"); static const arg_def_t verbosearg = ARG_DEF("v", "verbose", 0, "Show encoder parameters"); static const arg_def_t psnrarg = ARG_DEF(NULL, "psnr", 0, "Show PSNR in status line"); static const struct arg_enum_list test_decode_enum[] = { { "off", TEST_DECODE_OFF }, { "fatal", TEST_DECODE_FATAL }, { "warn", TEST_DECODE_WARN }, { NULL, 0 } }; static const arg_def_t recontest = ARG_DEF_ENUM( NULL, "test-decode", 1, "Test encode/decode mismatch", test_decode_enum); static const arg_def_t framerate = ARG_DEF(NULL, "fps", 1, "Stream frame rate (rate/scale)"); static const arg_def_t use_webm = ARG_DEF(NULL, "webm", 0, "Output WebM (default when WebM IO is enabled)"); static const arg_def_t use_ivf = ARG_DEF(NULL, "ivf", 0, "Output IVF"); static const arg_def_t out_part = ARG_DEF("P", "output-partitions", 0, "Makes encoder output partitions. Requires IVF output!"); static const arg_def_t q_hist_n = ARG_DEF(NULL, "q-hist", 1, "Show quantizer histogram (n-buckets)"); static const arg_def_t rate_hist_n = ARG_DEF(NULL, "rate-hist", 1, "Show rate histogram (n-buckets)"); static const arg_def_t disable_warnings = ARG_DEF(NULL, "disable-warnings", 0, "Disable warnings about potentially incorrect encode settings."); static const arg_def_t disable_warning_prompt = ARG_DEF("y", "disable-warning-prompt", 0, "Display warnings, but do not prompt user to continue."); #if CONFIG_AOM_HIGHBITDEPTH static const arg_def_t test16bitinternalarg = ARG_DEF( NULL, "test-16bit-internal", 0, "Force use of 16 bit internal buffer"); static const struct arg_enum_list bitdepth_enum[] = { { "8", AOM_BITS_8 }, { "10", AOM_BITS_10 }, { "12", AOM_BITS_12 }, { NULL, 0 } }; static const arg_def_t bitdeptharg = ARG_DEF_ENUM( "b", "bit-depth", 1, "Bit depth for codec (8 for version <=1, 10 or 12 for version 2)", bitdepth_enum); static const arg_def_t inbitdeptharg = ARG_DEF(NULL, "input-bit-depth", 1, "Bit depth of input"); #endif static const arg_def_t *main_args[] = { &debugmode, &outputfile, &codecarg, &passes, &pass_arg, &fpf_name, &limit, &skip, &deadline, &best_dl, &good_dl, &rt_dl, &quietarg, &verbosearg, &psnrarg, &use_webm, &use_ivf, &out_part, &q_hist_n, &rate_hist_n, &disable_warnings, &disable_warning_prompt, &recontest, NULL }; static const arg_def_t usage = ARG_DEF("u", "usage", 1, "Usage profile number to use"); static const arg_def_t threads = ARG_DEF("t", "threads", 1, "Max number of threads to use"); static const arg_def_t profile = ARG_DEF(NULL, "profile", 1, "Bitstream profile number to use"); static const arg_def_t width = ARG_DEF("w", "width", 1, "Frame width"); static const arg_def_t height = ARG_DEF("h", "height", 1, "Frame height"); #if CONFIG_WEBM_IO static const struct arg_enum_list stereo_mode_enum[] = { { "mono", STEREO_FORMAT_MONO }, { "left-right", STEREO_FORMAT_LEFT_RIGHT }, { "bottom-top", STEREO_FORMAT_BOTTOM_TOP }, { "top-bottom", STEREO_FORMAT_TOP_BOTTOM }, { "right-left", STEREO_FORMAT_RIGHT_LEFT }, { NULL, 0 } }; static const arg_def_t stereo_mode = ARG_DEF_ENUM( NULL, "stereo-mode", 1, "Stereo 3D video format", stereo_mode_enum); #endif static const arg_def_t timebase = ARG_DEF( NULL, "timebase", 1, "Output timestamp precision (fractional seconds)"); static const arg_def_t error_resilient = ARG_DEF(NULL, "error-resilient", 1, "Enable error resiliency features"); static const arg_def_t lag_in_frames = ARG_DEF(NULL, "lag-in-frames", 1, "Max number of frames to lag"); static const arg_def_t *global_args[] = { &use_yv12, &use_i420, &use_i422, &use_i444, &use_i440, &usage, &threads, &profile, &width, &height, #if CONFIG_WEBM_IO &stereo_mode, #endif &timebase, &framerate, &error_resilient, #if CONFIG_AOM_HIGHBITDEPTH &test16bitinternalarg, &bitdeptharg, #endif &lag_in_frames, NULL }; static const arg_def_t dropframe_thresh = ARG_DEF(NULL, "drop-frame", 1, "Temporal resampling threshold (buf %)"); static const arg_def_t resize_allowed = ARG_DEF(NULL, "resize-allowed", 1, "Spatial resampling enabled (bool)"); static const arg_def_t resize_width = ARG_DEF(NULL, "resize-width", 1, "Width of encoded frame"); static const arg_def_t resize_height = ARG_DEF(NULL, "resize-height", 1, "Height of encoded frame"); static const arg_def_t resize_up_thresh = ARG_DEF(NULL, "resize-up", 1, "Upscale threshold (buf %)"); static const arg_def_t resize_down_thresh = ARG_DEF(NULL, "resize-down", 1, "Downscale threshold (buf %)"); static const struct arg_enum_list end_usage_enum[] = { { "vbr", AOM_VBR }, { "cbr", AOM_CBR }, { "cq", AOM_CQ }, { "q", AOM_Q }, { NULL, 0 } }; static const arg_def_t end_usage = ARG_DEF_ENUM(NULL, "end-usage", 1, "Rate control mode", end_usage_enum); static const arg_def_t target_bitrate = ARG_DEF(NULL, "target-bitrate", 1, "Bitrate (kbps)"); static const arg_def_t min_quantizer = ARG_DEF(NULL, "min-q", 1, "Minimum (best) quantizer"); static const arg_def_t max_quantizer = ARG_DEF(NULL, "max-q", 1, "Maximum (worst) quantizer"); static const arg_def_t undershoot_pct = ARG_DEF(NULL, "undershoot-pct", 1, "Datarate undershoot (min) target (%)"); static const arg_def_t overshoot_pct = ARG_DEF(NULL, "overshoot-pct", 1, "Datarate overshoot (max) target (%)"); static const arg_def_t buf_sz = ARG_DEF(NULL, "buf-sz", 1, "Client buffer size (ms)"); static const arg_def_t buf_initial_sz = ARG_DEF(NULL, "buf-initial-sz", 1, "Client initial buffer size (ms)"); static const arg_def_t buf_optimal_sz = ARG_DEF(NULL, "buf-optimal-sz", 1, "Client optimal buffer size (ms)"); static const arg_def_t *rc_args[] = { &dropframe_thresh, &resize_allowed, &resize_width, &resize_height, &resize_up_thresh, &resize_down_thresh, &end_usage, &target_bitrate, &min_quantizer, &max_quantizer, &undershoot_pct, &overshoot_pct, &buf_sz, &buf_initial_sz, &buf_optimal_sz, NULL }; static const arg_def_t bias_pct = ARG_DEF(NULL, "bias-pct", 1, "CBR/VBR bias (0=CBR, 100=VBR)"); static const arg_def_t minsection_pct = ARG_DEF(NULL, "minsection-pct", 1, "GOP min bitrate (% of target)"); static const arg_def_t maxsection_pct = ARG_DEF(NULL, "maxsection-pct", 1, "GOP max bitrate (% of target)"); static const arg_def_t *rc_twopass_args[] = { &bias_pct, &minsection_pct, &maxsection_pct, NULL }; static const arg_def_t kf_min_dist = ARG_DEF(NULL, "kf-min-dist", 1, "Minimum keyframe interval (frames)"); static const arg_def_t kf_max_dist = ARG_DEF(NULL, "kf-max-dist", 1, "Maximum keyframe interval (frames)"); static const arg_def_t kf_disabled = ARG_DEF(NULL, "disable-kf", 0, "Disable keyframe placement"); static const arg_def_t *kf_args[] = { &kf_min_dist, &kf_max_dist, &kf_disabled, NULL }; static const arg_def_t noise_sens = ARG_DEF(NULL, "noise-sensitivity", 1, "Noise sensitivity (frames to blur)"); static const arg_def_t sharpness = ARG_DEF(NULL, "sharpness", 1, "Loop filter sharpness (0..7)"); static const arg_def_t static_thresh = ARG_DEF(NULL, "static-thresh", 1, "Motion detection threshold"); static const arg_def_t auto_altref = ARG_DEF(NULL, "auto-alt-ref", 1, "Enable automatic alt reference frames"); static const arg_def_t arnr_maxframes = ARG_DEF(NULL, "arnr-maxframes", 1, "AltRef max frames (0..15)"); static const arg_def_t arnr_strength = ARG_DEF(NULL, "arnr-strength", 1, "AltRef filter strength (0..6)"); static const struct arg_enum_list tuning_enum[] = { { "psnr", AOM_TUNE_PSNR }, { "ssim", AOM_TUNE_SSIM }, { NULL, 0 } }; static const arg_def_t tune_ssim = ARG_DEF_ENUM(NULL, "tune", 1, "Material to favor", tuning_enum); static const arg_def_t cq_level = ARG_DEF(NULL, "cq-level", 1, "Constant/Constrained Quality level"); static const arg_def_t max_intra_rate_pct = ARG_DEF(NULL, "max-intra-rate", 1, "Max I-frame bitrate (pct)"); #if CONFIG_AV1_ENCODER static const arg_def_t cpu_used_av1 = ARG_DEF(NULL, "cpu-used", 1, "CPU Used (-8..8)"); static const arg_def_t tile_cols = ARG_DEF(NULL, "tile-columns", 1, "Number of tile columns to use, log2"); static const arg_def_t tile_rows = ARG_DEF(NULL, "tile-rows", 1, "Number of tile rows to use, log2 (set to 0 while threads > 1)"); #if CONFIG_DEBLOCKING_ACROSS_TILES static const arg_def_t tile_loopfilter = ARG_DEF( NULL, "tile-loopfilter", 1, "Enable loop filter across tile boundary"); #endif // CONFIG_DEBLOCKING_ACROSS_TILES static const arg_def_t lossless = ARG_DEF(NULL, "lossless", 1, "Lossless mode (0: false (default), 1: true)"); #if CONFIG_AOM_QM static const arg_def_t enable_qm = ARG_DEF(NULL, "enable-qm", 1, "Enable quantisation matrices (0: false (default), 1: true)"); static const arg_def_t qm_min = ARG_DEF( NULL, "qm-min", 1, "Min quant matrix flatness (0..15), default is 8"); static const arg_def_t qm_max = ARG_DEF( NULL, "qm-max", 1, "Max quant matrix flatness (0..15), default is 16"); #endif #if CONFIG_TILE_GROUPS static const arg_def_t num_tg = ARG_DEF( NULL, "num-tile-groups", 1, "Maximum number of tile groups, default is 1"); static const arg_def_t mtu_size = ARG_DEF(NULL, "mtu-size", 1, "MTU size for a tile group, default is 0 (no MTU targeting), " "overrides maximum number of tile groups"); #endif static const arg_def_t frame_parallel_decoding = ARG_DEF(NULL, "frame-parallel", 1, "Enable frame parallel decodability features " "(0: false (default), 1: true)"); #if CONFIG_DELTA_Q static const arg_def_t aq_mode = ARG_DEF( NULL, "aq-mode", 1, "Adaptive quantization mode (0: off (default), 1: variance 2: complexity, " "3: cyclic refresh, 4: delta quant)"); #else static const arg_def_t aq_mode = ARG_DEF( NULL, "aq-mode", 1, "Adaptive quantization mode (0: off (default), 1: variance 2: complexity, " "3: cyclic refresh)"); #endif static const arg_def_t frame_periodic_boost = ARG_DEF(NULL, "frame-boost", 1, "Enable frame periodic boost (0: off (default), 1: on)"); static const arg_def_t gf_cbr_boost_pct = ARG_DEF( NULL, "gf-cbr-boost", 1, "Boost for Golden Frame in CBR mode (pct)"); static const arg_def_t max_inter_rate_pct = ARG_DEF(NULL, "max-inter-rate", 1, "Max P-frame bitrate (pct)"); static const arg_def_t min_gf_interval = ARG_DEF( NULL, "min-gf-interval", 1, "min gf/arf frame interval (default 0, indicating in-built behavior)"); static const arg_def_t max_gf_interval = ARG_DEF( NULL, "max-gf-interval", 1, "max gf/arf frame interval (default 0, indicating in-built behavior)"); static const struct arg_enum_list color_space_enum[] = { { "unknown", AOM_CS_UNKNOWN }, { "bt601", AOM_CS_BT_601 }, { "bt709", AOM_CS_BT_709 }, { "smpte170", AOM_CS_SMPTE_170 }, { "smpte240", AOM_CS_SMPTE_240 }, { "bt2020", AOM_CS_BT_2020 }, { "reserved", AOM_CS_RESERVED }, { "sRGB", AOM_CS_SRGB }, { NULL, 0 } }; static const arg_def_t input_color_space = ARG_DEF_ENUM(NULL, "color-space", 1, "The color space of input content:", color_space_enum); static const struct arg_enum_list tune_content_enum[] = { { "default", AOM_CONTENT_DEFAULT }, { "screen", AOM_CONTENT_SCREEN }, { NULL, 0 } }; static const arg_def_t tune_content = ARG_DEF_ENUM( NULL, "tune-content", 1, "Tune content type", tune_content_enum); #endif #if CONFIG_AV1_ENCODER #if CONFIG_EXT_PARTITION static const struct arg_enum_list superblock_size_enum[] = { { "dynamic", AOM_SUPERBLOCK_SIZE_DYNAMIC }, { "64", AOM_SUPERBLOCK_SIZE_64X64 }, { "128", AOM_SUPERBLOCK_SIZE_128X128 }, { NULL, 0 } }; static const arg_def_t superblock_size = ARG_DEF_ENUM( NULL, "sb-size", 1, "Superblock size to use", superblock_size_enum); #endif // CONFIG_EXT_PARTITION static const arg_def_t *av1_args[] = { &cpu_used_av1, &auto_altref, &sharpness, &static_thresh, &tile_cols, &tile_rows, #if CONFIG_DEBLOCKING_ACROSS_TILES &tile_loopfilter, #endif // CONFIG_DEBLOCKING_ACROSS_TILES &arnr_maxframes, &arnr_strength, &tune_ssim, &cq_level, &max_intra_rate_pct, &max_inter_rate_pct, &gf_cbr_boost_pct, &lossless, #if CONFIG_AOM_QM &enable_qm, &qm_min, &qm_max, #endif &frame_parallel_decoding, &aq_mode, &frame_periodic_boost, &noise_sens, &tune_content, &input_color_space, &min_gf_interval, &max_gf_interval, #if CONFIG_EXT_PARTITION &superblock_size, #endif // CONFIG_EXT_PARTITION #if CONFIG_TILE_GROUPS &num_tg, &mtu_size, #endif #if CONFIG_AOM_HIGHBITDEPTH &bitdeptharg, &inbitdeptharg, #endif // CONFIG_AOM_HIGHBITDEPTH NULL }; static const int av1_arg_ctrl_map[] = { AOME_SET_CPUUSED, AOME_SET_ENABLEAUTOALTREF, AOME_SET_SHARPNESS, AOME_SET_STATIC_THRESHOLD, AV1E_SET_TILE_COLUMNS, AV1E_SET_TILE_ROWS, #if CONFIG_DEBLOCKING_ACROSS_TILES AV1E_SET_TILE_LOOPFILTER, #endif // CONFIG_DEBLOCKING_ACROSS_TILES AOME_SET_ARNR_MAXFRAMES, AOME_SET_ARNR_STRENGTH, AOME_SET_TUNING, AOME_SET_CQ_LEVEL, AOME_SET_MAX_INTRA_BITRATE_PCT, AV1E_SET_MAX_INTER_BITRATE_PCT, AV1E_SET_GF_CBR_BOOST_PCT, AV1E_SET_LOSSLESS, #if CONFIG_AOM_QM AV1E_SET_ENABLE_QM, AV1E_SET_QM_MIN, AV1E_SET_QM_MAX, #endif AV1E_SET_FRAME_PARALLEL_DECODING, AV1E_SET_AQ_MODE, AV1E_SET_FRAME_PERIODIC_BOOST, AV1E_SET_NOISE_SENSITIVITY, AV1E_SET_TUNE_CONTENT, AV1E_SET_COLOR_SPACE, AV1E_SET_MIN_GF_INTERVAL, AV1E_SET_MAX_GF_INTERVAL, #if CONFIG_EXT_PARTITION AV1E_SET_SUPERBLOCK_SIZE, #endif // CONFIG_EXT_PARTITION #if CONFIG_TILE_GROUPS AV1E_SET_NUM_TG, AV1E_SET_MTU, #endif 0 }; #endif static const arg_def_t *no_args[] = { NULL }; void usage_exit(void) { int i; const int num_encoder = get_aom_encoder_count(); fprintf(stderr, "Usage: %s -o dst_filename src_filename \n", exec_name); fprintf(stderr, "\nOptions:\n"); arg_show_usage(stderr, main_args); fprintf(stderr, "\nEncoder Global Options:\n"); arg_show_usage(stderr, global_args); fprintf(stderr, "\nRate Control Options:\n"); arg_show_usage(stderr, rc_args); fprintf(stderr, "\nTwopass Rate Control Options:\n"); arg_show_usage(stderr, rc_twopass_args); fprintf(stderr, "\nKeyframe Placement Options:\n"); arg_show_usage(stderr, kf_args); #if CONFIG_AV1_ENCODER fprintf(stderr, "\nAV1 Specific Options:\n"); arg_show_usage(stderr, av1_args); #endif fprintf(stderr, "\nStream timebase (--timebase):\n" " The desired precision of timestamps in the output, expressed\n" " in fractional seconds. Default is 1/1000.\n"); fprintf(stderr, "\nIncluded encoders:\n\n"); for (i = 0; i < num_encoder; ++i) { const AvxInterface *const encoder = get_aom_encoder_by_index(i); const char *defstr = (i == (num_encoder - 1)) ? "(default)" : ""; fprintf(stderr, " %-6s - %s %s\n", encoder->name, aom_codec_iface_name(encoder->codec_interface()), defstr); } fprintf(stderr, "\n "); fprintf(stderr, "Use --codec to switch to a non-default encoder.\n\n"); exit(EXIT_FAILURE); } #define mmin(a, b) ((a) < (b) ? (a) : (b)) #if CONFIG_AOM_HIGHBITDEPTH static void find_mismatch_high(const aom_image_t *const img1, const aom_image_t *const img2, int yloc[4], int uloc[4], int vloc[4]) { uint16_t *plane1, *plane2; uint32_t stride1, stride2; const uint32_t bsize = 64; const uint32_t bsizey = bsize >> img1->y_chroma_shift; const uint32_t bsizex = bsize >> img1->x_chroma_shift; const uint32_t c_w = (img1->d_w + img1->x_chroma_shift) >> img1->x_chroma_shift; const uint32_t c_h = (img1->d_h + img1->y_chroma_shift) >> img1->y_chroma_shift; int match = 1; uint32_t i, j; yloc[0] = yloc[1] = yloc[2] = yloc[3] = -1; plane1 = (uint16_t *)img1->planes[AOM_PLANE_Y]; plane2 = (uint16_t *)img2->planes[AOM_PLANE_Y]; stride1 = img1->stride[AOM_PLANE_Y] / 2; stride2 = img2->stride[AOM_PLANE_Y] / 2; for (i = 0, match = 1; match && i < img1->d_h; i += bsize) { for (j = 0; match && j < img1->d_w; j += bsize) { int k, l; const int si = mmin(i + bsize, img1->d_h) - i; const int sj = mmin(j + bsize, img1->d_w) - j; for (k = 0; match && k < si; ++k) { for (l = 0; match && l < sj; ++l) { if (*(plane1 + (i + k) * stride1 + j + l) != *(plane2 + (i + k) * stride2 + j + l)) { yloc[0] = i + k; yloc[1] = j + l; yloc[2] = *(plane1 + (i + k) * stride1 + j + l); yloc[3] = *(plane2 + (i + k) * stride2 + j + l); match = 0; break; } } } } } uloc[0] = uloc[1] = uloc[2] = uloc[3] = -1; plane1 = (uint16_t *)img1->planes[AOM_PLANE_U]; plane2 = (uint16_t *)img2->planes[AOM_PLANE_U]; stride1 = img1->stride[AOM_PLANE_U] / 2; stride2 = img2->stride[AOM_PLANE_U] / 2; for (i = 0, match = 1; match && i < c_h; i += bsizey) { for (j = 0; match && j < c_w; j += bsizex) { int k, l; const int si = mmin(i + bsizey, c_h - i); const int sj = mmin(j + bsizex, c_w - j); for (k = 0; match && k < si; ++k) { for (l = 0; match && l < sj; ++l) { if (*(plane1 + (i + k) * stride1 + j + l) != *(plane2 + (i + k) * stride2 + j + l)) { uloc[0] = i + k; uloc[1] = j + l; uloc[2] = *(plane1 + (i + k) * stride1 + j + l); uloc[3] = *(plane2 + (i + k) * stride2 + j + l); match = 0; break; } } } } } vloc[0] = vloc[1] = vloc[2] = vloc[3] = -1; plane1 = (uint16_t *)img1->planes[AOM_PLANE_V]; plane2 = (uint16_t *)img2->planes[AOM_PLANE_V]; stride1 = img1->stride[AOM_PLANE_V] / 2; stride2 = img2->stride[AOM_PLANE_V] / 2; for (i = 0, match = 1; match && i < c_h; i += bsizey) { for (j = 0; match && j < c_w; j += bsizex) { int k, l; const int si = mmin(i + bsizey, c_h - i); const int sj = mmin(j + bsizex, c_w - j); for (k = 0; match && k < si; ++k) { for (l = 0; match && l < sj; ++l) { if (*(plane1 + (i + k) * stride1 + j + l) != *(plane2 + (i + k) * stride2 + j + l)) { vloc[0] = i + k; vloc[1] = j + l; vloc[2] = *(plane1 + (i + k) * stride1 + j + l); vloc[3] = *(plane2 + (i + k) * stride2 + j + l); match = 0; break; } } } } } } #endif static void find_mismatch(const aom_image_t *const img1, const aom_image_t *const img2, int yloc[4], int uloc[4], int vloc[4]) { const uint32_t bsize = 64; const uint32_t bsizey = bsize >> img1->y_chroma_shift; const uint32_t bsizex = bsize >> img1->x_chroma_shift; const uint32_t c_w = (img1->d_w + img1->x_chroma_shift) >> img1->x_chroma_shift; const uint32_t c_h = (img1->d_h + img1->y_chroma_shift) >> img1->y_chroma_shift; int match = 1; uint32_t i, j; yloc[0] = yloc[1] = yloc[2] = yloc[3] = -1; for (i = 0, match = 1; match && i < img1->d_h; i += bsize) { for (j = 0; match && j < img1->d_w; j += bsize) { int k, l; const int si = mmin(i + bsize, img1->d_h) - i; const int sj = mmin(j + bsize, img1->d_w) - j; for (k = 0; match && k < si; ++k) { for (l = 0; match && l < sj; ++l) { if (*(img1->planes[AOM_PLANE_Y] + (i + k) * img1->stride[AOM_PLANE_Y] + j + l) != *(img2->planes[AOM_PLANE_Y] + (i + k) * img2->stride[AOM_PLANE_Y] + j + l)) { yloc[0] = i + k; yloc[1] = j + l; yloc[2] = *(img1->planes[AOM_PLANE_Y] + (i + k) * img1->stride[AOM_PLANE_Y] + j + l); yloc[3] = *(img2->planes[AOM_PLANE_Y] + (i + k) * img2->stride[AOM_PLANE_Y] + j + l); match = 0; break; } } } } } uloc[0] = uloc[1] = uloc[2] = uloc[3] = -1; for (i = 0, match = 1; match && i < c_h; i += bsizey) { for (j = 0; match && j < c_w; j += bsizex) { int k, l; const int si = mmin(i + bsizey, c_h - i); const int sj = mmin(j + bsizex, c_w - j); for (k = 0; match && k < si; ++k) { for (l = 0; match && l < sj; ++l) { if (*(img1->planes[AOM_PLANE_U] + (i + k) * img1->stride[AOM_PLANE_U] + j + l) != *(img2->planes[AOM_PLANE_U] + (i + k) * img2->stride[AOM_PLANE_U] + j + l)) { uloc[0] = i + k; uloc[1] = j + l; uloc[2] = *(img1->planes[AOM_PLANE_U] + (i + k) * img1->stride[AOM_PLANE_U] + j + l); uloc[3] = *(img2->planes[AOM_PLANE_U] + (i + k) * img2->stride[AOM_PLANE_U] + j + l); match = 0; break; } } } } } vloc[0] = vloc[1] = vloc[2] = vloc[3] = -1; for (i = 0, match = 1; match && i < c_h; i += bsizey) { for (j = 0; match && j < c_w; j += bsizex) { int k, l; const int si = mmin(i + bsizey, c_h - i); const int sj = mmin(j + bsizex, c_w - j); for (k = 0; match && k < si; ++k) { for (l = 0; match && l < sj; ++l) { if (*(img1->planes[AOM_PLANE_V] + (i + k) * img1->stride[AOM_PLANE_V] + j + l) != *(img2->planes[AOM_PLANE_V] + (i + k) * img2->stride[AOM_PLANE_V] + j + l)) { vloc[0] = i + k; vloc[1] = j + l; vloc[2] = *(img1->planes[AOM_PLANE_V] + (i + k) * img1->stride[AOM_PLANE_V] + j + l); vloc[3] = *(img2->planes[AOM_PLANE_V] + (i + k) * img2->stride[AOM_PLANE_V] + j + l); match = 0; break; } } } } } } static int compare_img(const aom_image_t *const img1, const aom_image_t *const img2) { uint32_t l_w = img1->d_w; uint32_t c_w = (img1->d_w + img1->x_chroma_shift) >> img1->x_chroma_shift; const uint32_t c_h = (img1->d_h + img1->y_chroma_shift) >> img1->y_chroma_shift; uint32_t i; int match = 1; match &= (img1->fmt == img2->fmt); match &= (img1->d_w == img2->d_w); match &= (img1->d_h == img2->d_h); #if CONFIG_AOM_HIGHBITDEPTH if (img1->fmt & AOM_IMG_FMT_HIGHBITDEPTH) { l_w *= 2; c_w *= 2; } #endif for (i = 0; i < img1->d_h; ++i) match &= (memcmp(img1->planes[AOM_PLANE_Y] + i * img1->stride[AOM_PLANE_Y], img2->planes[AOM_PLANE_Y] + i * img2->stride[AOM_PLANE_Y], l_w) == 0); for (i = 0; i < c_h; ++i) match &= (memcmp(img1->planes[AOM_PLANE_U] + i * img1->stride[AOM_PLANE_U], img2->planes[AOM_PLANE_U] + i * img2->stride[AOM_PLANE_U], c_w) == 0); for (i = 0; i < c_h; ++i) match &= (memcmp(img1->planes[AOM_PLANE_V] + i * img1->stride[AOM_PLANE_V], img2->planes[AOM_PLANE_V] + i * img2->stride[AOM_PLANE_V], c_w) == 0); return match; } #define NELEMENTS(x) (sizeof(x) / sizeof(x[0])) #if CONFIG_AV1_ENCODER #define ARG_CTRL_CNT_MAX NELEMENTS(av1_arg_ctrl_map) #endif #if !CONFIG_WEBM_IO typedef int stereo_format_t; struct WebmOutputContext { int debug; }; #endif /* Per-stream configuration */ struct stream_config { struct aom_codec_enc_cfg cfg; const char *out_fn; const char *stats_fn; #if CONFIG_FP_MB_STATS const char *fpmb_stats_fn; #endif stereo_format_t stereo_fmt; int arg_ctrls[ARG_CTRL_CNT_MAX][2]; int arg_ctrl_cnt; int write_webm; #if CONFIG_AOM_HIGHBITDEPTH // whether to use 16bit internal buffers int use_16bit_internal; #endif }; struct stream_state { int index; struct stream_state *next; struct stream_config config; FILE *file; struct rate_hist *rate_hist; struct WebmOutputContext webm_ctx; uint64_t psnr_sse_total; uint64_t psnr_samples_total; double psnr_totals[4]; int psnr_count; int counts[64]; aom_codec_ctx_t encoder; unsigned int frames_out; uint64_t cx_time; size_t nbytes; stats_io_t stats; #if CONFIG_FP_MB_STATS stats_io_t fpmb_stats; #endif struct aom_image *img; aom_codec_ctx_t decoder; int mismatch_seen; }; static void validate_positive_rational(const char *msg, struct aom_rational *rat) { if (rat->den < 0) { rat->num *= -1; rat->den *= -1; } if (rat->num < 0) die("Error: %s must be positive\n", msg); if (!rat->den) die("Error: %s has zero denominator\n", msg); } static void parse_global_config(struct AvxEncoderConfig *global, char **argv) { char **argi, **argj; struct arg arg; const int num_encoder = get_aom_encoder_count(); if (num_encoder < 1) die("Error: no valid encoder available\n"); /* Initialize default parameters */ memset(global, 0, sizeof(*global)); global->codec = get_aom_encoder_by_index(num_encoder - 1); global->passes = 0; global->color_type = I420; /* Assign default deadline to good quality */ global->deadline = AOM_DL_GOOD_QUALITY; for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) { arg.argv_step = 1; if (arg_match(&arg, &codecarg, argi)) { global->codec = get_aom_encoder_by_name(arg.val); if (!global->codec) die("Error: Unrecognized argument (%s) to --codec\n", arg.val); } else if (arg_match(&arg, &passes, argi)) { global->passes = arg_parse_uint(&arg); if (global->passes < 1 || global->passes > 2) die("Error: Invalid number of passes (%d)\n", global->passes); } else if (arg_match(&arg, &pass_arg, argi)) { global->pass = arg_parse_uint(&arg); if (global->pass < 1 || global->pass > 2) die("Error: Invalid pass selected (%d)\n", global->pass); } else if (arg_match(&arg, &usage, argi)) global->usage = arg_parse_uint(&arg); else if (arg_match(&arg, &deadline, argi)) global->deadline = arg_parse_uint(&arg); else if (arg_match(&arg, &best_dl, argi)) global->deadline = AOM_DL_BEST_QUALITY; else if (arg_match(&arg, &good_dl, argi)) global->deadline = AOM_DL_GOOD_QUALITY; else if (arg_match(&arg, &rt_dl, argi)) global->deadline = AOM_DL_REALTIME; else if (arg_match(&arg, &use_yv12, argi)) global->color_type = YV12; else if (arg_match(&arg, &use_i420, argi)) global->color_type = I420; else if (arg_match(&arg, &use_i422, argi)) global->color_type = I422; else if (arg_match(&arg, &use_i444, argi)) global->color_type = I444; else if (arg_match(&arg, &use_i440, argi)) global->color_type = I440; else if (arg_match(&arg, &quietarg, argi)) global->quiet = 1; else if (arg_match(&arg, &verbosearg, argi)) global->verbose = 1; else if (arg_match(&arg, &limit, argi)) global->limit = arg_parse_uint(&arg); else if (arg_match(&arg, &skip, argi)) global->skip_frames = arg_parse_uint(&arg); else if (arg_match(&arg, &psnrarg, argi)) global->show_psnr = 1; else if (arg_match(&arg, &recontest, argi)) global->test_decode = arg_parse_enum_or_int(&arg); else if (arg_match(&arg, &framerate, argi)) { global->framerate = arg_parse_rational(&arg); validate_positive_rational(arg.name, &global->framerate); global->have_framerate = 1; } else if (arg_match(&arg, &out_part, argi)) global->out_part = 1; else if (arg_match(&arg, &debugmode, argi)) global->debug = 1; else if (arg_match(&arg, &q_hist_n, argi)) global->show_q_hist_buckets = arg_parse_uint(&arg); else if (arg_match(&arg, &rate_hist_n, argi)) global->show_rate_hist_buckets = arg_parse_uint(&arg); else if (arg_match(&arg, &disable_warnings, argi)) global->disable_warnings = 1; else if (arg_match(&arg, &disable_warning_prompt, argi)) global->disable_warning_prompt = 1; else argj++; } if (global->pass) { /* DWIM: Assume the user meant passes=2 if pass=2 is specified */ if (global->pass > global->passes) { warn("Assuming --pass=%d implies --passes=%d\n", global->pass, global->pass); global->passes = global->pass; } } /* Validate global config */ if (global->passes == 0) { #if CONFIG_AV1_ENCODER // Make default AV1 passes = 2 until there is a better quality 1-pass // encoder if (global->codec != NULL && global->codec->name != NULL) global->passes = (strcmp(global->codec->name, "av1") == 0 && global->deadline != AOM_DL_REALTIME) ? 2 : 1; #else global->passes = 1; #endif } if (global->deadline == AOM_DL_REALTIME && global->passes > 1) { warn("Enforcing one-pass encoding in realtime mode\n"); global->passes = 1; } } static void open_input_file(struct AvxInputContext *input) { /* Parse certain options from the input file, if possible */ input->file = strcmp(input->filename, "-") ? fopen(input->filename, "rb") : set_binary_mode(stdin); if (!input->file) fatal("Failed to open input file"); if (!fseeko(input->file, 0, SEEK_END)) { /* Input file is seekable. Figure out how long it is, so we can get * progress info. */ input->length = ftello(input->file); rewind(input->file); } /* Default to 1:1 pixel aspect ratio. */ input->pixel_aspect_ratio.numerator = 1; input->pixel_aspect_ratio.denominator = 1; /* For RAW input sources, these bytes will applied on the first frame * in read_frame(). */ input->detect.buf_read = fread(input->detect.buf, 1, 4, input->file); input->detect.position = 0; if (input->detect.buf_read == 4 && file_is_y4m(input->detect.buf)) { if (y4m_input_open(&input->y4m, input->file, input->detect.buf, 4, input->only_i420) >= 0) { input->file_type = FILE_TYPE_Y4M; input->width = input->y4m.pic_w; input->height = input->y4m.pic_h; input->pixel_aspect_ratio.numerator = input->y4m.par_n; input->pixel_aspect_ratio.denominator = input->y4m.par_d; input->framerate.numerator = input->y4m.fps_n; input->framerate.denominator = input->y4m.fps_d; input->fmt = input->y4m.aom_fmt; input->bit_depth = input->y4m.bit_depth; } else fatal("Unsupported Y4M stream."); } else if (input->detect.buf_read == 4 && fourcc_is_ivf(input->detect.buf)) { fatal("IVF is not supported as input."); } else { input->file_type = FILE_TYPE_RAW; } } static void close_input_file(struct AvxInputContext *input) { fclose(input->file); if (input->file_type == FILE_TYPE_Y4M) y4m_input_close(&input->y4m); } static struct stream_state *new_stream(struct AvxEncoderConfig *global, struct stream_state *prev) { struct stream_state *stream; stream = calloc(1, sizeof(*stream)); if (stream == NULL) { fatal("Failed to allocate new stream."); } if (prev) { memcpy(stream, prev, sizeof(*stream)); stream->index++; prev->next = stream; } else { aom_codec_err_t res; /* Populate encoder configuration */ res = aom_codec_enc_config_default(global->codec->codec_interface(), &stream->config.cfg, global->usage); if (res) fatal("Failed to get config: %s\n", aom_codec_err_to_string(res)); /* Change the default timebase to a high enough value so that the * encoder will always create strictly increasing timestamps. */ stream->config.cfg.g_timebase.den = 1000; /* Never use the library's default resolution, require it be parsed * from the file or set on the command line. */ stream->config.cfg.g_w = 0; stream->config.cfg.g_h = 0; /* Initialize remaining stream parameters */ stream->config.write_webm = 1; #if CONFIG_WEBM_IO stream->config.stereo_fmt = STEREO_FORMAT_MONO; stream->webm_ctx.last_pts_ns = -1; stream->webm_ctx.writer = NULL; stream->webm_ctx.segment = NULL; #endif /* Allows removal of the application version from the EBML tags */ stream->webm_ctx.debug = global->debug; /* Default lag_in_frames is 0 in realtime mode */ if (global->deadline == AOM_DL_REALTIME) stream->config.cfg.g_lag_in_frames = 0; } /* Output files must be specified for each stream */ stream->config.out_fn = NULL; stream->next = NULL; return stream; } static int parse_stream_params(struct AvxEncoderConfig *global, struct stream_state *stream, char **argv) { char **argi, **argj; struct arg arg; static const arg_def_t **ctrl_args = no_args; static const int *ctrl_args_map = NULL; struct stream_config *config = &stream->config; int eos_mark_found = 0; #if CONFIG_AOM_HIGHBITDEPTH int test_16bit_internal = 0; #endif // Handle codec specific options if (0) { #if CONFIG_AV1_ENCODER } else if (strcmp(global->codec->name, "av1") == 0) { // TODO(jingning): Reuse AV1 specific encoder configuration parameters. // Consider to expand this set for AV1 encoder control. ctrl_args = av1_args; ctrl_args_map = av1_arg_ctrl_map; #endif } for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) { arg.argv_step = 1; /* Once we've found an end-of-stream marker (--) we want to continue * shifting arguments but not consuming them. */ if (eos_mark_found) { argj++; continue; } else if (!strcmp(*argj, "--")) { eos_mark_found = 1; continue; } if (arg_match(&arg, &outputfile, argi)) { config->out_fn = arg.val; } else if (arg_match(&arg, &fpf_name, argi)) { config->stats_fn = arg.val; #if CONFIG_FP_MB_STATS } else if (arg_match(&arg, &fpmbf_name, argi)) { config->fpmb_stats_fn = arg.val; #endif } else if (arg_match(&arg, &use_webm, argi)) { #if CONFIG_WEBM_IO config->write_webm = 1; #else die("Error: --webm specified but webm is disabled."); #endif } else if (arg_match(&arg, &use_ivf, argi)) { config->write_webm = 0; } else if (arg_match(&arg, &threads, argi)) { config->cfg.g_threads = arg_parse_uint(&arg); } else if (arg_match(&arg, &profile, argi)) { config->cfg.g_profile = arg_parse_uint(&arg); } else if (arg_match(&arg, &width, argi)) { config->cfg.g_w = arg_parse_uint(&arg); } else if (arg_match(&arg, &height, argi)) { config->cfg.g_h = arg_parse_uint(&arg); #if CONFIG_AOM_HIGHBITDEPTH } else if (arg_match(&arg, &bitdeptharg, argi)) { config->cfg.g_bit_depth = arg_parse_enum_or_int(&arg); } else if (arg_match(&arg, &inbitdeptharg, argi)) { config->cfg.g_input_bit_depth = arg_parse_uint(&arg); #endif #if CONFIG_WEBM_IO } else if (arg_match(&arg, &stereo_mode, argi)) { config->stereo_fmt = arg_parse_enum_or_int(&arg); #endif } else if (arg_match(&arg, &timebase, argi)) { config->cfg.g_timebase = arg_parse_rational(&arg); validate_positive_rational(arg.name, &config->cfg.g_timebase); } else if (arg_match(&arg, &error_resilient, argi)) { config->cfg.g_error_resilient = arg_parse_uint(&arg); } else if (arg_match(&arg, &lag_in_frames, argi)) { config->cfg.g_lag_in_frames = arg_parse_uint(&arg); if (global->deadline == AOM_DL_REALTIME && config->cfg.g_lag_in_frames != 0) { warn("non-zero %s option ignored in realtime mode.\n", arg.name); config->cfg.g_lag_in_frames = 0; } } else if (arg_match(&arg, &dropframe_thresh, argi)) { config->cfg.rc_dropframe_thresh = arg_parse_uint(&arg); } else if (arg_match(&arg, &resize_allowed, argi)) { config->cfg.rc_resize_allowed = arg_parse_uint(&arg); } else if (arg_match(&arg, &resize_width, argi)) { config->cfg.rc_scaled_width = arg_parse_uint(&arg); } else if (arg_match(&arg, &resize_height, argi)) { config->cfg.rc_scaled_height = arg_parse_uint(&arg); } else if (arg_match(&arg, &resize_up_thresh, argi)) { config->cfg.rc_resize_up_thresh = arg_parse_uint(&arg); } else if (arg_match(&arg, &resize_down_thresh, argi)) { config->cfg.rc_resize_down_thresh = arg_parse_uint(&arg); } else if (arg_match(&arg, &end_usage, argi)) { config->cfg.rc_end_usage = arg_parse_enum_or_int(&arg); } else if (arg_match(&arg, &target_bitrate, argi)) { config->cfg.rc_target_bitrate = arg_parse_uint(&arg); } else if (arg_match(&arg, &min_quantizer, argi)) { config->cfg.rc_min_quantizer = arg_parse_uint(&arg); } else if (arg_match(&arg, &max_quantizer, argi)) { config->cfg.rc_max_quantizer = arg_parse_uint(&arg); } else if (arg_match(&arg, &undershoot_pct, argi)) { config->cfg.rc_undershoot_pct = arg_parse_uint(&arg); } else if (arg_match(&arg, &overshoot_pct, argi)) { config->cfg.rc_overshoot_pct = arg_parse_uint(&arg); } else if (arg_match(&arg, &buf_sz, argi)) { config->cfg.rc_buf_sz = arg_parse_uint(&arg); } else if (arg_match(&arg, &buf_initial_sz, argi)) { config->cfg.rc_buf_initial_sz = arg_parse_uint(&arg); } else if (arg_match(&arg, &buf_optimal_sz, argi)) { config->cfg.rc_buf_optimal_sz = arg_parse_uint(&arg); } else if (arg_match(&arg, &bias_pct, argi)) { config->cfg.rc_2pass_vbr_bias_pct = arg_parse_uint(&arg); if (global->passes < 2) warn("option %s ignored in one-pass mode.\n", arg.name); } else if (arg_match(&arg, &minsection_pct, argi)) { config->cfg.rc_2pass_vbr_minsection_pct = arg_parse_uint(&arg); if (global->passes < 2) warn("option %s ignored in one-pass mode.\n", arg.name); } else if (arg_match(&arg, &maxsection_pct, argi)) { config->cfg.rc_2pass_vbr_maxsection_pct = arg_parse_uint(&arg); if (global->passes < 2) warn("option %s ignored in one-pass mode.\n", arg.name); } else if (arg_match(&arg, &kf_min_dist, argi)) { config->cfg.kf_min_dist = arg_parse_uint(&arg); } else if (arg_match(&arg, &kf_max_dist, argi)) { config->cfg.kf_max_dist = arg_parse_uint(&arg); } else if (arg_match(&arg, &kf_disabled, argi)) { config->cfg.kf_mode = AOM_KF_DISABLED; #if CONFIG_AOM_HIGHBITDEPTH } else if (arg_match(&arg, &test16bitinternalarg, argi)) { if (strcmp(global->codec->name, "av1") == 0 || strcmp(global->codec->name, "av1") == 0) { test_16bit_internal = 1; } #endif } else { int i, match = 0; for (i = 0; ctrl_args[i]; i++) { if (arg_match(&arg, ctrl_args[i], argi)) { int j; match = 1; /* Point either to the next free element or the first * instance of this control. */ for (j = 0; j < config->arg_ctrl_cnt; j++) if (ctrl_args_map != NULL && config->arg_ctrls[j][0] == ctrl_args_map[i]) break; /* Update/insert */ assert(j < (int)ARG_CTRL_CNT_MAX); if (ctrl_args_map != NULL && j < (int)ARG_CTRL_CNT_MAX) { config->arg_ctrls[j][0] = ctrl_args_map[i]; config->arg_ctrls[j][1] = arg_parse_enum_or_int(&arg); if (j == config->arg_ctrl_cnt) config->arg_ctrl_cnt++; } } } if (!match) argj++; } } #if CONFIG_AOM_HIGHBITDEPTH if (strcmp(global->codec->name, "av1") == 0 || strcmp(global->codec->name, "av1") == 0) { config->use_16bit_internal = test_16bit_internal | (config->cfg.g_profile > 1); } #endif return eos_mark_found; } #define FOREACH_STREAM(func) \ do { \ struct stream_state *stream; \ for (stream = streams; stream; stream = stream->next) { \ func; \ } \ } while (0) static void validate_stream_config(const struct stream_state *stream, const struct AvxEncoderConfig *global) { const struct stream_state *streami; (void)global; if (!stream->config.cfg.g_w || !stream->config.cfg.g_h) fatal( "Stream %d: Specify stream dimensions with --width (-w) " " and --height (-h)", stream->index); // Check that the codec bit depth is greater than the input bit depth. if (stream->config.cfg.g_input_bit_depth > (unsigned int)stream->config.cfg.g_bit_depth) { fatal("Stream %d: codec bit depth (%d) less than input bit depth (%d)", stream->index, (int)stream->config.cfg.g_bit_depth, stream->config.cfg.g_input_bit_depth); } for (streami = stream; streami; streami = streami->next) { /* All streams require output files */ if (!streami->config.out_fn) fatal("Stream %d: Output file is required (specify with -o)", streami->index); /* Check for two streams outputting to the same file */ if (streami != stream) { const char *a = stream->config.out_fn; const char *b = streami->config.out_fn; if (!strcmp(a, b) && strcmp(a, "/dev/null") && strcmp(a, ":nul")) fatal("Stream %d: duplicate output file (from stream %d)", streami->index, stream->index); } /* Check for two streams sharing a stats file. */ if (streami != stream) { const char *a = stream->config.stats_fn; const char *b = streami->config.stats_fn; if (a && b && !strcmp(a, b)) fatal("Stream %d: duplicate stats file (from stream %d)", streami->index, stream->index); } #if CONFIG_FP_MB_STATS /* Check for two streams sharing a mb stats file. */ if (streami != stream) { const char *a = stream->config.fpmb_stats_fn; const char *b = streami->config.fpmb_stats_fn; if (a && b && !strcmp(a, b)) fatal("Stream %d: duplicate mb stats file (from stream %d)", streami->index, stream->index); } #endif } } static void set_stream_dimensions(struct stream_state *stream, unsigned int w, unsigned int h) { if (!stream->config.cfg.g_w) { if (!stream->config.cfg.g_h) stream->config.cfg.g_w = w; else stream->config.cfg.g_w = w * stream->config.cfg.g_h / h; } if (!stream->config.cfg.g_h) { stream->config.cfg.g_h = h * stream->config.cfg.g_w / w; } } static const char *file_type_to_string(enum VideoFileType t) { switch (t) { case FILE_TYPE_RAW: return "RAW"; case FILE_TYPE_Y4M: return "Y4M"; default: return "Other"; } } static const char *image_format_to_string(aom_img_fmt_t f) { switch (f) { case AOM_IMG_FMT_I420: return "I420"; case AOM_IMG_FMT_I422: return "I422"; case AOM_IMG_FMT_I444: return "I444"; case AOM_IMG_FMT_I440: return "I440"; case AOM_IMG_FMT_YV12: return "YV12"; case AOM_IMG_FMT_I42016: return "I42016"; case AOM_IMG_FMT_I42216: return "I42216"; case AOM_IMG_FMT_I44416: return "I44416"; case AOM_IMG_FMT_I44016: return "I44016"; default: return "Other"; } } static void show_stream_config(struct stream_state *stream, struct AvxEncoderConfig *global, struct AvxInputContext *input) { #define SHOW(field) \ fprintf(stderr, " %-28s = %d\n", #field, stream->config.cfg.field) if (stream->index == 0) { fprintf(stderr, "Codec: %s\n", aom_codec_iface_name(global->codec->codec_interface())); fprintf(stderr, "Source file: %s File Type: %s Format: %s\n", input->filename, file_type_to_string(input->file_type), image_format_to_string(input->fmt)); } if (stream->next || stream->index) fprintf(stderr, "\nStream Index: %d\n", stream->index); fprintf(stderr, "Destination file: %s\n", stream->config.out_fn); fprintf(stderr, "Encoder parameters:\n"); SHOW(g_usage); SHOW(g_threads); SHOW(g_profile); SHOW(g_w); SHOW(g_h); SHOW(g_bit_depth); SHOW(g_input_bit_depth); SHOW(g_timebase.num); SHOW(g_timebase.den); SHOW(g_error_resilient); SHOW(g_pass); SHOW(g_lag_in_frames); SHOW(rc_dropframe_thresh); SHOW(rc_resize_allowed); SHOW(rc_scaled_width); SHOW(rc_scaled_height); SHOW(rc_resize_up_thresh); SHOW(rc_resize_down_thresh); SHOW(rc_end_usage); SHOW(rc_target_bitrate); SHOW(rc_min_quantizer); SHOW(rc_max_quantizer); SHOW(rc_undershoot_pct); SHOW(rc_overshoot_pct); SHOW(rc_buf_sz); SHOW(rc_buf_initial_sz); SHOW(rc_buf_optimal_sz); SHOW(rc_2pass_vbr_bias_pct); SHOW(rc_2pass_vbr_minsection_pct); SHOW(rc_2pass_vbr_maxsection_pct); SHOW(kf_mode); SHOW(kf_min_dist); SHOW(kf_max_dist); } static void open_output_file(struct stream_state *stream, struct AvxEncoderConfig *global, const struct AvxRational *pixel_aspect_ratio) { const char *fn = stream->config.out_fn; const struct aom_codec_enc_cfg *const cfg = &stream->config.cfg; if (cfg->g_pass == AOM_RC_FIRST_PASS) return; stream->file = strcmp(fn, "-") ? fopen(fn, "wb") : set_binary_mode(stdout); if (!stream->file) fatal("Failed to open output file"); if (stream->config.write_webm && fseek(stream->file, 0, SEEK_CUR)) fatal("WebM output to pipes not supported."); #if CONFIG_WEBM_IO if (stream->config.write_webm) { stream->webm_ctx.stream = stream->file; write_webm_file_header(&stream->webm_ctx, cfg, stream->config.stereo_fmt, global->codec->fourcc, pixel_aspect_ratio); } #else (void)pixel_aspect_ratio; #endif if (!stream->config.write_webm) { ivf_write_file_header(stream->file, cfg, global->codec->fourcc, 0); } } static void close_output_file(struct stream_state *stream, unsigned int fourcc) { const struct aom_codec_enc_cfg *const cfg = &stream->config.cfg; if (cfg->g_pass == AOM_RC_FIRST_PASS) return; #if CONFIG_WEBM_IO if (stream->config.write_webm) { write_webm_file_footer(&stream->webm_ctx); } #endif if (!stream->config.write_webm) { if (!fseek(stream->file, 0, SEEK_SET)) ivf_write_file_header(stream->file, &stream->config.cfg, fourcc, stream->frames_out); } fclose(stream->file); } static void setup_pass(struct stream_state *stream, struct AvxEncoderConfig *global, int pass) { if (stream->config.stats_fn) { if (!stats_open_file(&stream->stats, stream->config.stats_fn, pass)) fatal("Failed to open statistics store"); } else { if (!stats_open_mem(&stream->stats, pass)) fatal("Failed to open statistics store"); } #if CONFIG_FP_MB_STATS if (stream->config.fpmb_stats_fn) { if (!stats_open_file(&stream->fpmb_stats, stream->config.fpmb_stats_fn, pass)) fatal("Failed to open mb statistics store"); } else { if (!stats_open_mem(&stream->fpmb_stats, pass)) fatal("Failed to open mb statistics store"); } #endif stream->config.cfg.g_pass = global->passes == 2 ? pass ? AOM_RC_LAST_PASS : AOM_RC_FIRST_PASS : AOM_RC_ONE_PASS; if (pass) { stream->config.cfg.rc_twopass_stats_in = stats_get(&stream->stats); #if CONFIG_FP_MB_STATS stream->config.cfg.rc_firstpass_mb_stats_in = stats_get(&stream->fpmb_stats); #endif } stream->cx_time = 0; stream->nbytes = 0; stream->frames_out = 0; } static void initialize_encoder(struct stream_state *stream, struct AvxEncoderConfig *global) { int i; int flags = 0; flags |= global->show_psnr ? AOM_CODEC_USE_PSNR : 0; flags |= global->out_part ? AOM_CODEC_USE_OUTPUT_PARTITION : 0; #if CONFIG_AOM_HIGHBITDEPTH flags |= stream->config.use_16bit_internal ? AOM_CODEC_USE_HIGHBITDEPTH : 0; #endif /* Construct Encoder Context */ aom_codec_enc_init(&stream->encoder, global->codec->codec_interface(), &stream->config.cfg, flags); ctx_exit_on_error(&stream->encoder, "Failed to initialize encoder"); /* Note that we bypass the aom_codec_control wrapper macro because * we're being clever to store the control IDs in an array. Real * applications will want to make use of the enumerations directly */ for (i = 0; i < stream->config.arg_ctrl_cnt; i++) { int ctrl = stream->config.arg_ctrls[i][0]; int value = stream->config.arg_ctrls[i][1]; if (aom_codec_control_(&stream->encoder, ctrl, value)) fprintf(stderr, "Error: Tried to set control %d = %d\n", ctrl, value); ctx_exit_on_error(&stream->encoder, "Failed to control codec"); } #if CONFIG_DECODERS if (global->test_decode != TEST_DECODE_OFF) { const AvxInterface *decoder = get_aom_decoder_by_name(global->codec->name); aom_codec_dec_cfg_t cfg = { 0, 0, 0 }; aom_codec_dec_init(&stream->decoder, decoder->codec_interface(), &cfg, 0); #if CONFIG_AV1_DECODER && CONFIG_EXT_TILE if (strcmp(global->codec->name, "av1") == 0) { aom_codec_control(&stream->decoder, AV1_SET_DECODE_TILE_ROW, -1); ctx_exit_on_error(&stream->decoder, "Failed to set decode_tile_row"); aom_codec_control(&stream->decoder, AV1_SET_DECODE_TILE_COL, -1); ctx_exit_on_error(&stream->decoder, "Failed to set decode_tile_col"); } #endif } #endif } static void encode_frame(struct stream_state *stream, struct AvxEncoderConfig *global, struct aom_image *img, unsigned int frames_in) { aom_codec_pts_t frame_start, next_frame_start; struct aom_codec_enc_cfg *cfg = &stream->config.cfg; struct aom_usec_timer timer; frame_start = (cfg->g_timebase.den * (int64_t)(frames_in - 1) * global->framerate.den) / cfg->g_timebase.num / global->framerate.num; next_frame_start = (cfg->g_timebase.den * (int64_t)(frames_in)*global->framerate.den) / cfg->g_timebase.num / global->framerate.num; /* Scale if necessary */ #if CONFIG_AOM_HIGHBITDEPTH if (img) { if ((img->fmt & AOM_IMG_FMT_HIGHBITDEPTH) && (img->d_w != cfg->g_w || img->d_h != cfg->g_h)) { if (img->fmt != AOM_IMG_FMT_I42016) { fprintf(stderr, "%s can only scale 4:2:0 inputs\n", exec_name); exit(EXIT_FAILURE); } #if CONFIG_LIBYUV if (!stream->img) { stream->img = aom_img_alloc(NULL, AOM_IMG_FMT_I42016, cfg->g_w, cfg->g_h, 16); } I420Scale_16( (uint16 *)img->planes[AOM_PLANE_Y], img->stride[AOM_PLANE_Y] / 2, (uint16 *)img->planes[AOM_PLANE_U], img->stride[AOM_PLANE_U] / 2, (uint16 *)img->planes[AOM_PLANE_V], img->stride[AOM_PLANE_V] / 2, img->d_w, img->d_h, (uint16 *)stream->img->planes[AOM_PLANE_Y], stream->img->stride[AOM_PLANE_Y] / 2, (uint16 *)stream->img->planes[AOM_PLANE_U], stream->img->stride[AOM_PLANE_U] / 2, (uint16 *)stream->img->planes[AOM_PLANE_V], stream->img->stride[AOM_PLANE_V] / 2, stream->img->d_w, stream->img->d_h, kFilterBox); img = stream->img; #else stream->encoder.err = 1; ctx_exit_on_error(&stream->encoder, "Stream %d: Failed to encode frame.\n" "Scaling disabled in this configuration. \n" "To enable, configure with --enable-libyuv\n", stream->index); #endif } } #endif if (img && (img->d_w != cfg->g_w || img->d_h != cfg->g_h)) { if (img->fmt != AOM_IMG_FMT_I420 && img->fmt != AOM_IMG_FMT_YV12) { fprintf(stderr, "%s can only scale 4:2:0 8bpp inputs\n", exec_name); exit(EXIT_FAILURE); } #if CONFIG_LIBYUV if (!stream->img) stream->img = aom_img_alloc(NULL, AOM_IMG_FMT_I420, cfg->g_w, cfg->g_h, 16); I420Scale( img->planes[AOM_PLANE_Y], img->stride[AOM_PLANE_Y], img->planes[AOM_PLANE_U], img->stride[AOM_PLANE_U], img->planes[AOM_PLANE_V], img->stride[AOM_PLANE_V], img->d_w, img->d_h, stream->img->planes[AOM_PLANE_Y], stream->img->stride[AOM_PLANE_Y], stream->img->planes[AOM_PLANE_U], stream->img->stride[AOM_PLANE_U], stream->img->planes[AOM_PLANE_V], stream->img->stride[AOM_PLANE_V], stream->img->d_w, stream->img->d_h, kFilterBox); img = stream->img; #else stream->encoder.err = 1; ctx_exit_on_error(&stream->encoder, "Stream %d: Failed to encode frame.\n" "Scaling disabled in this configuration. \n" "To enable, configure with --enable-libyuv\n", stream->index); #endif } aom_usec_timer_start(&timer); aom_codec_encode(&stream->encoder, img, frame_start, (unsigned long)(next_frame_start - frame_start), 0, global->deadline); aom_usec_timer_mark(&timer); stream->cx_time += aom_usec_timer_elapsed(&timer); ctx_exit_on_error(&stream->encoder, "Stream %d: Failed to encode frame", stream->index); } static void update_quantizer_histogram(struct stream_state *stream) { if (stream->config.cfg.g_pass != AOM_RC_FIRST_PASS) { int q; aom_codec_control(&stream->encoder, AOME_GET_LAST_QUANTIZER_64, &q); ctx_exit_on_error(&stream->encoder, "Failed to read quantizer"); stream->counts[q]++; } } static void get_cx_data(struct stream_state *stream, struct AvxEncoderConfig *global, int *got_data) { const aom_codec_cx_pkt_t *pkt; const struct aom_codec_enc_cfg *cfg = &stream->config.cfg; aom_codec_iter_t iter = NULL; *got_data = 0; while ((pkt = aom_codec_get_cx_data(&stream->encoder, &iter))) { static size_t fsize = 0; static FileOffset ivf_header_pos = 0; switch (pkt->kind) { case AOM_CODEC_CX_FRAME_PKT: if (!(pkt->data.frame.flags & AOM_FRAME_IS_FRAGMENT)) { stream->frames_out++; } if (!global->quiet) fprintf(stderr, " %6luF", (unsigned long)pkt->data.frame.sz); update_rate_histogram(stream->rate_hist, cfg, pkt); #if CONFIG_WEBM_IO if (stream->config.write_webm) { write_webm_block(&stream->webm_ctx, cfg, pkt); } #endif if (!stream->config.write_webm) { if (pkt->data.frame.partition_id <= 0) { ivf_header_pos = ftello(stream->file); fsize = pkt->data.frame.sz; ivf_write_frame_header(stream->file, pkt->data.frame.pts, fsize); } else { fsize += pkt->data.frame.sz; if (!(pkt->data.frame.flags & AOM_FRAME_IS_FRAGMENT)) { const FileOffset currpos = ftello(stream->file); fseeko(stream->file, ivf_header_pos, SEEK_SET); ivf_write_frame_size(stream->file, fsize); fseeko(stream->file, currpos, SEEK_SET); } } (void)fwrite(pkt->data.frame.buf, 1, pkt->data.frame.sz, stream->file); } stream->nbytes += pkt->data.raw.sz; *got_data = 1; #if CONFIG_DECODERS if (global->test_decode != TEST_DECODE_OFF && !stream->mismatch_seen) { aom_codec_decode(&stream->decoder, pkt->data.frame.buf, (unsigned int)pkt->data.frame.sz, NULL, 0); if (stream->decoder.err) { warn_or_exit_on_error(&stream->decoder, global->test_decode == TEST_DECODE_FATAL, "Failed to decode frame %d in stream %d", stream->frames_out + 1, stream->index); stream->mismatch_seen = stream->frames_out + 1; } } #endif break; case AOM_CODEC_STATS_PKT: stream->frames_out++; stats_write(&stream->stats, pkt->data.twopass_stats.buf, pkt->data.twopass_stats.sz); stream->nbytes += pkt->data.raw.sz; break; #if CONFIG_FP_MB_STATS case AOM_CODEC_FPMB_STATS_PKT: stats_write(&stream->fpmb_stats, pkt->data.firstpass_mb_stats.buf, pkt->data.firstpass_mb_stats.sz); stream->nbytes += pkt->data.raw.sz; break; #endif case AOM_CODEC_PSNR_PKT: if (global->show_psnr) { int i; stream->psnr_sse_total += pkt->data.psnr.sse[0]; stream->psnr_samples_total += pkt->data.psnr.samples[0]; for (i = 0; i < 4; i++) { if (!global->quiet) fprintf(stderr, "%.3f ", pkt->data.psnr.psnr[i]); stream->psnr_totals[i] += pkt->data.psnr.psnr[i]; } stream->psnr_count++; } break; default: break; } } } static void show_psnr(struct stream_state *stream, double peak) { int i; double ovpsnr; if (!stream->psnr_count) return; fprintf(stderr, "Stream %d PSNR (Overall/Avg/Y/U/V)", stream->index); ovpsnr = sse_to_psnr((double)stream->psnr_samples_total, peak, (double)stream->psnr_sse_total); fprintf(stderr, " %.3f", ovpsnr); for (i = 0; i < 4; i++) { fprintf(stderr, " %.3f", stream->psnr_totals[i] / stream->psnr_count); } fprintf(stderr, "\n"); } static float usec_to_fps(uint64_t usec, unsigned int frames) { return (float)(usec > 0 ? frames * 1000000.0 / (float)usec : 0); } static void test_decode(struct stream_state *stream, enum TestDecodeFatality fatal, const AvxInterface *codec) { aom_image_t enc_img, dec_img; if (stream->mismatch_seen) return; /* Get the internal reference frame */ if (strcmp(codec->name, "vp8") == 0) { struct aom_ref_frame ref_enc, ref_dec; const unsigned int frame_width = (stream->config.cfg.g_w + 15) & ~15; const unsigned int frame_height = (stream->config.cfg.g_h + 15) & ~15; aom_img_alloc(&ref_enc.img, AOM_IMG_FMT_I420, frame_width, frame_height, 1); enc_img = ref_enc.img; aom_img_alloc(&ref_dec.img, AOM_IMG_FMT_I420, frame_width, frame_height, 1); dec_img = ref_dec.img; ref_enc.frame_type = AOM_LAST_FRAME; ref_dec.frame_type = AOM_LAST_FRAME; aom_codec_control(&stream->encoder, AOM_COPY_REFERENCE, &ref_enc); aom_codec_control(&stream->decoder, AOM_COPY_REFERENCE, &ref_dec); } else { aom_codec_control(&stream->encoder, AV1_GET_NEW_FRAME_IMAGE, &enc_img); aom_codec_control(&stream->decoder, AV1_GET_NEW_FRAME_IMAGE, &dec_img); #if CONFIG_AOM_HIGHBITDEPTH if ((enc_img.fmt & AOM_IMG_FMT_HIGHBITDEPTH) != (dec_img.fmt & AOM_IMG_FMT_HIGHBITDEPTH)) { if (enc_img.fmt & AOM_IMG_FMT_HIGHBITDEPTH) { aom_image_t enc_hbd_img; aom_img_alloc(&enc_hbd_img, enc_img.fmt - AOM_IMG_FMT_HIGHBITDEPTH, enc_img.d_w, enc_img.d_h, 16); aom_img_truncate_16_to_8(&enc_hbd_img, &enc_img); enc_img = enc_hbd_img; } if (dec_img.fmt & AOM_IMG_FMT_HIGHBITDEPTH) { aom_image_t dec_hbd_img; aom_img_alloc(&dec_hbd_img, dec_img.fmt - AOM_IMG_FMT_HIGHBITDEPTH, dec_img.d_w, dec_img.d_h, 16); aom_img_truncate_16_to_8(&dec_hbd_img, &dec_img); dec_img = dec_hbd_img; } } #endif } ctx_exit_on_error(&stream->encoder, "Failed to get encoder reference frame"); ctx_exit_on_error(&stream->decoder, "Failed to get decoder reference frame"); if (!compare_img(&enc_img, &dec_img)) { int y[4], u[4], v[4]; #if CONFIG_AOM_HIGHBITDEPTH if (enc_img.fmt & AOM_IMG_FMT_HIGHBITDEPTH) { find_mismatch_high(&enc_img, &dec_img, y, u, v); } else { find_mismatch(&enc_img, &dec_img, y, u, v); } #else find_mismatch(&enc_img, &dec_img, y, u, v); #endif stream->decoder.err = 1; warn_or_exit_on_error(&stream->decoder, fatal == TEST_DECODE_FATAL, "Stream %d: Encode/decode mismatch on frame %d at" " Y[%d, %d] {%d/%d}," " U[%d, %d] {%d/%d}," " V[%d, %d] {%d/%d}", stream->index, stream->frames_out, y[0], y[1], y[2], y[3], u[0], u[1], u[2], u[3], v[0], v[1], v[2], v[3]); stream->mismatch_seen = stream->frames_out; } aom_img_free(&enc_img); aom_img_free(&dec_img); } static void print_time(const char *label, int64_t etl) { int64_t hours; int64_t mins; int64_t secs; if (etl >= 0) { hours = etl / 3600; etl -= hours * 3600; mins = etl / 60; etl -= mins * 60; secs = etl; fprintf(stderr, "[%3s %2" PRId64 ":%02" PRId64 ":%02" PRId64 "] ", label, hours, mins, secs); } else { fprintf(stderr, "[%3s unknown] ", label); } } int main(int argc, const char **argv_) { int pass; aom_image_t raw; #if CONFIG_AOM_HIGHBITDEPTH aom_image_t raw_shift; int allocated_raw_shift = 0; int use_16bit_internal = 0; int input_shift = 0; #endif int frame_avail, got_data; struct AvxInputContext input; struct AvxEncoderConfig global; struct stream_state *streams = NULL; char **argv, **argi; uint64_t cx_time = 0; int stream_cnt = 0; int res = 0; int profile_updated = 0; memset(&input, 0, sizeof(input)); exec_name = argv_[0]; if (argc < 3) usage_exit(); /* Setup default input stream settings */ input.framerate.numerator = 30; input.framerate.denominator = 1; input.only_i420 = 1; input.bit_depth = 0; /* First parse the global configuration values, because we want to apply * other parameters on top of the default configuration provided by the * codec. */ argv = argv_dup(argc - 1, argv_ + 1); parse_global_config(&global, argv); switch (global.color_type) { case I420: input.fmt = AOM_IMG_FMT_I420; break; case I422: input.fmt = AOM_IMG_FMT_I422; break; case I444: input.fmt = AOM_IMG_FMT_I444; break; case I440: input.fmt = AOM_IMG_FMT_I440; break; case YV12: input.fmt = AOM_IMG_FMT_YV12; break; } { /* Now parse each stream's parameters. Using a local scope here * due to the use of 'stream' as loop variable in FOREACH_STREAM * loops */ struct stream_state *stream = NULL; do { stream = new_stream(&global, stream); stream_cnt++; if (!streams) streams = stream; } while (parse_stream_params(&global, stream, argv)); } /* Check for unrecognized options */ for (argi = argv; *argi; argi++) if (argi[0][0] == '-' && argi[0][1]) die("Error: Unrecognized option %s\n", *argi); FOREACH_STREAM(check_encoder_config(global.disable_warning_prompt, &global, &stream->config.cfg);); /* Handle non-option arguments */ input.filename = argv[0]; if (!input.filename) usage_exit(); /* Decide if other chroma subsamplings than 4:2:0 are supported */ if (global.codec->fourcc == AV1_FOURCC) input.only_i420 = 0; for (pass = global.pass ? global.pass - 1 : 0; pass < global.passes; pass++) { int frames_in = 0, seen_frames = 0; int64_t estimated_time_left = -1; int64_t average_rate = -1; int64_t lagged_count = 0; open_input_file(&input); /* If the input file doesn't specify its w/h (raw files), try to get * the data from the first stream's configuration. */ if (!input.width || !input.height) { FOREACH_STREAM({ if (stream->config.cfg.g_w && stream->config.cfg.g_h) { input.width = stream->config.cfg.g_w; input.height = stream->config.cfg.g_h; break; } }); } /* Update stream configurations from the input file's parameters */ if (!input.width || !input.height) fatal( "Specify stream dimensions with --width (-w) " " and --height (-h)"); /* If input file does not specify bit-depth but input-bit-depth parameter * exists, assume that to be the input bit-depth. However, if the * input-bit-depth paramter does not exist, assume the input bit-depth * to be the same as the codec bit-depth. */ if (!input.bit_depth) { FOREACH_STREAM({ if (stream->config.cfg.g_input_bit_depth) input.bit_depth = stream->config.cfg.g_input_bit_depth; else input.bit_depth = stream->config.cfg.g_input_bit_depth = (int)stream->config.cfg.g_bit_depth; }); if (input.bit_depth > 8) input.fmt |= AOM_IMG_FMT_HIGHBITDEPTH; } else { FOREACH_STREAM( { stream->config.cfg.g_input_bit_depth = input.bit_depth; }); } #if CONFIG_AOM_HIGHBITDEPTH FOREACH_STREAM({ if (input.fmt != AOM_IMG_FMT_I420 && input.fmt != AOM_IMG_FMT_I42016) { /* Automatically upgrade if input is non-4:2:0 but a 4:2:0 profile was selected. */ switch (stream->config.cfg.g_profile) { case 0: stream->config.cfg.g_profile = 1; profile_updated = 1; break; case 2: stream->config.cfg.g_profile = 3; profile_updated = 1; break; default: break; } } /* Automatically set the codec bit depth to match the input bit depth. * Upgrade the profile if required. */ if (stream->config.cfg.g_input_bit_depth > (unsigned int)stream->config.cfg.g_bit_depth) { stream->config.cfg.g_bit_depth = stream->config.cfg.g_input_bit_depth; } if (stream->config.cfg.g_bit_depth > 8) { switch (stream->config.cfg.g_profile) { case 0: stream->config.cfg.g_profile = 2; profile_updated = 1; break; case 1: stream->config.cfg.g_profile = 3; profile_updated = 1; break; default: break; } } if (stream->config.cfg.g_profile > 1) { stream->config.use_16bit_internal = 1; } if (profile_updated) { fprintf(stderr, "Warning: automatically upgrading to profile %d to " "match input format.\n", stream->config.cfg.g_profile); } }); #else FOREACH_STREAM({ if (input.fmt != AOM_IMG_FMT_I420 && input.fmt != AOM_IMG_FMT_I42016) { /* Automatically upgrade if input is non-4:2:0 but a 4:2:0 profile was selected. */ switch (stream->config.cfg.g_profile) { case 0: stream->config.cfg.g_profile = 1; profile_updated = 1; break; case 2: stream->config.cfg.g_profile = 3; profile_updated = 1; break; default: break; } } if (profile_updated) { fprintf(stderr, "Warning: automatically upgrading to profile %d to " "match input format.\n", stream->config.cfg.g_profile); } }); #endif FOREACH_STREAM(set_stream_dimensions(stream, input.width, input.height)); FOREACH_STREAM(validate_stream_config(stream, &global)); /* Ensure that --passes and --pass are consistent. If --pass is set and * --passes=2, ensure --fpf was set. */ if (global.pass && global.passes == 2) FOREACH_STREAM({ if (!stream->config.stats_fn) die("Stream %d: Must specify --fpf when --pass=%d" " and --passes=2\n", stream->index, global.pass); }); #if !CONFIG_WEBM_IO FOREACH_STREAM({ if (stream->config.write_webm) { stream->config.write_webm = 0; warn( "aomenc was compiled without WebM container support." "Producing IVF output"); } }); #endif /* Use the frame rate from the file only if none was specified * on the command-line. */ if (!global.have_framerate) { global.framerate.num = input.framerate.numerator; global.framerate.den = input.framerate.denominator; FOREACH_STREAM(stream->config.cfg.g_timebase.den = global.framerate.num; stream->config.cfg.g_timebase.num = global.framerate.den); } /* Show configuration */ if (global.verbose && pass == 0) FOREACH_STREAM(show_stream_config(stream, &global, &input)); if (pass == (global.pass ? global.pass - 1 : 0)) { if (input.file_type == FILE_TYPE_Y4M) /*The Y4M reader does its own allocation. Just initialize this here to avoid problems if we never read any frames.*/ memset(&raw, 0, sizeof(raw)); else aom_img_alloc(&raw, input.fmt, input.width, input.height, 32); FOREACH_STREAM(stream->rate_hist = init_rate_histogram( &stream->config.cfg, &global.framerate)); } FOREACH_STREAM(setup_pass(stream, &global, pass)); FOREACH_STREAM( open_output_file(stream, &global, &input.pixel_aspect_ratio)); FOREACH_STREAM(initialize_encoder(stream, &global)); #if CONFIG_AOM_HIGHBITDEPTH if (strcmp(global.codec->name, "av1") == 0 || strcmp(global.codec->name, "av1") == 0) { // Check to see if at least one stream uses 16 bit internal. // Currently assume that the bit_depths for all streams using // highbitdepth are the same. FOREACH_STREAM({ if (stream->config.use_16bit_internal) { use_16bit_internal = 1; } if (stream->config.cfg.g_profile == 0) { input_shift = 0; } else { input_shift = (int)stream->config.cfg.g_bit_depth - stream->config.cfg.g_input_bit_depth; } }); } #endif frame_avail = 1; got_data = 0; while (frame_avail || got_data) { struct aom_usec_timer timer; if (!global.limit || frames_in < global.limit) { frame_avail = read_frame(&input, &raw); if (frame_avail) frames_in++; seen_frames = frames_in > global.skip_frames ? frames_in - global.skip_frames : 0; if (!global.quiet) { float fps = usec_to_fps(cx_time, seen_frames); fprintf(stderr, "\rPass %d/%d ", pass + 1, global.passes); if (stream_cnt == 1) fprintf(stderr, "frame %4d/%-4d %7" PRId64 "B ", frames_in, streams->frames_out, (int64_t)streams->nbytes); else fprintf(stderr, "frame %4d ", frames_in); fprintf(stderr, "%7" PRId64 " %s %.2f %s ", cx_time > 9999999 ? cx_time / 1000 : cx_time, cx_time > 9999999 ? "ms" : "us", fps >= 1.0 ? fps : fps * 60, fps >= 1.0 ? "fps" : "fpm"); print_time("ETA", estimated_time_left); } } else { frame_avail = 0; } if (frames_in > global.skip_frames) { #if CONFIG_AOM_HIGHBITDEPTH aom_image_t *frame_to_encode; if (input_shift || (use_16bit_internal && input.bit_depth == 8)) { assert(use_16bit_internal); // Input bit depth and stream bit depth do not match, so up // shift frame to stream bit depth if (!allocated_raw_shift) { aom_img_alloc(&raw_shift, raw.fmt | AOM_IMG_FMT_HIGHBITDEPTH, input.width, input.height, 32); allocated_raw_shift = 1; } aom_img_upshift(&raw_shift, &raw, input_shift); frame_to_encode = &raw_shift; } else { frame_to_encode = &raw; } aom_usec_timer_start(&timer); if (use_16bit_internal) { assert(frame_to_encode->fmt & AOM_IMG_FMT_HIGHBITDEPTH); FOREACH_STREAM({ if (stream->config.use_16bit_internal) encode_frame(stream, &global, frame_avail ? frame_to_encode : NULL, frames_in); else assert(0); }); } else { assert((frame_to_encode->fmt & AOM_IMG_FMT_HIGHBITDEPTH) == 0); FOREACH_STREAM(encode_frame(stream, &global, frame_avail ? frame_to_encode : NULL, frames_in)); } #else aom_usec_timer_start(&timer); FOREACH_STREAM(encode_frame(stream, &global, frame_avail ? &raw : NULL, frames_in)); #endif aom_usec_timer_mark(&timer); cx_time += aom_usec_timer_elapsed(&timer); FOREACH_STREAM(update_quantizer_histogram(stream)); got_data = 0; FOREACH_STREAM(get_cx_data(stream, &global, &got_data)); if (!got_data && input.length && streams != NULL && !streams->frames_out) { lagged_count = global.limit ? seen_frames : ftello(input.file); } else if (input.length) { int64_t remaining; int64_t rate; if (global.limit) { const int64_t frame_in_lagged = (seen_frames - lagged_count) * 1000; rate = cx_time ? frame_in_lagged * (int64_t)1000000 / cx_time : 0; remaining = 1000 * (global.limit - global.skip_frames - seen_frames + lagged_count); } else { const int64_t input_pos = ftello(input.file); const int64_t input_pos_lagged = input_pos - lagged_count; const int64_t input_limit = input.length; rate = cx_time ? input_pos_lagged * (int64_t)1000000 / cx_time : 0; remaining = input_limit - input_pos + lagged_count; } average_rate = (average_rate <= 0) ? rate : (average_rate * 7 + rate) / 8; estimated_time_left = average_rate ? remaining / average_rate : -1; } if (got_data && global.test_decode != TEST_DECODE_OFF) FOREACH_STREAM(test_decode(stream, global.test_decode, global.codec)); } fflush(stdout); if (!global.quiet) fprintf(stderr, "\033[K"); } if (stream_cnt > 1) fprintf(stderr, "\n"); if (!global.quiet) { FOREACH_STREAM(fprintf( stderr, "\rPass %d/%d frame %4d/%-4d %7" PRId64 "B %7" PRId64 "b/f %7" PRId64 "b/s" " %7" PRId64 " %s (%.2f fps)\033[K\n", pass + 1, global.passes, frames_in, stream->frames_out, (int64_t)stream->nbytes, seen_frames ? (int64_t)(stream->nbytes * 8 / seen_frames) : 0, seen_frames ? (int64_t)stream->nbytes * 8 * (int64_t)global.framerate.num / global.framerate.den / seen_frames : 0, stream->cx_time > 9999999 ? stream->cx_time / 1000 : stream->cx_time, stream->cx_time > 9999999 ? "ms" : "us", usec_to_fps(stream->cx_time, seen_frames))); } if (global.show_psnr) { if (global.codec->fourcc == AV1_FOURCC) { FOREACH_STREAM( show_psnr(stream, (1 << stream->config.cfg.g_input_bit_depth) - 1)); } else { FOREACH_STREAM(show_psnr(stream, 255.0)); } } FOREACH_STREAM(aom_codec_destroy(&stream->encoder)); if (global.test_decode != TEST_DECODE_OFF) { FOREACH_STREAM(aom_codec_destroy(&stream->decoder)); } close_input_file(&input); if (global.test_decode == TEST_DECODE_FATAL) { FOREACH_STREAM(res |= stream->mismatch_seen); } FOREACH_STREAM(close_output_file(stream, global.codec->fourcc)); FOREACH_STREAM(stats_close(&stream->stats, global.passes - 1)); #if CONFIG_FP_MB_STATS FOREACH_STREAM(stats_close(&stream->fpmb_stats, global.passes - 1)); #endif if (global.pass) break; } if (global.show_q_hist_buckets) FOREACH_STREAM( show_q_histogram(stream->counts, global.show_q_hist_buckets)); if (global.show_rate_hist_buckets) FOREACH_STREAM(show_rate_histogram(stream->rate_hist, &stream->config.cfg, global.show_rate_hist_buckets)); FOREACH_STREAM(destroy_rate_histogram(stream->rate_hist)); #if CONFIG_INTERNAL_STATS /* TODO(jkoleszar): This doesn't belong in this executable. Do it for now, * to match some existing utilities. */ if (!(global.pass == 1 && global.passes == 2)) FOREACH_STREAM({ FILE *f = fopen("opsnr.stt", "a"); if (stream->mismatch_seen) { fprintf(f, "First mismatch occurred in frame %d\n", stream->mismatch_seen); } else { fprintf(f, "No mismatch detected in recon buffers\n"); } fclose(f); }); #endif #if CONFIG_AOM_HIGHBITDEPTH if (allocated_raw_shift) aom_img_free(&raw_shift); #endif aom_img_free(&raw); free(argv); free(streams); return res ? EXIT_FAILURE : EXIT_SUCCESS; }