/* * Copyright (c) 2016 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef TEST_TRANSFORM_TEST_BASE_H_ #define TEST_TRANSFORM_TEST_BASE_H_ #include "./aom_config.h" #include "aom_mem/aom_mem.h" #include "aom/aom_codec.h" namespace libaom_test { // Note: // Same constant are defined in av1/common/av1_entropy.h and // av1/common/entropy.h. Goal is to make this base class // to use for future codec transform testing. But including // either of them would lead to compiling error when we do // unit test for another codec. Suggest to move the definition // to a aom header file. const int kDctMaxValue = 16384; typedef void (*FhtFunc)(const int16_t *in, tran_low_t *out, int stride, int tx_type); typedef void (*IhtFunc)(const tran_low_t *in, uint8_t *out, int stride, int tx_type); class TransformTestBase { public: virtual ~TransformTestBase() {} protected: virtual void RunFwdTxfm(const int16_t *in, tran_low_t *out, int stride) = 0; virtual void RunInvTxfm(const tran_low_t *out, uint8_t *dst, int stride) = 0; void RunAccuracyCheck(int limit) { ACMRandom rnd(ACMRandom::DeterministicSeed()); uint32_t max_error = 0; int64_t total_error = 0; const int count_test_block = 10000; int16_t *test_input_block = reinterpret_cast( aom_memalign(16, sizeof(int16_t) * num_coeffs_)); tran_low_t *test_temp_block = reinterpret_cast( aom_memalign(16, sizeof(tran_low_t) * num_coeffs_)); uint8_t *dst = reinterpret_cast( aom_memalign(16, sizeof(uint8_t) * num_coeffs_)); uint8_t *src = reinterpret_cast( aom_memalign(16, sizeof(uint8_t) * num_coeffs_)); #if CONFIG_AOM_HIGHBITDEPTH uint16_t *dst16 = reinterpret_cast( aom_memalign(16, sizeof(uint16_t) * num_coeffs_)); uint16_t *src16 = reinterpret_cast( aom_memalign(16, sizeof(uint16_t) * num_coeffs_)); #endif for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-255, 255]. for (int j = 0; j < num_coeffs_; ++j) { if (bit_depth_ == AOM_BITS_8) { src[j] = rnd.Rand8(); dst[j] = rnd.Rand8(); test_input_block[j] = src[j] - dst[j]; #if CONFIG_AOM_HIGHBITDEPTH } else { src16[j] = rnd.Rand16() & mask_; dst16[j] = rnd.Rand16() & mask_; test_input_block[j] = src16[j] - dst16[j]; #endif } } ASM_REGISTER_STATE_CHECK( RunFwdTxfm(test_input_block, test_temp_block, pitch_)); if (bit_depth_ == AOM_BITS_8) { ASM_REGISTER_STATE_CHECK(RunInvTxfm(test_temp_block, dst, pitch_)); #if CONFIG_AOM_HIGHBITDEPTH } else { ASM_REGISTER_STATE_CHECK( RunInvTxfm(test_temp_block, CONVERT_TO_BYTEPTR(dst16), pitch_)); #endif } for (int j = 0; j < num_coeffs_; ++j) { #if CONFIG_AOM_HIGHBITDEPTH const int diff = bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; #else ASSERT_EQ(AOM_BITS_8, bit_depth_); const int diff = dst[j] - src[j]; #endif const uint32_t error = diff * diff; if (max_error < error) max_error = error; total_error += error; } } EXPECT_GE(static_cast(limit), max_error) << "Error: 4x4 FHT/IHT has an individual round trip error > " << limit; EXPECT_GE(count_test_block * limit, total_error) << "Error: 4x4 FHT/IHT has average round trip error > " << limit << " per block"; aom_free(test_input_block); aom_free(test_temp_block); aom_free(dst); aom_free(src); #if CONFIG_AOM_HIGHBITDEPTH aom_free(dst16); aom_free(src16); #endif } void RunCoeffCheck() { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 5000; // Use a stride value which is not the width of any transform, to catch // cases where the transforms use the stride incorrectly. int stride = 96; int16_t *input_block = reinterpret_cast( aom_memalign(16, sizeof(int16_t) * stride * height_)); tran_low_t *output_ref_block = reinterpret_cast( aom_memalign(16, sizeof(tran_low_t) * num_coeffs_)); tran_low_t *output_block = reinterpret_cast( aom_memalign(16, sizeof(tran_low_t) * num_coeffs_)); for (int i = 0; i < count_test_block; ++i) { int j, k; for (j = 0; j < height_; ++j) { for (k = 0; k < pitch_; ++k) { int in_idx = j * stride + k; int out_idx = j * pitch_ + k; input_block[in_idx] = (rnd.Rand16() & mask_) - (rnd.Rand16() & mask_); if (bit_depth_ == AOM_BITS_8) { output_block[out_idx] = output_ref_block[out_idx] = rnd.Rand8(); #if CONFIG_AOM_HIGHBITDEPTH } else { output_block[out_idx] = output_ref_block[out_idx] = rnd.Rand16() & mask_; #endif } } } fwd_txfm_ref(input_block, output_ref_block, stride, tx_type_); ASM_REGISTER_STATE_CHECK(RunFwdTxfm(input_block, output_block, stride)); // The minimum quant value is 4. for (j = 0; j < height_; ++j) { for (k = 0; k < pitch_; ++k) { int out_idx = j * pitch_ + k; ASSERT_EQ(output_block[out_idx], output_ref_block[out_idx]) << "Error: not bit-exact result at index: " << out_idx << " at test block: " << i; } } } aom_free(input_block); aom_free(output_ref_block); aom_free(output_block); } void RunInvCoeffCheck() { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 5000; // Use a stride value which is not the width of any transform, to catch // cases where the transforms use the stride incorrectly. int stride = 96; int16_t *input_block = reinterpret_cast( aom_memalign(16, sizeof(int16_t) * num_coeffs_)); tran_low_t *trans_block = reinterpret_cast( aom_memalign(16, sizeof(tran_low_t) * num_coeffs_)); uint8_t *output_block = reinterpret_cast( aom_memalign(16, sizeof(uint8_t) * stride * height_)); uint8_t *output_ref_block = reinterpret_cast( aom_memalign(16, sizeof(uint8_t) * stride * height_)); for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-mask_, mask_]. int j, k; for (j = 0; j < height_; ++j) { for (k = 0; k < pitch_; ++k) { int in_idx = j * pitch_ + k; int out_idx = j * stride + k; input_block[in_idx] = (rnd.Rand16() & mask_) - (rnd.Rand16() & mask_); output_ref_block[out_idx] = rnd.Rand16() & mask_; output_block[out_idx] = output_ref_block[out_idx]; } } fwd_txfm_ref(input_block, trans_block, pitch_, tx_type_); inv_txfm_ref(trans_block, output_ref_block, stride, tx_type_); ASM_REGISTER_STATE_CHECK(RunInvTxfm(trans_block, output_block, stride)); for (j = 0; j < height_; ++j) { for (k = 0; k < pitch_; ++k) { int out_idx = j * stride + k; ASSERT_EQ(output_block[out_idx], output_ref_block[out_idx]) << "Error: not bit-exact result at index: " << out_idx << " at test block: " << i; } } } aom_free(input_block); aom_free(trans_block); aom_free(output_ref_block); aom_free(output_block); } void RunMemCheck() { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 5000; int16_t *input_extreme_block = reinterpret_cast( aom_memalign(16, sizeof(int16_t) * num_coeffs_)); tran_low_t *output_ref_block = reinterpret_cast( aom_memalign(16, sizeof(tran_low_t) * num_coeffs_)); tran_low_t *output_block = reinterpret_cast( aom_memalign(16, sizeof(tran_low_t) * num_coeffs_)); for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-mask_, mask_]. for (int j = 0; j < num_coeffs_; ++j) { input_extreme_block[j] = rnd.Rand8() % 2 ? mask_ : -mask_; } if (i == 0) { for (int j = 0; j < num_coeffs_; ++j) input_extreme_block[j] = mask_; } else if (i == 1) { for (int j = 0; j < num_coeffs_; ++j) input_extreme_block[j] = -mask_; } fwd_txfm_ref(input_extreme_block, output_ref_block, pitch_, tx_type_); ASM_REGISTER_STATE_CHECK( RunFwdTxfm(input_extreme_block, output_block, pitch_)); int row_length = FindRowLength(); // The minimum quant value is 4. for (int j = 0; j < num_coeffs_; ++j) { EXPECT_EQ(output_block[j], output_ref_block[j]); EXPECT_GE(row_length * kDctMaxValue << (bit_depth_ - 8), abs(output_block[j])) << "Error: NxN FDCT has coefficient larger than N*DCT_MAX_VALUE"; } } aom_free(input_extreme_block); aom_free(output_ref_block); aom_free(output_block); } void RunInvAccuracyCheck(int limit) { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 1000; int16_t *in = reinterpret_cast( aom_memalign(16, sizeof(int16_t) * num_coeffs_)); tran_low_t *coeff = reinterpret_cast( aom_memalign(16, sizeof(tran_low_t) * num_coeffs_)); uint8_t *dst = reinterpret_cast( aom_memalign(16, sizeof(uint8_t) * num_coeffs_)); uint8_t *src = reinterpret_cast( aom_memalign(16, sizeof(uint8_t) * num_coeffs_)); #if CONFIG_AOM_HIGHBITDEPTH uint16_t *dst16 = reinterpret_cast( aom_memalign(16, sizeof(uint16_t) * num_coeffs_)); uint16_t *src16 = reinterpret_cast( aom_memalign(16, sizeof(uint16_t) * num_coeffs_)); #endif for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-mask_, mask_]. for (int j = 0; j < num_coeffs_; ++j) { if (bit_depth_ == AOM_BITS_8) { src[j] = rnd.Rand8(); dst[j] = rnd.Rand8(); in[j] = src[j] - dst[j]; #if CONFIG_AOM_HIGHBITDEPTH } else { src16[j] = rnd.Rand16() & mask_; dst16[j] = rnd.Rand16() & mask_; in[j] = src16[j] - dst16[j]; #endif } } fwd_txfm_ref(in, coeff, pitch_, tx_type_); if (bit_depth_ == AOM_BITS_8) { ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, pitch_)); #if CONFIG_AOM_HIGHBITDEPTH } else { ASM_REGISTER_STATE_CHECK( RunInvTxfm(coeff, CONVERT_TO_BYTEPTR(dst16), pitch_)); #endif } for (int j = 0; j < num_coeffs_; ++j) { #if CONFIG_AOM_HIGHBITDEPTH const int diff = bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; #else const int diff = dst[j] - src[j]; #endif const uint32_t error = diff * diff; EXPECT_GE(static_cast(limit), error) << "Error: 4x4 IDCT has error " << error << " at index " << j; } } aom_free(in); aom_free(coeff); aom_free(dst); aom_free(src); #if CONFIG_AOM_HIGHBITDEPTH aom_free(src16); aom_free(dst16); #endif } int pitch_; int height_; int tx_type_; FhtFunc fwd_txfm_ref; IhtFunc inv_txfm_ref; aom_bit_depth_t bit_depth_; int mask_; int num_coeffs_; private: // Assume transform size is 4x4, 8x8, 16x16,... int FindRowLength() const { int row = 4; if (16 == num_coeffs_) { row = 4; } else if (64 == num_coeffs_) { row = 8; } else if (256 == num_coeffs_) { row = 16; } else if (1024 == num_coeffs_) { row = 32; } return row; } }; } // namespace libaom_test #endif // TEST_TRANSFORM_TEST_BASE_H_