#!/usr/bin/python ## ## Copyright (c) 2016, Alliance for Open Media. All rights reserved ## ## This source code is subject to the terms of the BSD 2 Clause License and ## the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License ## was not distributed with this source code in the LICENSE file, you can ## obtain it at www.aomedia.org/license/software. If the Alliance for Open ## Media Patent License 1.0 was not distributed with this source code in the ## PATENTS file, you can obtain it at www.aomedia.org/license/patent. ## """Generate the probability model for the constrained token set. Model obtained from a 2-sided zero-centered distribution derived from a Pareto distribution. The cdf of the distribution is: cdf(x) = 0.5 + 0.5 * sgn(x) * [1 - {alpha/(alpha + |x|)} ^ beta] For a given beta and a given probability of the 1-node, the alpha is first solved, and then the {alpha, beta} pair is used to generate the probabilities for the rest of the nodes. """ import heapq import sys import numpy as np import scipy.optimize import scipy.stats def cdf_spareto(x, xm, beta): p = 1 - (xm / (np.abs(x) + xm))**beta p = 0.5 + 0.5 * np.sign(x) * p return p def get_spareto(p, beta): cdf = cdf_spareto def func(x): return ((cdf(1.5, x, beta) - cdf(0.5, x, beta)) / (1 - cdf(0.5, x, beta)) - p)**2 alpha = scipy.optimize.fminbound(func, 1e-12, 10000, xtol=1e-12) parray = np.zeros(11) parray[0] = 2 * (cdf(0.5, alpha, beta) - 0.5) parray[1] = (2 * (cdf(1.5, alpha, beta) - cdf(0.5, alpha, beta))) parray[2] = (2 * (cdf(2.5, alpha, beta) - cdf(1.5, alpha, beta))) parray[3] = (2 * (cdf(3.5, alpha, beta) - cdf(2.5, alpha, beta))) parray[4] = (2 * (cdf(4.5, alpha, beta) - cdf(3.5, alpha, beta))) parray[5] = (2 * (cdf(6.5, alpha, beta) - cdf(4.5, alpha, beta))) parray[6] = (2 * (cdf(10.5, alpha, beta) - cdf(6.5, alpha, beta))) parray[7] = (2 * (cdf(18.5, alpha, beta) - cdf(10.5, alpha, beta))) parray[8] = (2 * (cdf(34.5, alpha, beta) - cdf(18.5, alpha, beta))) parray[9] = (2 * (cdf(66.5, alpha, beta) - cdf(34.5, alpha, beta))) parray[10] = 2 * (1. - cdf(66.5, alpha, beta)) return parray def quantize_probs(p, save_first_bin, bits): """Quantize probability precisely. Quantize probabilities minimizing dH (Kullback-Leibler divergence) approximated by: sum (p_i-q_i)^2/p_i. References: https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence https://github.com/JarekDuda/AsymmetricNumeralSystemsToolkit """ num_sym = p.size p = np.clip(p, 1e-16, 1) L = 2**bits pL = p * L ip = 1. / p # inverse probability q = np.clip(np.round(pL), 1, L + 1 - num_sym) quant_err = (pL - q)**2 * ip sgn = np.sign(L - q.sum()) # direction of correction if sgn != 0: # correction is needed v = [] # heap of adjustment results (adjustment err, index) of each symbol for i in range(1 if save_first_bin else 0, num_sym): q_adj = q[i] + sgn if q_adj > 0 and q_adj < L: adj_err = (pL[i] - q_adj)**2 * ip[i] - quant_err[i] heapq.heappush(v, (adj_err, i)) while q.sum() != L: # apply lowest error adjustment (adj_err, i) = heapq.heappop(v) quant_err[i] += adj_err q[i] += sgn # calculate the cost of adjusting this symbol again q_adj = q[i] + sgn if q_adj > 0 and q_adj < L: adj_err = (pL[i] - q_adj)**2 * ip[i] - quant_err[i] heapq.heappush(v, (adj_err, i)) return q def get_quantized_spareto(p, beta, bits): parray = get_spareto(p, beta) parray = parray[1:] / (1 - parray[0]) qarray = quantize_probs(parray, True, bits) return qarray.astype(np.int) def main(bits=8): beta = 8 for q in range(1, 256): parray = get_quantized_spareto(q / 256., beta, bits) assert parray.sum() == 2**bits print '{', ', '.join('%d' % i for i in parray), '},' if __name__ == '__main__': if len(sys.argv) > 1: main(int(sys.argv[1])) else: main()