/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include #include "pragmas.h" #include "tokenize.h" #include "treewriter.h" #include "onyx_int.h" #include "modecosts.h" #include "encodeintra.h" #include "entropymode.h" #include "reconinter.h" #include "reconintra.h" #include "reconintra4x4.h" #include "findnearmv.h" #include "encodemb.h" #include "quantize.h" #include "idct.h" #include "g_common.h" #include "variance.h" #include "mcomp.h" #include "vpx_mem/vpx_mem.h" #include "dct.h" #include "systemdependent.h" #if CONFIG_RUNTIME_CPU_DETECT #define IF_RTCD(x) (x) #else #define IF_RTCD(x) NULL #endif void vp8cx_mb_init_quantizer(VP8_COMP *cpi, MACROBLOCK *x); #define RDCOST(RM,DM,R,D) ( ((128+(R)*(RM)) >> 8) + (DM)*(D) ) #define MAXF(a,b) (((a) > (b)) ? (a) : (b)) const int vp8_auto_speed_thresh[17] = { 1000, 200, 150, 130, 150, 125, 120, 115, 115, 115, 115, 115, 115, 115, 115, 115, 105 }; const MB_PREDICTION_MODE vp8_mode_order[MAX_MODES] = { ZEROMV, DC_PRED, NEARESTMV, NEARMV, ZEROMV, NEARESTMV, ZEROMV, NEARESTMV, NEARMV, NEARMV, V_PRED, H_PRED, TM_PRED, NEWMV, NEWMV, NEWMV, SPLITMV, SPLITMV, SPLITMV, B_PRED, }; const MV_REFERENCE_FRAME vp8_ref_frame_order[MAX_MODES] = { LAST_FRAME, INTRA_FRAME, LAST_FRAME, LAST_FRAME, GOLDEN_FRAME, GOLDEN_FRAME, ALTREF_FRAME, ALTREF_FRAME, GOLDEN_FRAME, ALTREF_FRAME, INTRA_FRAME, INTRA_FRAME, INTRA_FRAME, LAST_FRAME, GOLDEN_FRAME, ALTREF_FRAME, LAST_FRAME, GOLDEN_FRAME, ALTREF_FRAME, INTRA_FRAME, }; static void fill_token_costs( unsigned int c [BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [vp8_coef_tokens], const vp8_prob p [BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [vp8_coef_tokens-1] ) { int i, j, k; for (i = 0; i < BLOCK_TYPES; i++) for (j = 0; j < COEF_BANDS; j++) for (k = 0; k < PREV_COEF_CONTEXTS; k++) vp8_cost_tokens((int *)(c [i][j][k]), p [i][j][k], vp8_coef_tree); } static int rd_iifactor [ 32 ] = { 4, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; /* values are now correlated to quantizer */ static int sad_per_bit16lut[QINDEX_RANGE] = { 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 23, 23, 23, 24, 24, 24, 25, 25, 26, 26, 27, 27, 27, 28, 28, 28, 29, 29, 30, 30, 31, 31 }; static int sad_per_bit4lut[QINDEX_RANGE] = { 5, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 28, 28, 28, 29, 29, 29, 29, 31, 31, 31, 32, 32, 32, 34, 34, 34, 35, 35, 37, 37, 38, 38, 38, 40, 40, 40, 41, 41, 43, 43, 44, 44, }; void vp8cx_initialize_me_consts(VP8_COMP *cpi, int QIndex) { cpi->mb.sadperbit16 = sad_per_bit16lut[QIndex]; cpi->mb.sadperbit4 = sad_per_bit4lut[QIndex]; } void vp8_initialize_rd_consts(VP8_COMP *cpi, int Qvalue) { int q; int i; double capped_q = (Qvalue < 160) ? (double)Qvalue : 160.0; double rdconst = 3.00; vp8_clear_system_state(); //__asm emms; // Further tests required to see if optimum is different // for key frames, golden frames and arf frames. // if (cpi->common.refresh_golden_frame || // cpi->common.refresh_alt_ref_frame) cpi->RDMULT = (int)(rdconst * (capped_q * capped_q)); // Extend rate multiplier along side quantizer zbin increases if (cpi->zbin_over_quant > 0) { double oq_factor; double modq; // Experimental code using the same basic equation as used for Q above // The units of cpi->zbin_over_quant are 1/128 of Q bin size oq_factor = 1.0 + ((double)0.0015625 * cpi->zbin_over_quant); modq = (int)((double)capped_q * oq_factor); cpi->RDMULT = (int)(rdconst * (modq * modq)); } if (cpi->pass == 2 && (cpi->common.frame_type != KEY_FRAME)) { if (cpi->next_iiratio > 31) cpi->RDMULT += (cpi->RDMULT * rd_iifactor[31]) >> 4; else cpi->RDMULT += (cpi->RDMULT * rd_iifactor[cpi->next_iiratio]) >> 4; } if (cpi->RDMULT < 125) cpi->RDMULT = 125; cpi->mb.errorperbit = (cpi->RDMULT / 100); vp8_set_speed_features(cpi); if (cpi->common.simpler_lpf) cpi->common.filter_type = SIMPLE_LOOPFILTER; q = (int)pow(Qvalue, 1.25); if (q < 8) q = 8; if (cpi->RDMULT > 1000) { cpi->RDDIV = 1; cpi->RDMULT /= 100; for (i = 0; i < MAX_MODES; i++) { if (cpi->sf.thresh_mult[i] < INT_MAX) { cpi->rd_threshes[i] = cpi->sf.thresh_mult[i] * q / 100; } else { cpi->rd_threshes[i] = INT_MAX; } cpi->rd_baseline_thresh[i] = cpi->rd_threshes[i]; } } else { cpi->RDDIV = 100; for (i = 0; i < MAX_MODES; i++) { if (cpi->sf.thresh_mult[i] < (INT_MAX / q)) { cpi->rd_threshes[i] = cpi->sf.thresh_mult[i] * q; } else { cpi->rd_threshes[i] = INT_MAX; } cpi->rd_baseline_thresh[i] = cpi->rd_threshes[i]; } } fill_token_costs( cpi->mb.token_costs, (const vp8_prob( *)[8][3][11]) cpi->common.fc.coef_probs ); vp8_init_mode_costs(cpi); } void vp8_auto_select_speed(VP8_COMP *cpi) { int used = cpi->oxcf.cpu_used; int milliseconds_for_compress = (int)(1000000 / cpi->oxcf.frame_rate); milliseconds_for_compress = milliseconds_for_compress * (16 - cpi->oxcf.cpu_used) / 16; #if 0 if (0) { FILE *f; f = fopen("speed.stt", "a"); fprintf(f, " %8ld %10ld %10ld %10ld\n", cpi->common.current_video_frame, cpi->Speed, milliseconds_for_compress, cpi->avg_pick_mode_time); fclose(f); } #endif /* // this is done during parameter valid check if( used > 16) used = 16; if( used < -16) used = -16; */ if (cpi->avg_pick_mode_time < milliseconds_for_compress && (cpi->avg_encode_time - cpi->avg_pick_mode_time) < milliseconds_for_compress) { if (cpi->avg_pick_mode_time == 0) { cpi->Speed = 4; } else { if (milliseconds_for_compress * 100 < cpi->avg_encode_time * 95) { cpi->Speed += 2; cpi->avg_pick_mode_time = 0; cpi->avg_encode_time = 0; if (cpi->Speed > 16) { cpi->Speed = 16; } } if (milliseconds_for_compress * 100 > cpi->avg_encode_time * vp8_auto_speed_thresh[cpi->Speed]) { cpi->Speed -= 1; cpi->avg_pick_mode_time = 0; cpi->avg_encode_time = 0; // In real-time mode, cpi->speed is in [4, 16]. if (cpi->Speed < 4) //if ( cpi->Speed < 0 ) { cpi->Speed = 4; //cpi->Speed = 0; } } } } else { cpi->Speed += 4; if (cpi->Speed > 16) cpi->Speed = 16; cpi->avg_pick_mode_time = 0; cpi->avg_encode_time = 0; } } int vp8_block_error_c(short *coeff, short *dqcoeff) { int i; int error = 0; for (i = 0; i < 16; i++) { int this_diff = coeff[i] - dqcoeff[i]; error += this_diff * this_diff; } return error; } int vp8_mbblock_error_c(MACROBLOCK *mb, int dc) { BLOCK *be; BLOCKD *bd; int i, j; int berror, error = 0; for (i = 0; i < 16; i++) { be = &mb->block[i]; bd = &mb->e_mbd.block[i]; berror = 0; for (j = dc; j < 16; j++) { int this_diff = be->coeff[j] - bd->dqcoeff[j]; berror += this_diff * this_diff; } error += berror; } return error; } int vp8_mbuverror_c(MACROBLOCK *mb) { BLOCK *be; BLOCKD *bd; int i; int error = 0; for (i = 16; i < 24; i++) { be = &mb->block[i]; bd = &mb->e_mbd.block[i]; error += vp8_block_error_c(be->coeff, bd->dqcoeff); } return error; } int VP8_UVSSE(MACROBLOCK *x, const vp8_variance_rtcd_vtable_t *rtcd) { unsigned char *uptr, *vptr; unsigned char *upred_ptr = (*(x->block[16].base_src) + x->block[16].src); unsigned char *vpred_ptr = (*(x->block[20].base_src) + x->block[20].src); int uv_stride = x->block[16].src_stride; unsigned int sse1 = 0; unsigned int sse2 = 0; int mv_row; int mv_col; int offset; int pre_stride = x->e_mbd.block[16].pre_stride; vp8_build_uvmvs(&x->e_mbd, 0); mv_row = x->e_mbd.block[16].bmi.mv.as_mv.row; mv_col = x->e_mbd.block[16].bmi.mv.as_mv.col; offset = (mv_row >> 3) * pre_stride + (mv_col >> 3); uptr = x->e_mbd.pre.u_buffer + offset; vptr = x->e_mbd.pre.v_buffer + offset; if ((mv_row | mv_col) & 7) { VARIANCE_INVOKE(rtcd, subpixvar8x8)(uptr, pre_stride, mv_col & 7, mv_row & 7, upred_ptr, uv_stride, &sse2); VARIANCE_INVOKE(rtcd, subpixvar8x8)(vptr, pre_stride, mv_col & 7, mv_row & 7, vpred_ptr, uv_stride, &sse1); sse2 += sse1; } else { VARIANCE_INVOKE(rtcd, subpixvar8x8)(uptr, pre_stride, mv_col & 7, mv_row & 7, upred_ptr, uv_stride, &sse2); VARIANCE_INVOKE(rtcd, subpixvar8x8)(vptr, pre_stride, mv_col & 7, mv_row & 7, vpred_ptr, uv_stride, &sse1); sse2 += sse1; } return sse2; } #if !(CONFIG_REALTIME_ONLY) static int cost_coeffs(MACROBLOCK *mb, BLOCKD *b, int type, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) { int c = !type; /* start at coef 0, unless Y with Y2 */ int eob = b->eob; int pt ; /* surrounding block/prev coef predictor */ int cost = 0; short *qcoeff_ptr = b->qcoeff; VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l); # define QC( I) ( qcoeff_ptr [vp8_default_zig_zag1d[I]] ) for (; c < eob; c++) { int v = QC(c); int t = vp8_dct_value_tokens_ptr[v].Token; cost += mb->token_costs [type] [vp8_coef_bands[c]] [pt] [t]; cost += vp8_dct_value_cost_ptr[v]; pt = vp8_prev_token_class[t]; } # undef QC if (c < 16) cost += mb->token_costs [type] [vp8_coef_bands[c]] [pt] [DCT_EOB_TOKEN]; pt = (c != !type); // is eob first coefficient; *a = *l = pt; return cost; } static int vp8_rdcost_mby(MACROBLOCK *mb) { int cost = 0; int b; MACROBLOCKD *x = &mb->e_mbd; ENTROPY_CONTEXT_PLANES t_above, t_left; ENTROPY_CONTEXT *ta; ENTROPY_CONTEXT *tl; vpx_memcpy(&t_above, mb->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES)); vpx_memcpy(&t_left, mb->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES)); ta = (ENTROPY_CONTEXT *)&t_above; tl = (ENTROPY_CONTEXT *)&t_left; for (b = 0; b < 16; b++) cost += cost_coeffs(mb, x->block + b, 0, ta + vp8_block2above[b], tl + vp8_block2left[b]); cost += cost_coeffs(mb, x->block + 24, 1, ta + vp8_block2above[24], tl + vp8_block2left[24]); return cost; } static void rd_pick_intra4x4block( VP8_COMP *cpi, MACROBLOCK *x, BLOCK *be, BLOCKD *b, B_PREDICTION_MODE *best_mode, B_PREDICTION_MODE above, B_PREDICTION_MODE left, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l, int *bestrate, int *bestratey, int *bestdistortion) { B_PREDICTION_MODE mode; int best_rd = INT_MAX; // 1<<30 int rate = 0; int distortion; unsigned int *mode_costs; ENTROPY_CONTEXT ta = *a, tempa = *a; ENTROPY_CONTEXT tl = *l, templ = *l; if (x->e_mbd.frame_type == KEY_FRAME) { mode_costs = x->bmode_costs[above][left]; } else { mode_costs = x->inter_bmode_costs; } for (mode = B_DC_PRED; mode <= B_HU_PRED; mode++) { int this_rd; int ratey; rate = mode_costs[mode]; vp8_encode_intra4x4block_rd(IF_RTCD(&cpi->rtcd), x, be, b, mode); tempa = ta; templ = tl; ratey = cost_coeffs(x, b, 3, &tempa, &templ); rate += ratey; distortion = ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), berr)(be->coeff, b->dqcoeff) >> 2; this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); if (this_rd < best_rd) { *bestrate = rate; *bestratey = ratey; *bestdistortion = distortion; best_rd = this_rd; *best_mode = mode; *a = tempa; *l = templ; } } b->bmi.mode = (B_PREDICTION_MODE)(*best_mode); vp8_encode_intra4x4block_rd(IF_RTCD(&cpi->rtcd), x, be, b, b->bmi.mode); } int vp8_rd_pick_intra4x4mby_modes(VP8_COMP *cpi, MACROBLOCK *mb, int *Rate, int *rate_y, int *Distortion) { MACROBLOCKD *const xd = &mb->e_mbd; int i; int cost = mb->mbmode_cost [xd->frame_type] [B_PRED]; int distortion = 0; int tot_rate_y = 0; ENTROPY_CONTEXT_PLANES t_above, t_left; ENTROPY_CONTEXT *ta; ENTROPY_CONTEXT *tl; vpx_memcpy(&t_above, mb->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES)); vpx_memcpy(&t_left, mb->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES)); ta = (ENTROPY_CONTEXT *)&t_above; tl = (ENTROPY_CONTEXT *)&t_left; vp8_intra_prediction_down_copy(xd); for (i = 0; i < 16; i++) { MODE_INFO *const mic = xd->mode_info_context; const int mis = xd->mode_info_stride; const B_PREDICTION_MODE A = vp8_above_bmi(mic, i, mis)->mode; const B_PREDICTION_MODE L = vp8_left_bmi(mic, i)->mode; B_PREDICTION_MODE UNINITIALIZED_IS_SAFE(best_mode); int UNINITIALIZED_IS_SAFE(r), UNINITIALIZED_IS_SAFE(ry), UNINITIALIZED_IS_SAFE(d); rd_pick_intra4x4block( cpi, mb, mb->block + i, xd->block + i, &best_mode, A, L, ta + vp8_block2above[i], tl + vp8_block2left[i], &r, &ry, &d); cost += r; distortion += d; tot_rate_y += ry; mic->bmi[i].mode = xd->block[i].bmi.mode = best_mode; } *Rate = cost; *rate_y += tot_rate_y; *Distortion = distortion; return RDCOST(mb->rdmult, mb->rddiv, cost, distortion); } int vp8_rd_pick_intra16x16mby_mode(VP8_COMP *cpi, MACROBLOCK *x, int *Rate, int *rate_y, int *Distortion) { MB_PREDICTION_MODE mode; MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected); int rate, ratey; unsigned int distortion; int best_rd = INT_MAX; //Y Search for 16x16 intra prediction mode for (mode = DC_PRED; mode <= TM_PRED; mode++) { int this_rd; int dummy; rate = 0; x->e_mbd.mode_info_context->mbmi.mode = mode; rate += x->mbmode_cost[x->e_mbd.frame_type][x->e_mbd.mode_info_context->mbmi.mode]; vp8_encode_intra16x16mbyrd(IF_RTCD(&cpi->rtcd), x); ratey = vp8_rdcost_mby(x); rate += ratey; VARIANCE_INVOKE(&cpi->rtcd.variance, get16x16var)(x->src.y_buffer, x->src.y_stride, x->e_mbd.dst.y_buffer, x->e_mbd.dst.y_stride, &distortion, &dummy); this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); if (this_rd < best_rd) { mode_selected = mode; best_rd = this_rd; *Rate = rate; *rate_y = ratey; *Distortion = (int)distortion; } } x->e_mbd.mode_info_context->mbmi.mode = mode_selected; return best_rd; } static int rd_cost_mbuv(MACROBLOCK *mb) { int b; int cost = 0; MACROBLOCKD *x = &mb->e_mbd; ENTROPY_CONTEXT_PLANES t_above, t_left; ENTROPY_CONTEXT *ta; ENTROPY_CONTEXT *tl; vpx_memcpy(&t_above, mb->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES)); vpx_memcpy(&t_left, mb->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES)); ta = (ENTROPY_CONTEXT *)&t_above; tl = (ENTROPY_CONTEXT *)&t_left; for (b = 16; b < 20; b++) cost += cost_coeffs(mb, x->block + b, vp8_block2type[b], ta + vp8_block2above[b], tl + vp8_block2left[b]); for (b = 20; b < 24; b++) cost += cost_coeffs(mb, x->block + b, vp8_block2type[b], ta + vp8_block2above[b], tl + vp8_block2left[b]); return cost; } unsigned int vp8_get_mbuvrecon_error(const vp8_variance_rtcd_vtable_t *rtcd, const MACROBLOCK *x) // sum of squares { unsigned int sse0, sse1; int sum0, sum1; VARIANCE_INVOKE(rtcd, get8x8var)(x->src.u_buffer, x->src.uv_stride, x->e_mbd.dst.u_buffer, x->e_mbd.dst.uv_stride, &sse0, &sum0); VARIANCE_INVOKE(rtcd, get8x8var)(x->src.v_buffer, x->src.uv_stride, x->e_mbd.dst.v_buffer, x->e_mbd.dst.uv_stride, &sse1, &sum1); return (sse0 + sse1); } static int vp8_rd_inter_uv(VP8_COMP *cpi, MACROBLOCK *x, int *rate, int *distortion, int fullpixel) { vp8_build_uvmvs(&x->e_mbd, fullpixel); vp8_encode_inter16x16uvrd(IF_RTCD(&cpi->rtcd), x); *rate = rd_cost_mbuv(x); *distortion = ENCODEMB_INVOKE(&cpi->rtcd.encodemb, mbuverr)(x) / 4; return RDCOST(x->rdmult, x->rddiv, *rate, *distortion); } int vp8_rd_pick_intra_mbuv_mode(VP8_COMP *cpi, MACROBLOCK *x, int *rate, int *rate_tokenonly, int *distortion) { MB_PREDICTION_MODE mode; MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected); int best_rd = INT_MAX; int UNINITIALIZED_IS_SAFE(d), UNINITIALIZED_IS_SAFE(r); int rate_to; for (mode = DC_PRED; mode <= TM_PRED; mode++) { int rate; int distortion; int this_rd; x->e_mbd.mode_info_context->mbmi.uv_mode = mode; vp8_encode_intra16x16mbuvrd(IF_RTCD(&cpi->rtcd), x); rate_to = rd_cost_mbuv(x); rate = rate_to + x->intra_uv_mode_cost[x->e_mbd.frame_type][x->e_mbd.mode_info_context->mbmi.uv_mode]; distortion = vp8_get_mbuvrecon_error(IF_RTCD(&cpi->rtcd.variance), x); this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); if (this_rd < best_rd) { best_rd = this_rd; d = distortion; r = rate; *rate_tokenonly = rate_to; mode_selected = mode; } } *rate = r; *distortion = d; x->e_mbd.mode_info_context->mbmi.uv_mode = mode_selected; return best_rd; } #endif int vp8_cost_mv_ref(MB_PREDICTION_MODE m, const int near_mv_ref_ct[4]) { vp8_prob p [VP8_MVREFS-1]; assert(NEARESTMV <= m && m <= SPLITMV); vp8_mv_ref_probs(p, near_mv_ref_ct); return vp8_cost_token(vp8_mv_ref_tree, p, vp8_mv_ref_encoding_array - NEARESTMV + m); } void vp8_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, MV *mv) { int i; x->e_mbd.mode_info_context->mbmi.mode = mb; x->e_mbd.mode_info_context->mbmi.mv.as_mv.row = mv->row; x->e_mbd.mode_info_context->mbmi.mv.as_mv.col = mv->col; for (i = 0; i < 16; i++) { B_MODE_INFO *bmi = &x->e_mbd.block[i].bmi; bmi->mode = (B_PREDICTION_MODE) mb; bmi->mv.as_mv.row = mv->row; bmi->mv.as_mv.col = mv->col; } } #if !(CONFIG_REALTIME_ONLY) static int labels2mode( MACROBLOCK *x, int const *labelings, int which_label, B_PREDICTION_MODE this_mode, MV *this_mv, MV *best_ref_mv, int *mvcost[2] ) { MACROBLOCKD *const xd = & x->e_mbd; MODE_INFO *const mic = xd->mode_info_context; const int mis = xd->mode_info_stride; int cost = 0; int thismvcost = 0; /* We have to be careful retrieving previously-encoded motion vectors. Ones from this macroblock have to be pulled from the BLOCKD array as they have not yet made it to the bmi array in our MB_MODE_INFO. */ int i = 0; do { BLOCKD *const d = xd->block + i; const int row = i >> 2, col = i & 3; B_PREDICTION_MODE m; if (labelings[i] != which_label) continue; if (col && labelings[i] == labelings[i-1]) m = LEFT4X4; else if (row && labelings[i] == labelings[i-4]) m = ABOVE4X4; else { // the only time we should do costing for new motion vector or mode // is when we are on a new label (jbb May 08, 2007) switch (m = this_mode) { case NEW4X4 : thismvcost = vp8_mv_bit_cost(this_mv, best_ref_mv, mvcost, 102); break; case LEFT4X4: *this_mv = col ? d[-1].bmi.mv.as_mv : vp8_left_bmi(mic, i)->mv.as_mv; break; case ABOVE4X4: *this_mv = row ? d[-4].bmi.mv.as_mv : vp8_above_bmi(mic, i, mis)->mv.as_mv; break; case ZERO4X4: this_mv->row = this_mv->col = 0; break; default: break; } if (m == ABOVE4X4) // replace above with left if same { const MV mv = col ? d[-1].bmi.mv.as_mv : vp8_left_bmi(mic, i)->mv.as_mv; if (mv.row == this_mv->row && mv.col == this_mv->col) m = LEFT4X4; } cost = x->inter_bmode_costs[ m]; } d->bmi.mode = m; d->bmi.mv.as_mv = *this_mv; } while (++i < 16); cost += thismvcost ; return cost; } static int rdcost_mbsegment_y(MACROBLOCK *mb, const int *labels, int which_label, ENTROPY_CONTEXT *ta, ENTROPY_CONTEXT *tl) { int cost = 0; int b; MACROBLOCKD *x = &mb->e_mbd; for (b = 0; b < 16; b++) if (labels[ b] == which_label) cost += cost_coeffs(mb, x->block + b, 3, ta + vp8_block2above[b], tl + vp8_block2left[b]); return cost; } static unsigned int vp8_encode_inter_mb_segment(MACROBLOCK *x, int const *labels, int which_label, const vp8_encodemb_rtcd_vtable_t *rtcd) { int i; unsigned int distortion = 0; for (i = 0; i < 16; i++) { if (labels[i] == which_label) { BLOCKD *bd = &x->e_mbd.block[i]; BLOCK *be = &x->block[i]; vp8_build_inter_predictors_b(bd, 16, x->e_mbd.subpixel_predict); ENCODEMB_INVOKE(rtcd, subb)(be, bd, 16); x->vp8_short_fdct4x4(be->src_diff, be->coeff, 32); // set to 0 no way to account for 2nd order DC so discount //be->coeff[0] = 0; x->quantize_b(be, bd); distortion += ENCODEMB_INVOKE(rtcd, berr)(be->coeff, bd->dqcoeff); } } return distortion; } static void macro_block_yrd(MACROBLOCK *mb, int *Rate, int *Distortion, const vp8_encodemb_rtcd_vtable_t *rtcd) { int b; MACROBLOCKD *const x = &mb->e_mbd; BLOCK *const mb_y2 = mb->block + 24; BLOCKD *const x_y2 = x->block + 24; short *Y2DCPtr = mb_y2->src_diff; BLOCK *beptr; int d; ENCODEMB_INVOKE(rtcd, submby)(mb->src_diff, mb->src.y_buffer, mb->e_mbd.predictor, mb->src.y_stride); // Fdct and building the 2nd order block for (beptr = mb->block; beptr < mb->block + 16; beptr += 2) { mb->vp8_short_fdct8x4(beptr->src_diff, beptr->coeff, 32); *Y2DCPtr++ = beptr->coeff[0]; *Y2DCPtr++ = beptr->coeff[16]; } // 2nd order fdct mb->short_walsh4x4(mb_y2->src_diff, mb_y2->coeff, 8); // Quantization for (b = 0; b < 16; b++) { mb->quantize_b(&mb->block[b], &mb->e_mbd.block[b]); } // DC predication and Quantization of 2nd Order block mb->quantize_b(mb_y2, x_y2); // Distortion d = ENCODEMB_INVOKE(rtcd, mberr)(mb, 1) << 2; d += ENCODEMB_INVOKE(rtcd, berr)(mb_y2->coeff, x_y2->dqcoeff); *Distortion = (d >> 4); // rate *Rate = vp8_rdcost_mby(mb); } unsigned char vp8_mbsplit_offset2[4][16] = { { 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, { 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, { 0, 2, 8, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} }; static const unsigned int segmentation_to_sseshift[4] = {3, 3, 2, 0}; typedef struct { MV *ref_mv; MV *mvp; int segment_rd; int segment_num; int r; int d; int segment_yrate; B_PREDICTION_MODE modes[16]; int_mv mvs[16]; unsigned char eobs[16]; int mvthresh; int *mdcounts; MV sv_mvp[4]; // save 4 mvp from 8x8 int sv_istep[2]; // save 2 initial step_param for 16x8/8x16 } BEST_SEG_INFO; void vp8_rd_check_segment(VP8_COMP *cpi, MACROBLOCK *x, BEST_SEG_INFO *bsi, unsigned int segmentation) { int i; int const *labels; int br = 0; int bd = 0; B_PREDICTION_MODE this_mode; int label_count; int this_segment_rd = 0; int label_mv_thresh; int rate = 0; int sbr = 0; int sbd = 0; int segmentyrate = 0; vp8_variance_fn_ptr_t *v_fn_ptr; ENTROPY_CONTEXT_PLANES t_above, t_left; ENTROPY_CONTEXT *ta; ENTROPY_CONTEXT *tl; ENTROPY_CONTEXT_PLANES t_above_b, t_left_b; ENTROPY_CONTEXT *ta_b; ENTROPY_CONTEXT *tl_b; vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES)); vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES)); ta = (ENTROPY_CONTEXT *)&t_above; tl = (ENTROPY_CONTEXT *)&t_left; ta_b = (ENTROPY_CONTEXT *)&t_above_b; tl_b = (ENTROPY_CONTEXT *)&t_left_b; br = 0; bd = 0; v_fn_ptr = &cpi->fn_ptr[segmentation]; labels = vp8_mbsplits[segmentation]; label_count = vp8_mbsplit_count[segmentation]; // 64 makes this threshold really big effectively // making it so that we very rarely check mvs on // segments. setting this to 1 would make mv thresh // roughly equal to what it is for macroblocks label_mv_thresh = 1 * bsi->mvthresh / label_count ; // Segmentation method overheads rate = vp8_cost_token(vp8_mbsplit_tree, vp8_mbsplit_probs, vp8_mbsplit_encodings + segmentation); rate += vp8_cost_mv_ref(SPLITMV, bsi->mdcounts); this_segment_rd += RDCOST(x->rdmult, x->rddiv, rate, 0); br += rate; for (i = 0; i < label_count; i++) { MV mode_mv[B_MODE_COUNT]; int best_label_rd = INT_MAX; B_PREDICTION_MODE mode_selected = ZERO4X4; int bestlabelyrate = 0; // search for the best motion vector on this segment for (this_mode = LEFT4X4; this_mode <= NEW4X4 ; this_mode ++) { int this_rd; int distortion; int labelyrate; ENTROPY_CONTEXT_PLANES t_above_s, t_left_s; ENTROPY_CONTEXT *ta_s; ENTROPY_CONTEXT *tl_s; vpx_memcpy(&t_above_s, &t_above, sizeof(ENTROPY_CONTEXT_PLANES)); vpx_memcpy(&t_left_s, &t_left, sizeof(ENTROPY_CONTEXT_PLANES)); ta_s = (ENTROPY_CONTEXT *)&t_above_s; tl_s = (ENTROPY_CONTEXT *)&t_left_s; if (this_mode == NEW4X4) { int sseshift; int num00; int step_param = 0; int further_steps; int n; int thissme; int bestsme = INT_MAX; MV temp_mv; BLOCK *c; BLOCKD *e; // Is the best so far sufficiently good that we cant justify doing and new motion search. if (best_label_rd < label_mv_thresh) break; if(cpi->compressor_speed) { if (segmentation == BLOCK_8X16 || segmentation == BLOCK_16X8) { bsi->mvp = &bsi->sv_mvp[i]; if (i==1 && segmentation == BLOCK_16X8) bsi->mvp = &bsi->sv_mvp[2]; step_param = bsi->sv_istep[i]; } // use previous block's result as next block's MV predictor. if (segmentation == BLOCK_4X4 && i>0) { bsi->mvp = &(x->e_mbd.block[i-1].bmi.mv.as_mv); if (i==4 || i==8 || i==12) bsi->mvp = &(x->e_mbd.block[i-4].bmi.mv.as_mv); step_param = 2; } } further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; { int sadpb = x->sadperbit4; // find first label n = vp8_mbsplit_offset2[segmentation][i]; c = &x->block[n]; e = &x->e_mbd.block[n]; if (cpi->sf.search_method == HEX) bestsme = vp8_hex_search(x, c, e, bsi->ref_mv, &mode_mv[NEW4X4], step_param, sadpb, &num00, v_fn_ptr, x->mvsadcost, x->mvcost); else { bestsme = cpi->diamond_search_sad(x, c, e, bsi->mvp, &mode_mv[NEW4X4], step_param, sadpb / 2, &num00, v_fn_ptr, x->mvsadcost, x->mvcost, bsi->ref_mv); n = num00; num00 = 0; while (n < further_steps) { n++; if (num00) num00--; else { thissme = cpi->diamond_search_sad(x, c, e, bsi->mvp, &temp_mv, step_param + n, sadpb / 2, &num00, v_fn_ptr, x->mvsadcost, x->mvcost, bsi->ref_mv); if (thissme < bestsme) { bestsme = thissme; mode_mv[NEW4X4].row = temp_mv.row; mode_mv[NEW4X4].col = temp_mv.col; } } } } sseshift = segmentation_to_sseshift[segmentation]; // Should we do a full search (best quality only) if ((cpi->compressor_speed == 0) && (bestsme >> sseshift) > 4000) { thissme = cpi->full_search_sad(x, c, e, bsi->mvp, sadpb / 4, 16, v_fn_ptr, x->mvcost, x->mvsadcost,bsi->ref_mv); if (thissme < bestsme) { bestsme = thissme; mode_mv[NEW4X4] = e->bmi.mv.as_mv; } else { // The full search result is actually worse so re-instate the previous best vector e->bmi.mv.as_mv = mode_mv[NEW4X4]; } } } if (bestsme < INT_MAX) { if (!cpi->common.full_pixel) cpi->find_fractional_mv_step(x, c, e, &mode_mv[NEW4X4], bsi->ref_mv, x->errorperbit / 2, v_fn_ptr, x->mvcost); else vp8_skip_fractional_mv_step(x, c, e, &mode_mv[NEW4X4], bsi->ref_mv, x->errorperbit, v_fn_ptr, x->mvcost); } } /* NEW4X4 */ rate = labels2mode(x, labels, i, this_mode, &mode_mv[this_mode], bsi->ref_mv, x->mvcost); // Trap vectors that reach beyond the UMV borders if (((mode_mv[this_mode].row >> 3) < x->mv_row_min) || ((mode_mv[this_mode].row >> 3) > x->mv_row_max) || ((mode_mv[this_mode].col >> 3) < x->mv_col_min) || ((mode_mv[this_mode].col >> 3) > x->mv_col_max)) { continue; } distortion = vp8_encode_inter_mb_segment(x, labels, i, IF_RTCD(&cpi->rtcd.encodemb)) / 4; labelyrate = rdcost_mbsegment_y(x, labels, i, ta_s, tl_s); rate += labelyrate; this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); if (this_rd < best_label_rd) { sbr = rate; sbd = distortion; bestlabelyrate = labelyrate; mode_selected = this_mode; best_label_rd = this_rd; vpx_memcpy(ta_b, ta_s, sizeof(ENTROPY_CONTEXT_PLANES)); vpx_memcpy(tl_b, tl_s, sizeof(ENTROPY_CONTEXT_PLANES)); } } /*for each 4x4 mode*/ vpx_memcpy(ta, ta_b, sizeof(ENTROPY_CONTEXT_PLANES)); vpx_memcpy(tl, tl_b, sizeof(ENTROPY_CONTEXT_PLANES)); labels2mode(x, labels, i, mode_selected, &mode_mv[mode_selected], bsi->ref_mv, x->mvcost); br += sbr; bd += sbd; segmentyrate += bestlabelyrate; this_segment_rd += best_label_rd; if (this_segment_rd >= bsi->segment_rd) break; } /* for each label */ if (this_segment_rd < bsi->segment_rd) { bsi->r = br; bsi->d = bd; bsi->segment_yrate = segmentyrate; bsi->segment_rd = this_segment_rd; bsi->segment_num = segmentation; // store everything needed to come back to this!! for (i = 0; i < 16; i++) { BLOCKD *bd = &x->e_mbd.block[i]; bsi->mvs[i].as_mv = bd->bmi.mv.as_mv; bsi->modes[i] = bd->bmi.mode; bsi->eobs[i] = bd->eob; } } } static __inline void vp8_cal_step_param(int sr, int *sp) { int step = 0; if (sr > MAX_FIRST_STEP) sr = MAX_FIRST_STEP; else if (sr < 1) sr = 1; while (sr>>=1) step++; *sp = MAX_MVSEARCH_STEPS - 1 - step; } static int vp8_rd_pick_best_mbsegmentation(VP8_COMP *cpi, MACROBLOCK *x, MV *best_ref_mv, int best_rd, int *mdcounts, int *returntotrate, int *returnyrate, int *returndistortion, int mvthresh) { int i; BEST_SEG_INFO bsi; vpx_memset(&bsi, 0, sizeof(bsi)); bsi.segment_rd = best_rd; bsi.ref_mv = best_ref_mv; bsi.mvp = best_ref_mv; bsi.mvthresh = mvthresh; bsi.mdcounts = mdcounts; for(i = 0; i < 16; i++) { bsi.modes[i] = ZERO4X4; } if(cpi->compressor_speed == 0) { /* for now, we will keep the original segmentation order when in best quality mode */ vp8_rd_check_segment(cpi, x, &bsi, BLOCK_16X8); vp8_rd_check_segment(cpi, x, &bsi, BLOCK_8X16); vp8_rd_check_segment(cpi, x, &bsi, BLOCK_8X8); vp8_rd_check_segment(cpi, x, &bsi, BLOCK_4X4); } else { int sr; vp8_rd_check_segment(cpi, x, &bsi, BLOCK_8X8); if (bsi.segment_rd < best_rd) { int col_min = (best_ref_mv->col - MAX_FULL_PEL_VAL) >>3; int col_max = (best_ref_mv->col + MAX_FULL_PEL_VAL) >>3; int row_min = (best_ref_mv->row - MAX_FULL_PEL_VAL) >>3; int row_max = (best_ref_mv->row + MAX_FULL_PEL_VAL) >>3; int tmp_col_min = x->mv_col_min; int tmp_col_max = x->mv_col_max; int tmp_row_min = x->mv_row_min; int tmp_row_max = x->mv_row_max; /* Get intersection of UMV window and valid MV window to reduce # of checks in diamond search. */ if (x->mv_col_min < col_min ) x->mv_col_min = col_min; if (x->mv_col_max > col_max ) x->mv_col_max = col_max; if (x->mv_row_min < row_min ) x->mv_row_min = row_min; if (x->mv_row_max > row_max ) x->mv_row_max = row_max; /* Get 8x8 result */ bsi.sv_mvp[0] = bsi.mvs[0].as_mv; bsi.sv_mvp[1] = bsi.mvs[2].as_mv; bsi.sv_mvp[2] = bsi.mvs[8].as_mv; bsi.sv_mvp[3] = bsi.mvs[10].as_mv; /* Use 8x8 result as 16x8/8x16's predictor MV. Adjust search range according to the closeness of 2 MV. */ /* block 8X16 */ { sr = MAXF((abs(bsi.sv_mvp[0].row - bsi.sv_mvp[2].row))>>3, (abs(bsi.sv_mvp[0].col - bsi.sv_mvp[2].col))>>3); vp8_cal_step_param(sr, &bsi.sv_istep[0]); sr = MAXF((abs(bsi.sv_mvp[1].row - bsi.sv_mvp[3].row))>>3, (abs(bsi.sv_mvp[1].col - bsi.sv_mvp[3].col))>>3); vp8_cal_step_param(sr, &bsi.sv_istep[1]); vp8_rd_check_segment(cpi, x, &bsi, BLOCK_8X16); } /* block 16X8 */ { sr = MAXF((abs(bsi.sv_mvp[0].row - bsi.sv_mvp[1].row))>>3, (abs(bsi.sv_mvp[0].col - bsi.sv_mvp[1].col))>>3); vp8_cal_step_param(sr, &bsi.sv_istep[0]); sr = MAXF((abs(bsi.sv_mvp[2].row - bsi.sv_mvp[3].row))>>3, (abs(bsi.sv_mvp[2].col - bsi.sv_mvp[3].col))>>3); vp8_cal_step_param(sr, &bsi.sv_istep[1]); vp8_rd_check_segment(cpi, x, &bsi, BLOCK_16X8); } /* If 8x8 is better than 16x8/8x16, then do 4x4 search */ /* Not skip 4x4 if speed=0 (good quality) */ if (cpi->sf.no_skip_block4x4_search || bsi.segment_num == BLOCK_8X8) /* || (sv_segment_rd8x8-bsi.segment_rd) < sv_segment_rd8x8>>5) */ { bsi.mvp = &bsi.sv_mvp[0]; vp8_rd_check_segment(cpi, x, &bsi, BLOCK_4X4); } /* restore UMV window */ x->mv_col_min = tmp_col_min; x->mv_col_max = tmp_col_max; x->mv_row_min = tmp_row_min; x->mv_row_max = tmp_row_max; } } /* set it to the best */ for (i = 0; i < 16; i++) { BLOCKD *bd = &x->e_mbd.block[i]; bd->bmi.mv.as_mv = bsi.mvs[i].as_mv; bd->bmi.mode = bsi.modes[i]; bd->eob = bsi.eobs[i]; } *returntotrate = bsi.r; *returndistortion = bsi.d; *returnyrate = bsi.segment_yrate; /* save partitions */ x->e_mbd.mode_info_context->mbmi.partitioning = bsi.segment_num; x->partition_info->count = vp8_mbsplit_count[bsi.segment_num]; for (i = 0; i < x->partition_info->count; i++) { int j; j = vp8_mbsplit_offset2[bsi.segment_num][i]; x->partition_info->bmi[i].mode = x->e_mbd.block[j].bmi.mode; x->partition_info->bmi[i].mv.as_mv = x->e_mbd.block[j].bmi.mv.as_mv; } return bsi.segment_rd; } static void mv_bias(const MODE_INFO *x, int refframe, int_mv *mvp, const int *ref_frame_sign_bias) { MV xmv; xmv = x->mbmi.mv.as_mv; if (ref_frame_sign_bias[x->mbmi.ref_frame] != ref_frame_sign_bias[refframe]) { xmv.row *= -1; xmv.col *= -1; } mvp->as_mv = xmv; } static void lf_mv_bias(const int lf_ref_frame_sign_bias, int refframe, int_mv *mvp, const int *ref_frame_sign_bias) { MV xmv; xmv = mvp->as_mv; if (lf_ref_frame_sign_bias != ref_frame_sign_bias[refframe]) { xmv.row *= -1; xmv.col *= -1; } mvp->as_mv = xmv; } static void vp8_clamp_mv(MV *mv, const MACROBLOCKD *xd) { if (mv->col < (xd->mb_to_left_edge - LEFT_TOP_MARGIN)) mv->col = xd->mb_to_left_edge - LEFT_TOP_MARGIN; else if (mv->col > xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN) mv->col = xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN; if (mv->row < (xd->mb_to_top_edge - LEFT_TOP_MARGIN)) mv->row = xd->mb_to_top_edge - LEFT_TOP_MARGIN; else if (mv->row > xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN) mv->row = xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN; } static void swap(int *x,int *y) { int tmp; tmp = *x; *x = *y; *y = tmp; } static void quicksortmv(int arr[],int left, int right) { int lidx,ridx,pivot; lidx = left; ridx = right; if( left < right) { pivot = (left + right)/2; while(lidx <=pivot && ridx >=pivot) { while(arr[lidx] < arr[pivot] && lidx <= pivot) lidx++; while(arr[ridx] > arr[pivot] && ridx >= pivot) ridx--; swap(&arr[lidx], &arr[ridx]); lidx++; ridx--; if(lidx-1 == pivot) { ridx++; pivot = ridx; } else if(ridx+1 == pivot) { lidx--; pivot = lidx; } } quicksortmv(arr, left, pivot - 1); quicksortmv(arr, pivot + 1, right); } } static void quicksortsad(int arr[],int idx[], int left, int right) { int lidx,ridx,pivot; lidx = left; ridx = right; if( left < right) { pivot = (left + right)/2; while(lidx <=pivot && ridx >=pivot) { while(arr[lidx] < arr[pivot] && lidx <= pivot) lidx++; while(arr[ridx] > arr[pivot] && ridx >= pivot) ridx--; swap(&arr[lidx], &arr[ridx]); swap(&idx[lidx], &idx[ridx]); lidx++; ridx--; if(lidx-1 == pivot) { ridx++; pivot = ridx; } else if(ridx+1 == pivot) { lidx--; pivot = lidx; } } quicksortsad(arr, idx, left, pivot - 1); quicksortsad(arr, idx, pivot + 1, right); } } //The improved MV prediction static void vp8_mv_pred ( VP8_COMP *cpi, MACROBLOCKD *xd, const MODE_INFO *here, MV *mvp, int refframe, int *ref_frame_sign_bias, int *sr, int near_sadidx[] ) { const MODE_INFO *above = here - xd->mode_info_stride; const MODE_INFO *left = here - 1; const MODE_INFO *aboveleft = above - 1; int_mv near_mvs[7]; int near_ref[7]; int_mv mv; int vcnt=0; int find=0; int mb_offset; int mvx[7]; int mvy[7]; int i; mv.as_int = 0; if(here->mbmi.ref_frame != INTRA_FRAME) { near_mvs[0].as_int = near_mvs[1].as_int = near_mvs[2].as_int = near_mvs[3].as_int = near_mvs[4].as_int = near_mvs[5].as_int = near_mvs[6].as_int = 0; near_ref[0] = near_ref[1] = near_ref[2] = near_ref[3] = near_ref[4] = near_ref[5] = near_ref[6] = 0; // read in 3 nearby block's MVs from current frame as prediction candidates. if (above->mbmi.ref_frame != INTRA_FRAME) { near_mvs[vcnt].as_int = above->mbmi.mv.as_int; mv_bias(above, refframe, &near_mvs[vcnt], ref_frame_sign_bias); near_ref[vcnt] = above->mbmi.ref_frame; } vcnt++; if (left->mbmi.ref_frame != INTRA_FRAME) { near_mvs[vcnt].as_int = left->mbmi.mv.as_int; mv_bias(left, refframe, &near_mvs[vcnt], ref_frame_sign_bias); near_ref[vcnt] = left->mbmi.ref_frame; } vcnt++; if (aboveleft->mbmi.ref_frame != INTRA_FRAME) { near_mvs[vcnt].as_int = aboveleft->mbmi.mv.as_int; mv_bias(aboveleft, refframe, &near_mvs[vcnt], ref_frame_sign_bias); near_ref[vcnt] = aboveleft->mbmi.ref_frame; } vcnt++; // read in 4 nearby block's MVs from last frame. if(cpi->common.last_frame_type != KEY_FRAME) { mb_offset = (-xd->mb_to_top_edge/128 + 1) * (xd->mode_info_stride) + (-xd->mb_to_left_edge/128 +1) ; // current in last frame if (cpi->lf_ref_frame[mb_offset] != INTRA_FRAME) { near_mvs[vcnt].as_int = cpi->lfmv[mb_offset].as_int; lf_mv_bias(cpi->lf_ref_frame_sign_bias[mb_offset], refframe, &near_mvs[vcnt], ref_frame_sign_bias); near_ref[vcnt] = cpi->lf_ref_frame[mb_offset]; } vcnt++; // above in last frame if (cpi->lf_ref_frame[mb_offset - xd->mode_info_stride] != INTRA_FRAME) { near_mvs[vcnt].as_int = cpi->lfmv[mb_offset - xd->mode_info_stride].as_int; lf_mv_bias(cpi->lf_ref_frame_sign_bias[mb_offset - xd->mode_info_stride], refframe, &near_mvs[vcnt], ref_frame_sign_bias); near_ref[vcnt] = cpi->lf_ref_frame[mb_offset - xd->mode_info_stride]; } vcnt++; // left in last frame if (cpi->lf_ref_frame[mb_offset-1] != INTRA_FRAME) { near_mvs[vcnt].as_int = cpi->lfmv[mb_offset -1].as_int; lf_mv_bias(cpi->lf_ref_frame_sign_bias[mb_offset -1], refframe, &near_mvs[vcnt], ref_frame_sign_bias); near_ref[vcnt] = cpi->lf_ref_frame[mb_offset - 1]; } vcnt++; // aboveleft in last frame if (cpi->lf_ref_frame[mb_offset - xd->mode_info_stride -1] != INTRA_FRAME) { near_mvs[vcnt].as_int = cpi->lfmv[mb_offset - xd->mode_info_stride -1].as_int; lf_mv_bias(cpi->lf_ref_frame_sign_bias[mb_offset - xd->mode_info_stride -1], refframe, &near_mvs[vcnt], ref_frame_sign_bias); near_ref[vcnt] = cpi->lf_ref_frame[mb_offset - xd->mode_info_stride -1]; } vcnt++; } for(i=0; i< vcnt; i++) { if(near_ref[near_sadidx[i]] != INTRA_FRAME) { if(here->mbmi.ref_frame == near_ref[near_sadidx[i]]) { mv.as_int = near_mvs[near_sadidx[i]].as_int; find = 1; if(vcnt<2) *sr = 4; else if (vcnt<4) *sr = 3; else *sr = 2; break; } } } if(!find) { for(i=0; iblock[0]; BLOCKD *d = &x->e_mbd.block[0]; MACROBLOCKD *xd = &x->e_mbd; B_MODE_INFO best_bmodes[16]; MB_MODE_INFO best_mbmode; PARTITION_INFO best_partition; MV best_ref_mv; MV mode_mv[MB_MODE_COUNT]; MB_PREDICTION_MODE this_mode; int num00; int best_mode_index = 0; int i; int mode_index; int mdcounts[4]; int rate; int distortion; int best_rd = INT_MAX; // 1 << 30; int ref_frame_cost[MAX_REF_FRAMES]; int rate2, distortion2; int uv_intra_rate, uv_intra_distortion, uv_intra_rate_tokenonly; int rate_y, UNINITIALIZED_IS_SAFE(rate_uv); int distortion_uv; int best_yrd = INT_MAX; //int all_rds[MAX_MODES]; // Experimental debug code. //int all_rates[MAX_MODES]; //int all_dist[MAX_MODES]; //int intermodecost[MAX_MODES]; MB_PREDICTION_MODE uv_intra_mode; int force_no_skip = 0; MV mvp; int near_sad[7]; // 0-cf above, 1-cf left, 2-cf aboveleft, 3-lf current, 4-lf above, 5-lf left, 6-lf aboveleft int near_sadidx[7] = {0, 1, 2, 3, 4, 5, 6}; int saddone=0; int sr=0; //search range got from mv_pred(). It uses step_param levels. (0-7) MV frame_nearest_mv[4]; MV frame_near_mv[4]; MV frame_best_ref_mv[4]; int frame_mdcounts[4][4]; int frame_lf_or_gf[4]; unsigned char *y_buffer[4]; unsigned char *u_buffer[4]; unsigned char *v_buffer[4]; vpx_memset(&best_mbmode, 0, sizeof(best_mbmode)); if (cpi->ref_frame_flags & VP8_LAST_FLAG) { YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx]; vp8_find_near_mvs(&x->e_mbd, x->e_mbd.mode_info_context, &frame_nearest_mv[LAST_FRAME], &frame_near_mv[LAST_FRAME], &frame_best_ref_mv[LAST_FRAME], frame_mdcounts[LAST_FRAME], LAST_FRAME, cpi->common.ref_frame_sign_bias); y_buffer[LAST_FRAME] = lst_yv12->y_buffer + recon_yoffset; u_buffer[LAST_FRAME] = lst_yv12->u_buffer + recon_uvoffset; v_buffer[LAST_FRAME] = lst_yv12->v_buffer + recon_uvoffset; frame_lf_or_gf[LAST_FRAME] = 0; } if (cpi->ref_frame_flags & VP8_GOLD_FLAG) { YV12_BUFFER_CONFIG *gld_yv12 = &cpi->common.yv12_fb[cpi->common.gld_fb_idx]; vp8_find_near_mvs(&x->e_mbd, x->e_mbd.mode_info_context, &frame_nearest_mv[GOLDEN_FRAME], &frame_near_mv[GOLDEN_FRAME], &frame_best_ref_mv[GOLDEN_FRAME], frame_mdcounts[GOLDEN_FRAME], GOLDEN_FRAME, cpi->common.ref_frame_sign_bias); y_buffer[GOLDEN_FRAME] = gld_yv12->y_buffer + recon_yoffset; u_buffer[GOLDEN_FRAME] = gld_yv12->u_buffer + recon_uvoffset; v_buffer[GOLDEN_FRAME] = gld_yv12->v_buffer + recon_uvoffset; frame_lf_or_gf[GOLDEN_FRAME] = 1; } if (cpi->ref_frame_flags & VP8_ALT_FLAG) { YV12_BUFFER_CONFIG *alt_yv12 = &cpi->common.yv12_fb[cpi->common.alt_fb_idx]; vp8_find_near_mvs(&x->e_mbd, x->e_mbd.mode_info_context, &frame_nearest_mv[ALTREF_FRAME], &frame_near_mv[ALTREF_FRAME], &frame_best_ref_mv[ALTREF_FRAME], frame_mdcounts[ALTREF_FRAME], ALTREF_FRAME, cpi->common.ref_frame_sign_bias); y_buffer[ALTREF_FRAME] = alt_yv12->y_buffer + recon_yoffset; u_buffer[ALTREF_FRAME] = alt_yv12->u_buffer + recon_uvoffset; v_buffer[ALTREF_FRAME] = alt_yv12->v_buffer + recon_uvoffset; frame_lf_or_gf[ALTREF_FRAME] = 1; } *returnintra = INT_MAX; cpi->mbs_tested_so_far++; // Count of the number of MBs tested so far this frame x->skip = 0; ref_frame_cost[INTRA_FRAME] = vp8_cost_zero(cpi->prob_intra_coded); // Special case treatment when GF and ARF are not sensible options for reference if (cpi->ref_frame_flags == VP8_LAST_FLAG) { ref_frame_cost[LAST_FRAME] = vp8_cost_one(cpi->prob_intra_coded) + vp8_cost_zero(255); ref_frame_cost[GOLDEN_FRAME] = vp8_cost_one(cpi->prob_intra_coded) + vp8_cost_one(255) + vp8_cost_zero(128); ref_frame_cost[ALTREF_FRAME] = vp8_cost_one(cpi->prob_intra_coded) + vp8_cost_one(255) + vp8_cost_one(128); } else { ref_frame_cost[LAST_FRAME] = vp8_cost_one(cpi->prob_intra_coded) + vp8_cost_zero(cpi->prob_last_coded); ref_frame_cost[GOLDEN_FRAME] = vp8_cost_one(cpi->prob_intra_coded) + vp8_cost_one(cpi->prob_last_coded) + vp8_cost_zero(cpi->prob_gf_coded); ref_frame_cost[ALTREF_FRAME] = vp8_cost_one(cpi->prob_intra_coded) + vp8_cost_one(cpi->prob_last_coded) + vp8_cost_one(cpi->prob_gf_coded); } vpx_memset(mode_mv, 0, sizeof(mode_mv)); x->e_mbd.mode_info_context->mbmi.ref_frame = INTRA_FRAME; vp8_rd_pick_intra_mbuv_mode(cpi, x, &uv_intra_rate, &uv_intra_rate_tokenonly, &uv_intra_distortion); uv_intra_mode = x->e_mbd.mode_info_context->mbmi.uv_mode; for (mode_index = 0; mode_index < MAX_MODES; mode_index++) { int this_rd = INT_MAX; int lf_or_gf = 0; // Lat Frame (01) or gf/arf (1) int disable_skip = 0; int other_cost = 0; force_no_skip = 0; // Experimental debug code. // Record of rd values recorded for this MB. -1 indicates not measured //all_rds[mode_index] = -1; //all_rates[mode_index] = -1; //all_dist[mode_index] = -1; //intermodecost[mode_index] = -1; // Test best rd so far against threshold for trying this mode. if (best_rd <= cpi->rd_threshes[mode_index]) continue; // These variables hold are rolling total cost and distortion for this mode rate2 = 0; distortion2 = 0; this_mode = vp8_mode_order[mode_index]; x->e_mbd.mode_info_context->mbmi.mode = this_mode; x->e_mbd.mode_info_context->mbmi.uv_mode = DC_PRED; x->e_mbd.mode_info_context->mbmi.ref_frame = vp8_ref_frame_order[mode_index]; // Only consider ZEROMV/ALTREF_FRAME for alt ref frame, // unless ARNR filtering is enabled in which case we want // an unfiltered alternative //if (cpi->is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames > 0)) if (cpi->is_src_frame_alt_ref) { if (this_mode != ZEROMV || x->e_mbd.mode_info_context->mbmi.ref_frame != ALTREF_FRAME) continue; } /* everything but intra */ if (x->e_mbd.mode_info_context->mbmi.ref_frame) { x->e_mbd.pre.y_buffer = y_buffer[x->e_mbd.mode_info_context->mbmi.ref_frame]; x->e_mbd.pre.u_buffer = u_buffer[x->e_mbd.mode_info_context->mbmi.ref_frame]; x->e_mbd.pre.v_buffer = v_buffer[x->e_mbd.mode_info_context->mbmi.ref_frame]; mode_mv[NEARESTMV] = frame_nearest_mv[x->e_mbd.mode_info_context->mbmi.ref_frame]; mode_mv[NEARMV] = frame_near_mv[x->e_mbd.mode_info_context->mbmi.ref_frame]; best_ref_mv = frame_best_ref_mv[x->e_mbd.mode_info_context->mbmi.ref_frame]; vpx_memcpy(mdcounts, frame_mdcounts[x->e_mbd.mode_info_context->mbmi.ref_frame], sizeof(mdcounts)); lf_or_gf = frame_lf_or_gf[x->e_mbd.mode_info_context->mbmi.ref_frame]; } if(x->e_mbd.mode_info_context->mbmi.mode == NEWMV) { if(!saddone) { //calculate sad for current frame 3 nearby MBs. if( xd->mb_to_top_edge==0 && xd->mb_to_left_edge ==0) { near_sad[0] = near_sad[1] = near_sad[2] = INT_MAX; }else if(xd->mb_to_top_edge==0) { //only has left MB for sad calculation. near_sad[0] = near_sad[2] = INT_MAX; near_sad[1] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, xd->dst.y_buffer - 16,xd->dst.y_stride, 0x7fffffff); }else if(xd->mb_to_left_edge ==0) { //only has left MB for sad calculation. near_sad[1] = near_sad[2] = INT_MAX; near_sad[0] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, xd->dst.y_buffer - xd->dst.y_stride *16,xd->dst.y_stride, 0x7fffffff); }else { near_sad[0] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, xd->dst.y_buffer - xd->dst.y_stride *16,xd->dst.y_stride, 0x7fffffff); near_sad[1] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, xd->dst.y_buffer - 16,xd->dst.y_stride, 0x7fffffff); near_sad[2] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, xd->dst.y_buffer - xd->dst.y_stride *16 -16,xd->dst.y_stride, 0x7fffffff); } if(cpi->common.last_frame_type != KEY_FRAME) { //calculate sad for last frame 4 nearby MBs. unsigned char *pre_y_buffer = cpi->common.yv12_fb[cpi->common.lst_fb_idx].y_buffer + recon_yoffset; int pre_y_stride = cpi->common.yv12_fb[cpi->common.lst_fb_idx].y_stride; if( xd->mb_to_top_edge==0 && xd->mb_to_left_edge ==0) { near_sad[4] = near_sad[5] = near_sad[6] = INT_MAX; near_sad[3] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, pre_y_buffer, pre_y_stride, 0x7fffffff); }else if(xd->mb_to_top_edge==0) { //only has left MB for sad calculation. near_sad[4] = near_sad[6] = INT_MAX; near_sad[3] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, pre_y_buffer, pre_y_stride, 0x7fffffff); near_sad[5] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, pre_y_buffer - 16, pre_y_stride, 0x7fffffff); }else if(xd->mb_to_left_edge ==0) { //only has left MB for sad calculation. near_sad[5] = near_sad[6] = INT_MAX; near_sad[3] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, pre_y_buffer, pre_y_stride, 0x7fffffff); near_sad[4] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, pre_y_buffer - pre_y_stride *16, pre_y_stride, 0x7fffffff); }else { near_sad[3] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, pre_y_buffer, pre_y_stride, 0x7fffffff); near_sad[4] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, pre_y_buffer - pre_y_stride *16, pre_y_stride, 0x7fffffff); near_sad[5] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, pre_y_buffer - 16, pre_y_stride, 0x7fffffff); near_sad[6] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, pre_y_buffer - pre_y_stride *16 -16, pre_y_stride, 0x7fffffff); } } if(cpi->common.last_frame_type != KEY_FRAME) { quicksortsad(near_sad, near_sadidx, 0, 6); }else { quicksortsad(near_sad, near_sadidx, 0, 2); } saddone = 1; } vp8_mv_pred(cpi, &x->e_mbd, x->e_mbd.mode_info_context, &mvp, x->e_mbd.mode_info_context->mbmi.ref_frame, cpi->common.ref_frame_sign_bias, &sr, &near_sadidx[0]); /* adjust mvp to make sure it is within MV range */ if(mvp.row > best_ref_mv.row + MAX_FULL_PEL_VAL) mvp.row = best_ref_mv.row + MAX_FULL_PEL_VAL; else if(mvp.row < best_ref_mv.row - MAX_FULL_PEL_VAL) mvp.row = best_ref_mv.row - MAX_FULL_PEL_VAL; if(mvp.col > best_ref_mv.col + MAX_FULL_PEL_VAL) mvp.col = best_ref_mv.col + MAX_FULL_PEL_VAL; else if(mvp.col < best_ref_mv.col - MAX_FULL_PEL_VAL) mvp.col = best_ref_mv.col - MAX_FULL_PEL_VAL; } // Check to see if the testing frequency for this mode is at its max // If so then prevent it from being tested and increase the threshold for its testing if (cpi->mode_test_hit_counts[mode_index] && (cpi->mode_check_freq[mode_index] > 1)) { if (cpi->mbs_tested_so_far <= cpi->mode_check_freq[mode_index] * cpi->mode_test_hit_counts[mode_index]) { // Increase the threshold for coding this mode to make it less likely to be chosen cpi->rd_thresh_mult[mode_index] += 4; if (cpi->rd_thresh_mult[mode_index] > MAX_THRESHMULT) cpi->rd_thresh_mult[mode_index] = MAX_THRESHMULT; cpi->rd_threshes[mode_index] = (cpi->rd_baseline_thresh[mode_index] >> 7) * cpi->rd_thresh_mult[mode_index]; continue; } } // We have now reached the point where we are going to test the current mode so increment the counter for the number of times it has been tested cpi->mode_test_hit_counts[mode_index] ++; // Experimental code. Special case for gf and arf zeromv modes. Increase zbin size to supress noise if (cpi->zbin_mode_boost_enabled) { if ( vp8_ref_frame_order[mode_index] == INTRA_FRAME ) cpi->zbin_mode_boost = 0; else { if (vp8_mode_order[mode_index] == ZEROMV) { if (vp8_ref_frame_order[mode_index] != LAST_FRAME) cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST; else cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST; } else if (vp8_ref_frame_order[mode_index] == SPLITMV) cpi->zbin_mode_boost = 0; else cpi->zbin_mode_boost = MV_ZBIN_BOOST; } vp8cx_mb_init_quantizer(cpi, x); } switch (this_mode) { case B_PRED: for (i = 0; i < 16; i++) { vpx_memset(&x->e_mbd.block[i].bmi, 0, sizeof(B_MODE_INFO)); } // Note the rate value returned here includes the cost of coding the BPRED mode : x->mbmode_cost[x->e_mbd.frame_type][BPRED]; vp8_rd_pick_intra4x4mby_modes(cpi, x, &rate, &rate_y, &distortion); rate2 += rate; distortion2 += distortion; rate2 += uv_intra_rate; rate_uv = uv_intra_rate_tokenonly; distortion2 += uv_intra_distortion; distortion_uv = uv_intra_distortion; break; case SPLITMV: { int tmp_rd; int this_rd_thresh; this_rd_thresh = (x->e_mbd.mode_info_context->mbmi.ref_frame == LAST_FRAME) ? cpi->rd_threshes[THR_NEWMV] : cpi->rd_threshes[THR_NEWA]; this_rd_thresh = (x->e_mbd.mode_info_context->mbmi.ref_frame == GOLDEN_FRAME) ? cpi->rd_threshes[THR_NEWG]: this_rd_thresh; tmp_rd = vp8_rd_pick_best_mbsegmentation(cpi, x, &best_ref_mv, best_yrd, mdcounts, &rate, &rate_y, &distortion, this_rd_thresh) ; rate2 += rate; distortion2 += distortion; // If even the 'Y' rd value of split is higher than best so far then dont bother looking at UV if (tmp_rd < best_yrd) { // Now work out UV cost and add it in vp8_rd_inter_uv(cpi, x, &rate_uv, &distortion_uv, cpi->common.full_pixel); rate2 += rate_uv; distortion2 += distortion_uv; } else { this_rd = INT_MAX; disable_skip = 1; } } break; case DC_PRED: case V_PRED: case H_PRED: case TM_PRED: for (i = 0; i < 16; i++) { vpx_memset(&x->e_mbd.block[i].bmi, 0, sizeof(B_MODE_INFO)); } x->e_mbd.mode_info_context->mbmi.ref_frame = INTRA_FRAME; vp8_build_intra_predictors_mby_ptr(&x->e_mbd); { macro_block_yrd(x, &rate_y, &distortion, IF_RTCD(&cpi->rtcd.encodemb)) ; rate2 += rate_y; distortion2 += distortion; rate2 += x->mbmode_cost[x->e_mbd.frame_type][x->e_mbd.mode_info_context->mbmi.mode]; rate2 += uv_intra_rate; rate_uv = uv_intra_rate_tokenonly; distortion2 += uv_intra_distortion; distortion_uv = uv_intra_distortion; } break; case NEWMV: // Decrement full search counter if (cpi->check_freq[lf_or_gf] > 0) cpi->check_freq[lf_or_gf] --; { int thissme; int bestsme = INT_MAX; int step_param = cpi->sf.first_step; int search_range; int further_steps; int n; int col_min = (best_ref_mv.col - MAX_FULL_PEL_VAL) >>3; int col_max = (best_ref_mv.col + MAX_FULL_PEL_VAL) >>3; int row_min = (best_ref_mv.row - MAX_FULL_PEL_VAL) >>3; int row_max = (best_ref_mv.row + MAX_FULL_PEL_VAL) >>3; int tmp_col_min = x->mv_col_min; int tmp_col_max = x->mv_col_max; int tmp_row_min = x->mv_row_min; int tmp_row_max = x->mv_row_max; // Get intersection of UMV window and valid MV window to reduce # of checks in diamond search. if (x->mv_col_min < col_min ) x->mv_col_min = col_min; if (x->mv_col_max > col_max ) x->mv_col_max = col_max; if (x->mv_row_min < row_min ) x->mv_row_min = row_min; if (x->mv_row_max > row_max ) x->mv_row_max = row_max; //adjust search range according to sr from mv prediction if(sr > step_param) step_param = sr; // Work out how long a search we should do search_range = MAXF(abs(best_ref_mv.col), abs(best_ref_mv.row)) >> 3; if (search_range >= x->vector_range) x->vector_range = search_range; else if (x->vector_range > cpi->sf.min_fs_radius) x->vector_range--; // Initial step/diamond search { int sadpb = x->sadperbit16; if (cpi->sf.search_method == HEX) { bestsme = vp8_hex_search(x, b, d, &best_ref_mv, &d->bmi.mv.as_mv, step_param, sadpb/*x->errorperbit*/, &num00, &cpi->fn_ptr[BLOCK_16X16], x->mvsadcost, x->mvcost); mode_mv[NEWMV].row = d->bmi.mv.as_mv.row; mode_mv[NEWMV].col = d->bmi.mv.as_mv.col; } else { bestsme = cpi->diamond_search_sad(x, b, d, &mvp, &d->bmi.mv.as_mv, step_param, sadpb / 2/*x->errorperbit*/, &num00, &cpi->fn_ptr[BLOCK_16X16], x->mvsadcost, x->mvcost, &best_ref_mv); //sadpb < 9 mode_mv[NEWMV].row = d->bmi.mv.as_mv.row; mode_mv[NEWMV].col = d->bmi.mv.as_mv.col; // Further step/diamond searches as necessary n = 0; further_steps = (cpi->sf.max_step_search_steps - 1) - step_param; n = num00; num00 = 0; while (n < further_steps) { n++; if (num00) num00--; else { thissme = cpi->diamond_search_sad(x, b, d, &mvp, &d->bmi.mv.as_mv, step_param + n, sadpb / 4/*x->errorperbit*/, &num00, &cpi->fn_ptr[BLOCK_16X16], x->mvsadcost, x->mvcost, &best_ref_mv); //sadpb = 9 if (thissme < bestsme) { bestsme = thissme; mode_mv[NEWMV].row = d->bmi.mv.as_mv.row; mode_mv[NEWMV].col = d->bmi.mv.as_mv.col; } else { d->bmi.mv.as_mv.row = mode_mv[NEWMV].row; d->bmi.mv.as_mv.col = mode_mv[NEWMV].col; } } } } } // Should we do a full search if (!cpi->check_freq[lf_or_gf] || cpi->do_full[lf_or_gf]) { int thissme; int full_flag_thresh = 0; MV full_mvp; full_mvp.row = d->bmi.mv.as_mv.row <<3; // use diamond search result as full search staring point full_mvp.col = d->bmi.mv.as_mv.col <<3; // Update x->vector_range based on best vector found in step search search_range = MAXF(abs((mvp.row>>3) - d->bmi.mv.as_mv.row), abs((mvp.col>>3) - d->bmi.mv.as_mv.col)); //search_range *= 1.4; //didn't improve PSNR if (search_range > x->vector_range) x->vector_range = search_range; else search_range = x->vector_range; // Apply limits search_range = (search_range > cpi->sf.max_fs_radius) ? cpi->sf.max_fs_radius : search_range; //add this to reduce full search range. if(sr<=3 && search_range > 8) search_range = 8; { int sadpb = x->sadperbit16 >> 2; thissme = cpi->full_search_sad(x, b, d, &full_mvp, sadpb, search_range, &cpi->fn_ptr[BLOCK_16X16], x->mvcost, x->mvsadcost,&best_ref_mv); } // Barrier threshold to initiating full search // full_flag_thresh = 10 + (thissme >> 7); if ((thissme + full_flag_thresh) < bestsme) { cpi->do_full[lf_or_gf] ++; bestsme = thissme; } else if (thissme < bestsme) bestsme = thissme; else { cpi->do_full[lf_or_gf] = cpi->do_full[lf_or_gf] >> 1; cpi->check_freq[lf_or_gf] = cpi->sf.full_freq[lf_or_gf]; // The full search result is actually worse so re-instate the previous best vector d->bmi.mv.as_mv.row = mode_mv[NEWMV].row; d->bmi.mv.as_mv.col = mode_mv[NEWMV].col; } } x->mv_col_min = tmp_col_min; x->mv_col_max = tmp_col_max; x->mv_row_min = tmp_row_min; x->mv_row_max = tmp_row_max; if (bestsme < INT_MAX) // cpi->find_fractional_mv_step(x,b,d,&d->bmi.mv.as_mv,&best_ref_mv,x->errorperbit/2,cpi->fn_ptr.svf,cpi->fn_ptr.vf,x->mvcost); // normal mvc=11 cpi->find_fractional_mv_step(x, b, d, &d->bmi.mv.as_mv, &best_ref_mv, x->errorperbit / 4, &cpi->fn_ptr[BLOCK_16X16], x->mvcost); mode_mv[NEWMV].row = d->bmi.mv.as_mv.row; mode_mv[NEWMV].col = d->bmi.mv.as_mv.col; // Add the new motion vector cost to our rolling cost variable rate2 += vp8_mv_bit_cost(&mode_mv[NEWMV], &best_ref_mv, x->mvcost, 96); } case NEARESTMV: case NEARMV: // Clip "next_nearest" so that it does not extend to far out of image if (mode_mv[this_mode].col < (xd->mb_to_left_edge - LEFT_TOP_MARGIN)) mode_mv[this_mode].col = xd->mb_to_left_edge - LEFT_TOP_MARGIN; else if (mode_mv[this_mode].col > xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN) mode_mv[this_mode].col = xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN; if (mode_mv[this_mode].row < (xd->mb_to_top_edge - LEFT_TOP_MARGIN)) mode_mv[this_mode].row = xd->mb_to_top_edge - LEFT_TOP_MARGIN; else if (mode_mv[this_mode].row > xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN) mode_mv[this_mode].row = xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN; // Do not bother proceeding if the vector (from newmv,nearest or near) is 0,0 as this should then be coded using the zeromv mode. if (((this_mode == NEARMV) || (this_mode == NEARESTMV)) && ((mode_mv[this_mode].row == 0) && (mode_mv[this_mode].col == 0))) continue; case ZEROMV: mv_selected: // Trap vectors that reach beyond the UMV borders // Note that ALL New MV, Nearest MV Near MV and Zero MV code drops through to this point // because of the lack of break statements in the previous two cases. if (((mode_mv[this_mode].row >> 3) < x->mv_row_min) || ((mode_mv[this_mode].row >> 3) > x->mv_row_max) || ((mode_mv[this_mode].col >> 3) < x->mv_col_min) || ((mode_mv[this_mode].col >> 3) > x->mv_col_max)) continue; vp8_set_mbmode_and_mvs(x, this_mode, &mode_mv[this_mode]); vp8_build_inter_predictors_mby(&x->e_mbd); if (cpi->active_map_enabled && x->active_ptr[0] == 0) { x->skip = 1; } else if (x->encode_breakout) { int sum, sse; VARIANCE_INVOKE(&cpi->rtcd.variance, get16x16var) (x->src.y_buffer, x->src.y_stride, x->e_mbd.predictor, 16, (unsigned int *)(&sse), &sum); if (sse < x->encode_breakout) { // Check u and v to make sure skip is ok int sse2 = 0; // add dc check if (abs(sum) < (cpi->common.Y2dequant[0][0] << 2)) { sse2 = VP8_UVSSE(x, IF_RTCD(&cpi->rtcd.variance)); if (sse2 * 2 < x->encode_breakout) { x->skip = 1; distortion2 = sse + sse2; rate2 = 500; /* for best_yrd calculation */ rate_uv = 0; distortion_uv = sse2; disable_skip = 1; this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); break; } } } } //intermodecost[mode_index] = vp8_cost_mv_ref(this_mode, mdcounts); // Experimental debug code // Add in the Mv/mode cost rate2 += vp8_cost_mv_ref(this_mode, mdcounts); // Y cost and distortion macro_block_yrd(x, &rate_y, &distortion, IF_RTCD(&cpi->rtcd.encodemb)); rate2 += rate_y; distortion2 += distortion; // UV cost and distortion vp8_rd_inter_uv(cpi, x, &rate_uv, &distortion_uv, cpi->common.full_pixel); rate2 += rate_uv; distortion2 += distortion_uv; break; default: break; } // Where skip is allowable add in the default per mb cost for the no skip case. // where we then decide to skip we have to delete this and replace it with the // cost of signallying a skip if (cpi->common.mb_no_coeff_skip) { other_cost += vp8_cost_bit(cpi->prob_skip_false, 0); rate2 += other_cost; } // Estimate the reference frame signaling cost and add it to the rolling cost variable. rate2 += ref_frame_cost[x->e_mbd.mode_info_context->mbmi.ref_frame]; if (!disable_skip) { // Test for the condition where skip block will be activated because there are no non zero coefficients and make any necessary adjustment for rate if (cpi->common.mb_no_coeff_skip) { int tteob; tteob = 0; for (i = 0; i <= 24; i++) { tteob += x->e_mbd.block[i].eob; } if (tteob == 0) { rate2 -= (rate_y + rate_uv); //for best_yrd calculation rate_uv = 0; // Back out no skip flag costing and add in skip flag costing if (cpi->prob_skip_false) { int prob_skip_cost; prob_skip_cost = vp8_cost_bit(cpi->prob_skip_false, 1); prob_skip_cost -= vp8_cost_bit(cpi->prob_skip_false, 0); rate2 += prob_skip_cost; other_cost += prob_skip_cost; } } } // Calculate the final RD estimate for this mode this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); } // Experimental debug code. //all_rds[mode_index] = this_rd; //all_rates[mode_index] = rate2; //all_dist[mode_index] = distortion2; if ((x->e_mbd.mode_info_context->mbmi.ref_frame == INTRA_FRAME) && (this_rd < *returnintra)) { *returnintra = this_rd ; } // Did this mode help.. i.i is it the new best mode if (this_rd < best_rd || x->skip) { // Note index of best mode so far best_mode_index = mode_index; x->e_mbd.mode_info_context->mbmi.force_no_skip = force_no_skip; if (this_mode <= B_PRED) { x->e_mbd.mode_info_context->mbmi.uv_mode = uv_intra_mode; } other_cost += ref_frame_cost[x->e_mbd.mode_info_context->mbmi.ref_frame]; /* Calculate the final y RD estimate for this mode */ best_yrd = RDCOST(x->rdmult, x->rddiv, (rate2-rate_uv-other_cost), (distortion2-distortion_uv)); *returnrate = rate2; *returndistortion = distortion2; best_rd = this_rd; vpx_memcpy(&best_mbmode, &x->e_mbd.mode_info_context->mbmi, sizeof(MB_MODE_INFO)); vpx_memcpy(&best_partition, x->partition_info, sizeof(PARTITION_INFO)); for (i = 0; i < 16; i++) { vpx_memcpy(&best_bmodes[i], &x->e_mbd.block[i].bmi, sizeof(B_MODE_INFO)); } // Testing this mode gave rise to an improvement in best error score. Lower threshold a bit for next time cpi->rd_thresh_mult[mode_index] = (cpi->rd_thresh_mult[mode_index] >= (MIN_THRESHMULT + 2)) ? cpi->rd_thresh_mult[mode_index] - 2 : MIN_THRESHMULT; cpi->rd_threshes[mode_index] = (cpi->rd_baseline_thresh[mode_index] >> 7) * cpi->rd_thresh_mult[mode_index]; } // If the mode did not help improve the best error case then raise the threshold for testing that mode next time around. else { cpi->rd_thresh_mult[mode_index] += 4; if (cpi->rd_thresh_mult[mode_index] > MAX_THRESHMULT) cpi->rd_thresh_mult[mode_index] = MAX_THRESHMULT; cpi->rd_threshes[mode_index] = (cpi->rd_baseline_thresh[mode_index] >> 7) * cpi->rd_thresh_mult[mode_index]; } if (x->skip) break; } // Reduce the activation RD thresholds for the best choice mode if ((cpi->rd_baseline_thresh[best_mode_index] > 0) && (cpi->rd_baseline_thresh[best_mode_index] < (INT_MAX >> 2))) { int best_adjustment = (cpi->rd_thresh_mult[best_mode_index] >> 2); cpi->rd_thresh_mult[best_mode_index] = (cpi->rd_thresh_mult[best_mode_index] >= (MIN_THRESHMULT + best_adjustment)) ? cpi->rd_thresh_mult[best_mode_index] - best_adjustment : MIN_THRESHMULT; cpi->rd_threshes[best_mode_index] = (cpi->rd_baseline_thresh[best_mode_index] >> 7) * cpi->rd_thresh_mult[best_mode_index]; // If we chose a split mode then reset the new MV thresholds as well /*if ( vp8_mode_order[best_mode_index] == SPLITMV ) { best_adjustment = 4; //(cpi->rd_thresh_mult[THR_NEWMV] >> 4); cpi->rd_thresh_mult[THR_NEWMV] = (cpi->rd_thresh_mult[THR_NEWMV] >= (MIN_THRESHMULT+best_adjustment)) ? cpi->rd_thresh_mult[THR_NEWMV]-best_adjustment: MIN_THRESHMULT; cpi->rd_threshes[THR_NEWMV] = (cpi->rd_baseline_thresh[THR_NEWMV] >> 7) * cpi->rd_thresh_mult[THR_NEWMV]; best_adjustment = 4; //(cpi->rd_thresh_mult[THR_NEWG] >> 4); cpi->rd_thresh_mult[THR_NEWG] = (cpi->rd_thresh_mult[THR_NEWG] >= (MIN_THRESHMULT+best_adjustment)) ? cpi->rd_thresh_mult[THR_NEWG]-best_adjustment: MIN_THRESHMULT; cpi->rd_threshes[THR_NEWG] = (cpi->rd_baseline_thresh[THR_NEWG] >> 7) * cpi->rd_thresh_mult[THR_NEWG]; best_adjustment = 4; //(cpi->rd_thresh_mult[THR_NEWA] >> 4); cpi->rd_thresh_mult[THR_NEWA] = (cpi->rd_thresh_mult[THR_NEWA] >= (MIN_THRESHMULT+best_adjustment)) ? cpi->rd_thresh_mult[THR_NEWA]-best_adjustment: MIN_THRESHMULT; cpi->rd_threshes[THR_NEWA] = (cpi->rd_baseline_thresh[THR_NEWA] >> 7) * cpi->rd_thresh_mult[THR_NEWA]; }*/ } // If we have chosen new mv or split then decay the full search check count more quickly. if ((vp8_mode_order[best_mode_index] == NEWMV) || (vp8_mode_order[best_mode_index] == SPLITMV)) { int lf_or_gf = (vp8_ref_frame_order[best_mode_index] == LAST_FRAME) ? 0 : 1; if (cpi->check_freq[lf_or_gf] && !cpi->do_full[lf_or_gf]) { cpi->check_freq[lf_or_gf] --; } } // Keep a record of best mode index that we chose cpi->last_best_mode_index = best_mode_index; // Note how often each mode chosen as best cpi->mode_chosen_counts[best_mode_index] ++; if (cpi->is_src_frame_alt_ref && (best_mbmode.mode != ZEROMV || best_mbmode.ref_frame != ALTREF_FRAME)) { best_mbmode.mode = ZEROMV; best_mbmode.ref_frame = ALTREF_FRAME; best_mbmode.mv.as_int = 0; best_mbmode.uv_mode = 0; best_mbmode.mb_skip_coeff = (cpi->common.mb_no_coeff_skip) ? 1 : 0; best_mbmode.partitioning = 0; best_mbmode.dc_diff = 0; vpx_memcpy(&x->e_mbd.mode_info_context->mbmi, &best_mbmode, sizeof(MB_MODE_INFO)); vpx_memcpy(x->partition_info, &best_partition, sizeof(PARTITION_INFO)); for (i = 0; i < 16; i++) { vpx_memset(&x->e_mbd.block[i].bmi, 0, sizeof(B_MODE_INFO)); } x->e_mbd.mode_info_context->mbmi.mv.as_int = 0; return best_rd; } // macroblock modes vpx_memcpy(&x->e_mbd.mode_info_context->mbmi, &best_mbmode, sizeof(MB_MODE_INFO)); vpx_memcpy(x->partition_info, &best_partition, sizeof(PARTITION_INFO)); for (i = 0; i < 16; i++) { vpx_memcpy(&x->e_mbd.block[i].bmi, &best_bmodes[i], sizeof(B_MODE_INFO)); } x->e_mbd.mode_info_context->mbmi.mv.as_mv = x->e_mbd.block[15].bmi.mv.as_mv; return best_rd; } #endif