/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include // qsort() #include "./aom_config.h" #include "./aom_dsp_rtcd.h" #include "./aom_scale_rtcd.h" #include "./av1_rtcd.h" #include "aom/aom_codec.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/bitreader.h" #include "aom_dsp/bitreader_buffer.h" #include "aom_mem/aom_mem.h" #include "aom_ports/mem.h" #include "aom_ports/mem_ops.h" #include "aom_scale/aom_scale.h" #include "aom_util/aom_thread.h" #include "av1/common/alloccommon.h" #if CONFIG_CLPF #include "aom/aom_image.h" #include "av1/common/clpf.h" #endif #include "av1/common/common.h" #if CONFIG_DERING #include "av1/common/dering.h" #endif // CONFIG_DERING #include "av1/common/entropy.h" #include "av1/common/entropymode.h" #include "av1/common/idct.h" #include "av1/common/pred_common.h" #include "av1/common/quant_common.h" #include "av1/common/reconinter.h" #include "av1/common/reconintra.h" #include "av1/common/seg_common.h" #include "av1/common/thread_common.h" #include "av1/common/tile_common.h" #include "av1/decoder/decodeframe.h" #include "av1/decoder/decodemv.h" #include "av1/decoder/decoder.h" #include "av1/decoder/detokenize.h" #include "av1/decoder/dsubexp.h" #define MAX_AV1_HEADER_SIZE 80 static int is_compound_reference_allowed(const AV1_COMMON *cm) { int i; if (frame_is_intra_only(cm)) return 0; for (i = 1; i < INTER_REFS_PER_FRAME; ++i) if (cm->ref_frame_sign_bias[i + 1] != cm->ref_frame_sign_bias[1]) return 1; return 0; } static void setup_compound_reference_mode(AV1_COMMON *cm) { #if CONFIG_EXT_REFS cm->comp_fwd_ref[0] = LAST_FRAME; cm->comp_fwd_ref[1] = LAST2_FRAME; cm->comp_fwd_ref[2] = LAST3_FRAME; cm->comp_fwd_ref[3] = GOLDEN_FRAME; cm->comp_bwd_ref[0] = BWDREF_FRAME; cm->comp_bwd_ref[1] = ALTREF_FRAME; #else if (cm->ref_frame_sign_bias[LAST_FRAME] == cm->ref_frame_sign_bias[GOLDEN_FRAME]) { cm->comp_fixed_ref = ALTREF_FRAME; cm->comp_var_ref[0] = LAST_FRAME; cm->comp_var_ref[1] = GOLDEN_FRAME; } else if (cm->ref_frame_sign_bias[LAST_FRAME] == cm->ref_frame_sign_bias[ALTREF_FRAME]) { cm->comp_fixed_ref = GOLDEN_FRAME; cm->comp_var_ref[0] = LAST_FRAME; cm->comp_var_ref[1] = ALTREF_FRAME; } else { cm->comp_fixed_ref = LAST_FRAME; cm->comp_var_ref[0] = GOLDEN_FRAME; cm->comp_var_ref[1] = ALTREF_FRAME; } #endif // CONFIG_EXT_REFS } static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) { return len != 0 && len <= (size_t)(end - start); } static int decode_unsigned_max(struct aom_read_bit_buffer *rb, int max) { const int data = aom_rb_read_literal(rb, get_unsigned_bits(max)); return data > max ? max : data; } static TX_MODE read_tx_mode(struct aom_read_bit_buffer *rb) { return aom_rb_read_bit(rb) ? TX_MODE_SELECT : aom_rb_read_literal(rb, 2); } static void read_switchable_interp_probs(FRAME_CONTEXT *fc, aom_reader *r) { int i, j; for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i) av1_diff_update_prob(r, &fc->switchable_interp_prob[j][i]); } static void read_inter_mode_probs(FRAME_CONTEXT *fc, aom_reader *r) { int i; #if CONFIG_REF_MV for (i = 0; i < NEWMV_MODE_CONTEXTS; ++i) av1_diff_update_prob(r, &fc->newmv_prob[i]); for (i = 0; i < ZEROMV_MODE_CONTEXTS; ++i) av1_diff_update_prob(r, &fc->zeromv_prob[i]); for (i = 0; i < REFMV_MODE_CONTEXTS; ++i) av1_diff_update_prob(r, &fc->refmv_prob[i]); for (i = 0; i < DRL_MODE_CONTEXTS; ++i) av1_diff_update_prob(r, &fc->drl_prob[i]); #if CONFIG_EXT_INTER av1_diff_update_prob(r, &fc->new2mv_prob); #endif // CONFIG_EXT_INTER #else int j; for (i = 0; i < INTER_MODE_CONTEXTS; ++i) for (j = 0; j < INTER_MODES - 1; ++j) av1_diff_update_prob(r, &fc->inter_mode_probs[i][j]); #endif } #if CONFIG_EXT_INTER static void read_inter_compound_mode_probs(FRAME_CONTEXT *fc, aom_reader *r) { int i, j; if (aom_read(r, GROUP_DIFF_UPDATE_PROB)) { for (j = 0; j < INTER_MODE_CONTEXTS; ++j) { for (i = 0; i < INTER_COMPOUND_MODES - 1; ++i) { av1_diff_update_prob(r, &fc->inter_compound_mode_probs[j][i]); } } } } #endif // CONFIG_EXT_INTER static REFERENCE_MODE read_frame_reference_mode( const AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { if (is_compound_reference_allowed(cm)) { return aom_rb_read_bit(rb) ? REFERENCE_MODE_SELECT : (aom_rb_read_bit(rb) ? COMPOUND_REFERENCE : SINGLE_REFERENCE); } else { return SINGLE_REFERENCE; } } static void read_frame_reference_mode_probs(AV1_COMMON *cm, aom_reader *r) { FRAME_CONTEXT *const fc = cm->fc; int i, j; if (cm->reference_mode == REFERENCE_MODE_SELECT) for (i = 0; i < COMP_INTER_CONTEXTS; ++i) av1_diff_update_prob(r, &fc->comp_inter_prob[i]); if (cm->reference_mode != COMPOUND_REFERENCE) { for (i = 0; i < REF_CONTEXTS; ++i) { for (j = 0; j < (SINGLE_REFS - 1); ++j) { av1_diff_update_prob(r, &fc->single_ref_prob[i][j]); } } } if (cm->reference_mode != SINGLE_REFERENCE) { for (i = 0; i < REF_CONTEXTS; ++i) { #if CONFIG_EXT_REFS for (j = 0; j < (FWD_REFS - 1); ++j) av1_diff_update_prob(r, &fc->comp_ref_prob[i][j]); for (j = 0; j < (BWD_REFS - 1); ++j) av1_diff_update_prob(r, &fc->comp_bwdref_prob[i][j]); #else for (j = 0; j < (COMP_REFS - 1); ++j) av1_diff_update_prob(r, &fc->comp_ref_prob[i][j]); #endif // CONFIG_EXT_REFS } } } static void update_mv_probs(aom_prob *p, int n, aom_reader *r) { int i; for (i = 0; i < n; ++i) av1_diff_update_prob(r, &p[i]); } static void read_mv_probs(nmv_context *ctx, int allow_hp, aom_reader *r) { int i, j; update_mv_probs(ctx->joints, MV_JOINTS - 1, r); for (i = 0; i < 2; ++i) { nmv_component *const comp_ctx = &ctx->comps[i]; update_mv_probs(&comp_ctx->sign, 1, r); update_mv_probs(comp_ctx->classes, MV_CLASSES - 1, r); update_mv_probs(comp_ctx->class0, CLASS0_SIZE - 1, r); update_mv_probs(comp_ctx->bits, MV_OFFSET_BITS, r); } for (i = 0; i < 2; ++i) { nmv_component *const comp_ctx = &ctx->comps[i]; for (j = 0; j < CLASS0_SIZE; ++j) update_mv_probs(comp_ctx->class0_fp[j], MV_FP_SIZE - 1, r); update_mv_probs(comp_ctx->fp, 3, r); } if (allow_hp) { for (i = 0; i < 2; ++i) { nmv_component *const comp_ctx = &ctx->comps[i]; update_mv_probs(&comp_ctx->class0_hp, 1, r); update_mv_probs(&comp_ctx->hp, 1, r); } } } static void inverse_transform_block(MACROBLOCKD *xd, int plane, const TX_TYPE tx_type, const TX_SIZE tx_size, uint8_t *dst, int stride, int eob) { struct macroblockd_plane *const pd = &xd->plane[plane]; if (eob > 0) { tran_low_t *const dqcoeff = pd->dqcoeff; INV_TXFM_PARAM inv_txfm_param; inv_txfm_param.tx_type = tx_type; inv_txfm_param.tx_size = tx_size; inv_txfm_param.eob = eob; inv_txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id]; #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { inv_txfm_param.bd = xd->bd; highbd_inv_txfm_add(dqcoeff, dst, stride, &inv_txfm_param); } else { #endif // CONFIG_AOM_HIGHBITDEPTH inv_txfm_add(dqcoeff, dst, stride, &inv_txfm_param); #if CONFIG_AOM_HIGHBITDEPTH } #endif // CONFIG_AOM_HIGHBITDEPTH if (eob == 1) { dqcoeff[0] = 0; } else { if (tx_type == DCT_DCT && tx_size <= TX_16X16 && eob <= 10) memset(dqcoeff, 0, 4 * 4 * num_4x4_blocks_wide_txsize_lookup[tx_size] * sizeof(dqcoeff[0])); #if CONFIG_EXT_TX else memset(dqcoeff, 0, get_tx2d_size(tx_size) * sizeof(dqcoeff[0])); #else else if (tx_size == TX_32X32 && eob <= 34) memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0])); else memset(dqcoeff, 0, get_tx2d_size(tx_size) * sizeof(dqcoeff[0])); #endif } } } static void predict_and_reconstruct_intra_block(MACROBLOCKD *const xd, #if CONFIG_ANS struct AnsDecoder *const r, #else aom_reader *r, #endif // CONFIG_ANS MB_MODE_INFO *const mbmi, int plane, int row, int col, TX_SIZE tx_size) { struct macroblockd_plane *const pd = &xd->plane[plane]; PREDICTION_MODE mode = (plane == 0) ? mbmi->mode : mbmi->uv_mode; PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV; uint8_t *dst; int block_idx = (row << 1) + col; dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col]; if (mbmi->sb_type < BLOCK_8X8) if (plane == 0) mode = xd->mi[0]->bmi[(row << 1) + col].as_mode; av1_predict_intra_block(xd, pd->n4_wl, pd->n4_hl, tx_size, mode, dst, pd->dst.stride, dst, pd->dst.stride, col, row, plane); if (!mbmi->skip) { TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, tx_size); const scan_order *sc = get_scan(tx_size, tx_type, 0); const int eob = av1_decode_block_tokens(xd, plane, sc, col, row, tx_size, tx_type, r, mbmi->segment_id); inverse_transform_block(xd, plane, tx_type, tx_size, dst, pd->dst.stride, eob); } } #if CONFIG_VAR_TX static void decode_reconstruct_tx(MACROBLOCKD *const xd, aom_reader *r, MB_MODE_INFO *const mbmi, int plane, BLOCK_SIZE plane_bsize, int block, int blk_row, int blk_col, TX_SIZE tx_size, int *eob_total) { const struct macroblockd_plane *const pd = &xd->plane[plane]; const BLOCK_SIZE bsize = txsize_to_bsize[tx_size]; const int tx_row = blk_row >> (1 - pd->subsampling_y); const int tx_col = blk_col >> (1 - pd->subsampling_x); const TX_SIZE plane_tx_size = plane ? uv_txsize_lookup[bsize][mbmi->inter_tx_size[tx_row][tx_col]][0][0] : mbmi->inter_tx_size[tx_row][tx_col]; int max_blocks_high = num_4x4_blocks_high_lookup[plane_bsize]; int max_blocks_wide = num_4x4_blocks_wide_lookup[plane_bsize]; if (xd->mb_to_bottom_edge < 0) max_blocks_high += xd->mb_to_bottom_edge >> (5 + pd->subsampling_y); if (xd->mb_to_right_edge < 0) max_blocks_wide += xd->mb_to_right_edge >> (5 + pd->subsampling_x); if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; if (tx_size == plane_tx_size) { PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV; TX_TYPE tx_type = get_tx_type(plane_type, xd, block, plane_tx_size); const scan_order *sc = get_scan(plane_tx_size, tx_type, 1); const int eob = av1_decode_block_tokens(xd, plane, sc, blk_col, blk_row, plane_tx_size, tx_type, r, mbmi->segment_id); inverse_transform_block( xd, plane, tx_type, plane_tx_size, &pd->dst.buf[4 * blk_row * pd->dst.stride + 4 * blk_col], pd->dst.stride, eob); *eob_total += eob; } else { int bsl = b_width_log2_lookup[bsize]; int i; assert(bsl > 0); --bsl; for (i = 0; i < 4; ++i) { const int offsetr = blk_row + ((i >> 1) << bsl); const int offsetc = blk_col + ((i & 0x01) << bsl); int step = num_4x4_blocks_txsize_lookup[tx_size - 1]; if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; decode_reconstruct_tx(xd, r, mbmi, plane, plane_bsize, block + i * step, offsetr, offsetc, tx_size - 1, eob_total); } } } #endif // CONFIG_VAR_TX #if !CONFIG_VAR_TX || CONFIG_SUPERTX || (CONFIG_EXT_TX && CONFIG_RECT_TX) static int reconstruct_inter_block(MACROBLOCKD *const xd, #if CONFIG_ANS struct AnsDecoder *const r, #else aom_reader *r, #endif int segment_id, int plane, int row, int col, TX_SIZE tx_size) { struct macroblockd_plane *const pd = &xd->plane[plane]; PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV; int block_idx = (row << 1) + col; TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, tx_size); const scan_order *sc = get_scan(tx_size, tx_type, 1); const int eob = av1_decode_block_tokens(xd, plane, sc, col, row, tx_size, tx_type, r, segment_id); inverse_transform_block(xd, plane, tx_type, tx_size, &pd->dst.buf[4 * row * pd->dst.stride + 4 * col], pd->dst.stride, eob); return eob; } #endif // !CONFIG_VAR_TX || CONFIG_SUPER_TX static INLINE void dec_reset_skip_context(MACROBLOCKD *xd) { int i; for (i = 0; i < MAX_MB_PLANE; i++) { struct macroblockd_plane *const pd = &xd->plane[i]; memset(pd->above_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_w); memset(pd->left_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_h); } } static void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh, int bwl, int bhl) { int i; for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].n4_w = (bw << 1) >> xd->plane[i].subsampling_x; xd->plane[i].n4_h = (bh << 1) >> xd->plane[i].subsampling_y; xd->plane[i].n4_wl = bwl - xd->plane[i].subsampling_x; xd->plane[i].n4_hl = bhl - xd->plane[i].subsampling_y; } } static MB_MODE_INFO *set_offsets(AV1_COMMON *const cm, MACROBLOCKD *const xd, BLOCK_SIZE bsize, int mi_row, int mi_col, int bw, int bh, int x_mis, int y_mis, int bwl, int bhl) { const int offset = mi_row * cm->mi_stride + mi_col; int x, y; const TileInfo *const tile = &xd->tile; xd->mi = cm->mi_grid_visible + offset; xd->mi[0] = &cm->mi[offset]; // TODO(slavarnway): Generate sb_type based on bwl and bhl, instead of // passing bsize from decode_partition(). xd->mi[0]->mbmi.sb_type = bsize; for (y = 0; y < y_mis; ++y) for (x = !y; x < x_mis; ++x) { xd->mi[y * cm->mi_stride + x] = xd->mi[0]; } set_plane_n4(xd, bw, bh, bwl, bhl); set_skip_context(xd, mi_row, mi_col); #if CONFIG_VAR_TX xd->max_tx_size = max_txsize_lookup[bsize]; #endif // Distance of Mb to the various image edges. These are specified to 8th pel // as they are always compared to values that are in 1/8th pel units set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); return &xd->mi[0]->mbmi; } #if CONFIG_SUPERTX static MB_MODE_INFO *set_offsets_extend(AV1_COMMON *const cm, MACROBLOCKD *const xd, const TileInfo *const tile, BLOCK_SIZE bsize_pred, int mi_row_pred, int mi_col_pred, int mi_row_ori, int mi_col_ori) { // Used in supertx // (mi_row_ori, mi_col_ori): location for mv // (mi_row_pred, mi_col_pred, bsize_pred): region to predict const int bw = num_8x8_blocks_wide_lookup[bsize_pred]; const int bh = num_8x8_blocks_high_lookup[bsize_pred]; const int offset = mi_row_ori * cm->mi_stride + mi_col_ori; const int bwl = b_width_log2_lookup[bsize_pred]; const int bhl = b_height_log2_lookup[bsize_pred]; xd->mi = cm->mi_grid_visible + offset; xd->mi[0] = cm->mi + offset; set_mi_row_col(xd, tile, mi_row_pred, bh, mi_col_pred, bw, cm->mi_rows, cm->mi_cols); xd->up_available = (mi_row_ori > tile->mi_row_start); xd->left_available = (mi_col_ori > tile->mi_col_start); set_plane_n4(xd, bw, bh, bwl, bhl); return &xd->mi[0]->mbmi; } static MB_MODE_INFO *set_mb_offsets(AV1_COMMON *const cm, MACROBLOCKD *const xd, BLOCK_SIZE bsize, int mi_row, int mi_col, int bw, int bh, int x_mis, int y_mis) { const int offset = mi_row * cm->mi_stride + mi_col; const TileInfo *const tile = &xd->tile; int x, y; xd->mi = cm->mi_grid_visible + offset; xd->mi[0] = cm->mi + offset; xd->mi[0]->mbmi.sb_type = bsize; for (y = 0; y < y_mis; ++y) for (x = !y; x < x_mis; ++x) xd->mi[y * cm->mi_stride + x] = xd->mi[0]; set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); return &xd->mi[0]->mbmi; } static void set_offsets_topblock(AV1_COMMON *const cm, MACROBLOCKD *const xd, const TileInfo *const tile, BLOCK_SIZE bsize, int mi_row, int mi_col) { const int bw = num_8x8_blocks_wide_lookup[bsize]; const int bh = num_8x8_blocks_high_lookup[bsize]; const int offset = mi_row * cm->mi_stride + mi_col; const int bwl = b_width_log2_lookup[bsize]; const int bhl = b_height_log2_lookup[bsize]; xd->mi = cm->mi_grid_visible + offset; xd->mi[0] = cm->mi + offset; set_plane_n4(xd, bw, bh, bwl, bhl); set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); } static void set_param_topblock(AV1_COMMON *const cm, MACROBLOCKD *const xd, BLOCK_SIZE bsize, int mi_row, int mi_col, int txfm, int skip) { const int bw = num_8x8_blocks_wide_lookup[bsize]; const int bh = num_8x8_blocks_high_lookup[bsize]; const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col); const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row); const int offset = mi_row * cm->mi_stride + mi_col; int x, y; xd->mi = cm->mi_grid_visible + offset; xd->mi[0] = cm->mi + offset; for (y = 0; y < y_mis; ++y) for (x = 0; x < x_mis; ++x) { xd->mi[y * cm->mi_stride + x]->mbmi.skip = skip; xd->mi[y * cm->mi_stride + x]->mbmi.tx_type = txfm; } #if CONFIG_VAR_TX xd->above_txfm_context = cm->above_txfm_context + mi_col; xd->left_txfm_context = xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); set_txfm_ctxs(xd->mi[0]->mbmi.tx_size, bw, bh, xd); #endif } static void set_ref(AV1_COMMON *const cm, MACROBLOCKD *const xd, int idx, int mi_row, int mi_col) { MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; RefBuffer *ref_buffer = &cm->frame_refs[mbmi->ref_frame[idx] - LAST_FRAME]; xd->block_refs[idx] = ref_buffer; if (!av1_is_valid_scale(&ref_buffer->sf)) aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "Invalid scale factors"); av1_setup_pre_planes(xd, idx, ref_buffer->buf, mi_row, mi_col, &ref_buffer->sf); xd->corrupted |= ref_buffer->buf->corrupted; } static void dec_predict_b_extend( AV1Decoder *const pbi, MACROBLOCKD *const xd, const TileInfo *const tile, int block, int mi_row_ori, int mi_col_ori, int mi_row_pred, int mi_col_pred, int mi_row_top, int mi_col_top, uint8_t *dst_buf[3], int dst_stride[3], BLOCK_SIZE bsize_top, BLOCK_SIZE bsize_pred, int b_sub8x8, int bextend) { // Used in supertx // (mi_row_ori, mi_col_ori): location for mv // (mi_row_pred, mi_col_pred, bsize_pred): region to predict // (mi_row_top, mi_col_top, bsize_top): region of the top partition size // block: sub location of sub8x8 blocks // b_sub8x8: 1: ori is sub8x8; 0: ori is not sub8x8 // bextend: 1: region to predict is an extension of ori; 0: not int r = (mi_row_pred - mi_row_top) * MI_SIZE; int c = (mi_col_pred - mi_col_top) * MI_SIZE; const int mi_width_top = num_8x8_blocks_wide_lookup[bsize_top]; const int mi_height_top = num_8x8_blocks_high_lookup[bsize_top]; MB_MODE_INFO *mbmi; AV1_COMMON *const cm = &pbi->common; if (mi_row_pred < mi_row_top || mi_col_pred < mi_col_top || mi_row_pred >= mi_row_top + mi_height_top || mi_col_pred >= mi_col_top + mi_width_top || mi_row_pred >= cm->mi_rows || mi_col_pred >= cm->mi_cols) return; mbmi = set_offsets_extend(cm, xd, tile, bsize_pred, mi_row_pred, mi_col_pred, mi_row_ori, mi_col_ori); set_ref(cm, xd, 0, mi_row_pred, mi_col_pred); if (has_second_ref(&xd->mi[0]->mbmi)) set_ref(cm, xd, 1, mi_row_pred, mi_col_pred); if (!bextend) { mbmi->tx_size = b_width_log2_lookup[bsize_top]; } xd->plane[0].dst.stride = dst_stride[0]; xd->plane[1].dst.stride = dst_stride[1]; xd->plane[2].dst.stride = dst_stride[2]; xd->plane[0].dst.buf = dst_buf[0] + (r >> xd->plane[0].subsampling_y) * dst_stride[0] + (c >> xd->plane[0].subsampling_x); xd->plane[1].dst.buf = dst_buf[1] + (r >> xd->plane[1].subsampling_y) * dst_stride[1] + (c >> xd->plane[1].subsampling_x); xd->plane[2].dst.buf = dst_buf[2] + (r >> xd->plane[2].subsampling_y) * dst_stride[2] + (c >> xd->plane[2].subsampling_x); if (!b_sub8x8) av1_build_inter_predictors_sb_extend(xd, #if CONFIG_EXT_INTER mi_row_ori, mi_col_ori, #endif // CONFIG_EXT_INTER mi_row_pred, mi_col_pred, bsize_pred); else av1_build_inter_predictors_sb_sub8x8_extend(xd, #if CONFIG_EXT_INTER mi_row_ori, mi_col_ori, #endif // CONFIG_EXT_INTER mi_row_pred, mi_col_pred, bsize_pred, block); } static void dec_extend_dir(AV1Decoder *const pbi, MACROBLOCKD *const xd, const TileInfo *const tile, int block, BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, int mi_row, int mi_col, int mi_row_top, int mi_col_top, uint8_t *dst_buf[3], int dst_stride[3], int dir) { // dir: 0-lower, 1-upper, 2-left, 3-right // 4-lowerleft, 5-upperleft, 6-lowerright, 7-upperright const int mi_width = num_8x8_blocks_wide_lookup[bsize]; const int mi_height = num_8x8_blocks_high_lookup[bsize]; int xss = xd->plane[1].subsampling_x; int yss = xd->plane[1].subsampling_y; int b_sub8x8 = (bsize < BLOCK_8X8) ? 1 : 0; BLOCK_SIZE extend_bsize; int unit, mi_row_pred, mi_col_pred; if (dir == 0 || dir == 1) { extend_bsize = (mi_width == 1 || bsize < BLOCK_8X8 || xss < yss) ? BLOCK_8X8 : BLOCK_16X8; unit = num_8x8_blocks_wide_lookup[extend_bsize]; mi_row_pred = mi_row + ((dir == 0) ? mi_height : -1); mi_col_pred = mi_col; dec_predict_b_extend(pbi, xd, tile, block, mi_row, mi_col, mi_row_pred, mi_col_pred, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, extend_bsize, b_sub8x8, 1); if (mi_width > unit) { int i; assert(!b_sub8x8); for (i = 0; i < mi_width / unit - 1; i++) { mi_col_pred += unit; dec_predict_b_extend(pbi, xd, tile, block, mi_row, mi_col, mi_row_pred, mi_col_pred, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, extend_bsize, b_sub8x8, 1); } } } else if (dir == 2 || dir == 3) { extend_bsize = (mi_height == 1 || bsize < BLOCK_8X8 || yss < xss) ? BLOCK_8X8 : BLOCK_8X16; unit = num_8x8_blocks_high_lookup[extend_bsize]; mi_row_pred = mi_row; mi_col_pred = mi_col + ((dir == 3) ? mi_width : -1); dec_predict_b_extend(pbi, xd, tile, block, mi_row, mi_col, mi_row_pred, mi_col_pred, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, extend_bsize, b_sub8x8, 1); if (mi_height > unit) { int i; for (i = 0; i < mi_height / unit - 1; i++) { mi_row_pred += unit; dec_predict_b_extend(pbi, xd, tile, block, mi_row, mi_col, mi_row_pred, mi_col_pred, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, extend_bsize, b_sub8x8, 1); } } } else { extend_bsize = BLOCK_8X8; mi_row_pred = mi_row + ((dir == 4 || dir == 6) ? mi_height : -1); mi_col_pred = mi_col + ((dir == 6 || dir == 7) ? mi_width : -1); dec_predict_b_extend(pbi, xd, tile, block, mi_row, mi_col, mi_row_pred, mi_col_pred, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, extend_bsize, b_sub8x8, 1); } } static void dec_extend_all(AV1Decoder *const pbi, MACROBLOCKD *const xd, const TileInfo *const tile, int block, BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, int mi_row, int mi_col, int mi_row_top, int mi_col_top, uint8_t *dst_buf[3], int dst_stride[3]) { dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, 0); dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, 1); dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, 2); dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, 3); dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, 4); dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, 5); dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, 6); dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, 7); } static void dec_predict_sb_complex(AV1Decoder *const pbi, MACROBLOCKD *const xd, const TileInfo *const tile, int mi_row, int mi_col, int mi_row_top, int mi_col_top, BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, uint8_t *dst_buf[3], int dst_stride[3]) { const AV1_COMMON *const cm = &pbi->common; const int hbs = num_8x8_blocks_wide_lookup[bsize] / 2; const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize); const BLOCK_SIZE subsize = get_subsize(bsize, partition); #if CONFIG_EXT_PARTITION_TYPES const BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT); #endif int i; const int mi_offset = mi_row * cm->mi_stride + mi_col; uint8_t *dst_buf1[3], *dst_buf2[3], *dst_buf3[3]; DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_TX_SQUARE * 2]); DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_TX_SQUARE * 2]); DECLARE_ALIGNED(16, uint8_t, tmp_buf3[MAX_MB_PLANE * MAX_TX_SQUARE * 2]); int dst_stride1[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE }; int dst_stride2[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE }; int dst_stride3[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE }; #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { int len = sizeof(uint16_t); dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1); dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_TX_SQUARE * len); dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + 2 * MAX_TX_SQUARE * len); dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2); dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_TX_SQUARE * len); dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + 2 * MAX_TX_SQUARE * len); dst_buf3[0] = CONVERT_TO_BYTEPTR(tmp_buf3); dst_buf3[1] = CONVERT_TO_BYTEPTR(tmp_buf3 + MAX_TX_SQUARE * len); dst_buf3[2] = CONVERT_TO_BYTEPTR(tmp_buf3 + 2 * MAX_TX_SQUARE * len); } else { #endif dst_buf1[0] = tmp_buf1; dst_buf1[1] = tmp_buf1 + MAX_TX_SQUARE; dst_buf1[2] = tmp_buf1 + 2 * MAX_TX_SQUARE; dst_buf2[0] = tmp_buf2; dst_buf2[1] = tmp_buf2 + MAX_TX_SQUARE; dst_buf2[2] = tmp_buf2 + 2 * MAX_TX_SQUARE; dst_buf3[0] = tmp_buf3; dst_buf3[1] = tmp_buf3 + MAX_TX_SQUARE; dst_buf3[2] = tmp_buf3 + 2 * MAX_TX_SQUARE; #if CONFIG_AOM_HIGHBITDEPTH } #endif if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; xd->mi = cm->mi_grid_visible + mi_offset; xd->mi[0] = cm->mi + mi_offset; for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf[i]; xd->plane[i].dst.stride = dst_stride[i]; } switch (partition) { case PARTITION_NONE: assert(bsize < top_bsize); dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, bsize, 0, 0); dec_extend_all(pbi, xd, tile, 0, bsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride); break; case PARTITION_HORZ: if (bsize == BLOCK_8X8) { // For sub8x8, predict in 8x8 unit // First half dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, BLOCK_8X8, 1, 0); if (bsize < top_bsize) dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride); // Second half dec_predict_b_extend(pbi, xd, tile, 2, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, BLOCK_8X8, 1, 1); if (bsize < top_bsize) dec_extend_all(pbi, xd, tile, 2, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1); // weighted average to smooth the boundary xd->plane[0].dst.buf = dst_buf[0]; xd->plane[0].dst.stride = dst_stride[0]; av1_build_masked_inter_predictor_complex( xd, dst_buf[0], dst_stride[0], dst_buf1[0], dst_stride1[0], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, 0); } else { // First half dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, subsize, 0, 0); if (bsize < top_bsize) dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride); else dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, 0); if (mi_row + hbs < cm->mi_rows) { // Second half dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, subsize, 0, 0); if (bsize < top_bsize) dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1); else dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1, 1); // weighted average to smooth the boundary for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf[i]; xd->plane[i].dst.stride = dst_stride[i]; av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, i); } } } break; case PARTITION_VERT: if (bsize == BLOCK_8X8) { // First half dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, BLOCK_8X8, 1, 0); if (bsize < top_bsize) dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride); // Second half dec_predict_b_extend(pbi, xd, tile, 1, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, BLOCK_8X8, 1, 1); if (bsize < top_bsize) dec_extend_all(pbi, xd, tile, 1, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1); // Smooth xd->plane[0].dst.buf = dst_buf[0]; xd->plane[0].dst.stride = dst_stride[0]; av1_build_masked_inter_predictor_complex( xd, dst_buf[0], dst_stride[0], dst_buf1[0], dst_stride1[0], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, 0); } else { // First half dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, subsize, 0, 0); if (bsize < top_bsize) dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride); else dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, 3); // Second half if (mi_col + hbs < cm->mi_cols) { dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col + hbs, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, subsize, 0, 0); if (bsize < top_bsize) dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, dst_stride1); else dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, dst_stride1, 2); // Smooth for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf[i]; xd->plane[i].dst.stride = dst_stride[i]; av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, i); } } } break; case PARTITION_SPLIT: if (bsize == BLOCK_8X8) { dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, BLOCK_8X8, 1, 0); dec_predict_b_extend(pbi, xd, tile, 1, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, BLOCK_8X8, 1, 1); dec_predict_b_extend(pbi, xd, tile, 2, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2, top_bsize, BLOCK_8X8, 1, 1); dec_predict_b_extend(pbi, xd, tile, 3, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf3, dst_stride3, top_bsize, BLOCK_8X8, 1, 1); if (bsize < top_bsize) { dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride); dec_extend_all(pbi, xd, tile, 1, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1); dec_extend_all(pbi, xd, tile, 2, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2); dec_extend_all(pbi, xd, tile, 3, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf3, dst_stride3); } } else { dec_predict_sb_complex(pbi, xd, tile, mi_row, mi_col, mi_row_top, mi_col_top, subsize, top_bsize, dst_buf, dst_stride); if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols) dec_predict_sb_complex(pbi, xd, tile, mi_row, mi_col + hbs, mi_row_top, mi_col_top, subsize, top_bsize, dst_buf1, dst_stride1); if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols) dec_predict_sb_complex(pbi, xd, tile, mi_row + hbs, mi_col, mi_row_top, mi_col_top, subsize, top_bsize, dst_buf2, dst_stride2); if (mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols) dec_predict_sb_complex(pbi, xd, tile, mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top, subsize, top_bsize, dst_buf3, dst_stride3); } for (i = 0; i < MAX_MB_PLANE; i++) { if (bsize == BLOCK_8X8 && i != 0) continue; // Skip <4x4 chroma smoothing if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols) { av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, i); if (mi_row + hbs < cm->mi_rows) { av1_build_masked_inter_predictor_complex( xd, dst_buf2[i], dst_stride2[i], dst_buf3[i], dst_stride3[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, i); av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, i); } } else if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols) { av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, i); } } break; #if CONFIG_EXT_PARTITION_TYPES case PARTITION_HORZ_A: dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, bsize2, 0, 0); dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride); dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col + hbs, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, bsize2, 0, 0); dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, dst_stride1); dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2, top_bsize, subsize, 0, 0); if (bsize < top_bsize) dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2); else dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2, 1); for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf[i]; xd->plane[i].dst.stride = dst_stride[i]; av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, i); } for (i = 0; i < MAX_MB_PLANE; i++) { av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, i); } break; case PARTITION_VERT_A: dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, bsize2, 0, 0); dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride); dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, bsize2, 0, 0); dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1); dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col + hbs, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, dst_stride2, top_bsize, subsize, 0, 0); if (bsize < top_bsize) dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, dst_stride2); else dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, dst_stride2, 2); for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf[i]; xd->plane[i].dst.stride = dst_stride[i]; av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, i); } for (i = 0; i < MAX_MB_PLANE; i++) { av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, i); } break; case PARTITION_HORZ_B: dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, subsize, 0, 0); if (bsize < top_bsize) dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride); else dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, 0); dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, bsize2, 0, 0); dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1); dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col + hbs, mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, dst_stride2, top_bsize, bsize2, 0, 0); dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, dst_stride2); for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf1[i]; xd->plane[i].dst.stride = dst_stride1[i]; av1_build_masked_inter_predictor_complex( xd, dst_buf1[i], dst_stride1[i], dst_buf2[i], dst_stride2[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, i); } for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf[i]; xd->plane[i].dst.stride = dst_stride[i]; av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, i); } break; case PARTITION_VERT_B: dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, subsize, 0, 0); if (bsize < top_bsize) dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride); else dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, 3); dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col + hbs, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, bsize2, 0, 0); dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, dst_stride1); dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col + hbs, mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, dst_stride2, top_bsize, bsize2, 0, 0); dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, dst_stride2); for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf1[i]; xd->plane[i].dst.stride = dst_stride1[i]; av1_build_masked_inter_predictor_complex( xd, dst_buf1[i], dst_stride1[i], dst_buf2[i], dst_stride2[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, i); } for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf[i]; xd->plane[i].dst.stride = dst_stride[i]; av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, i); } break; #endif // CONFIG_EXT_PARTITION_TYPES default: assert(0); } } static void set_segment_id_supertx(const AV1_COMMON *const cm, const int mi_row, const int mi_col, const BLOCK_SIZE bsize) { const struct segmentation *seg = &cm->seg; const int miw = AOMMIN(num_8x8_blocks_wide_lookup[bsize], cm->mi_cols - mi_col); const int mih = AOMMIN(num_8x8_blocks_high_lookup[bsize], cm->mi_rows - mi_row); const int mi_offset = mi_row * cm->mi_stride + mi_col; MODE_INFO **const mip = cm->mi_grid_visible + mi_offset; int r, c; int seg_id_supertx = MAX_SEGMENTS; if (!seg->enabled) { seg_id_supertx = 0; } else { // Find the minimum segment_id for (r = 0; r < mih; r++) for (c = 0; c < miw; c++) seg_id_supertx = AOMMIN(mip[r * cm->mi_stride + c]->mbmi.segment_id, seg_id_supertx); assert(0 <= seg_id_supertx && seg_id_supertx < MAX_SEGMENTS); } // Assign the the segment_id back to segment_id_supertx for (r = 0; r < mih; r++) for (c = 0; c < miw; c++) mip[r * cm->mi_stride + c]->mbmi.segment_id_supertx = seg_id_supertx; } #endif // CONFIG_SUPERTX static void decode_block(AV1Decoder *const pbi, MACROBLOCKD *const xd, #if CONFIG_SUPERTX int supertx_enabled, #endif // CONFIG_SUPERTX int mi_row, int mi_col, aom_reader *r, #if CONFIG_EXT_PARTITION_TYPES PARTITION_TYPE partition, #endif // CONFIG_EXT_PARTITION_TYPES BLOCK_SIZE bsize, int bwl, int bhl) { AV1_COMMON *const cm = &pbi->common; const int less8x8 = bsize < BLOCK_8X8; const int bw = 1 << (bwl - 1); const int bh = 1 << (bhl - 1); const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col); const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row); #if CONFIG_SUPERTX MB_MODE_INFO *mbmi; if (supertx_enabled) { mbmi = set_mb_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis); } else { mbmi = set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis, bwl, bhl); } #if CONFIG_EXT_PARTITION_TYPES xd->mi[0]->mbmi.partition = partition; #endif av1_read_mode_info(pbi, xd, supertx_enabled, mi_row, mi_col, r, x_mis, y_mis); #else MB_MODE_INFO *mbmi = set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis, bwl, bhl); #if CONFIG_EXT_PARTITION_TYPES xd->mi[0]->mbmi.partition = partition; #endif av1_read_mode_info(pbi, xd, mi_row, mi_col, r, x_mis, y_mis); #endif // CONFIG_SUPERTX if (bsize >= BLOCK_8X8 && (cm->subsampling_x || cm->subsampling_y)) { const BLOCK_SIZE uv_subsize = ss_size_lookup[bsize][cm->subsampling_x][cm->subsampling_y]; if (uv_subsize == BLOCK_INVALID) aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, "Invalid block size."); } #if CONFIG_SUPERTX mbmi->segment_id_supertx = MAX_SEGMENTS; if (supertx_enabled) { xd->corrupted |= aom_reader_has_error(r); return; } #endif // CONFIG_SUPERTX if (mbmi->skip) { dec_reset_skip_context(xd); } if (!is_inter_block(mbmi)) { int plane; for (plane = 0; plane <= 1; ++plane) { if (mbmi->palette_mode_info.palette_size[plane]) av1_decode_palette_tokens(xd, plane, r); } for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *const pd = &xd->plane[plane]; const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi, pd) : mbmi->tx_size; const int num_4x4_w = pd->n4_w; const int num_4x4_h = pd->n4_h; const int stepr = num_4x4_blocks_high_txsize_lookup[tx_size]; const int stepc = num_4x4_blocks_wide_txsize_lookup[tx_size]; int row, col; const int max_blocks_wide = num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> (5 + pd->subsampling_x)); const int max_blocks_high = num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y)); for (row = 0; row < max_blocks_high; row += stepr) for (col = 0; col < max_blocks_wide; col += stepc) predict_and_reconstruct_intra_block(xd, r, mbmi, plane, row, col, tx_size); } } else { // Prediction av1_build_inter_predictors_sb(xd, mi_row, mi_col, AOMMAX(bsize, BLOCK_8X8)); #if CONFIG_MOTION_VAR if (mbmi->motion_mode == OBMC_CAUSAL) { #if CONFIG_AOM_HIGHBITDEPTH DECLARE_ALIGNED(16, uint8_t, tmp_buf1[2 * MAX_MB_PLANE * MAX_SB_SQUARE]); DECLARE_ALIGNED(16, uint8_t, tmp_buf2[2 * MAX_MB_PLANE * MAX_SB_SQUARE]); #else DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_SB_SQUARE]); DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_SB_SQUARE]); #endif // CONFIG_AOM_HIGHBITDEPTH uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE]; int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; assert(mbmi->sb_type >= BLOCK_8X8); #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { int len = sizeof(uint16_t); dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1); dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * len); dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * 2 * len); dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2); dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * len); dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * 2 * len); } else { #endif // CONFIG_AOM_HIGHBITDEPTH dst_buf1[0] = tmp_buf1; dst_buf1[1] = tmp_buf1 + MAX_SB_SQUARE; dst_buf1[2] = tmp_buf1 + MAX_SB_SQUARE * 2; dst_buf2[0] = tmp_buf2; dst_buf2[1] = tmp_buf2 + MAX_SB_SQUARE; dst_buf2[2] = tmp_buf2 + MAX_SB_SQUARE * 2; #if CONFIG_AOM_HIGHBITDEPTH } #endif // CONFIG_AOM_HIGHBITDEPTH av1_build_prediction_by_above_preds(cm, xd, mi_row, mi_col, dst_buf1, dst_width1, dst_height1, dst_stride1); av1_build_prediction_by_left_preds(cm, xd, mi_row, mi_col, dst_buf2, dst_width2, dst_height2, dst_stride2); av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); av1_build_obmc_inter_prediction(cm, xd, mi_row, mi_col, dst_buf1, dst_stride1, dst_buf2, dst_stride2); } #endif // CONFIG_MOTION_VAR // Reconstruction if (!mbmi->skip) { int eobtotal = 0; int plane; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *const pd = &xd->plane[plane]; const int num_4x4_w = pd->n4_w; const int num_4x4_h = pd->n4_h; int row, col; #if CONFIG_VAR_TX // TODO(jingning): This can be simplified for decoder performance. const BLOCK_SIZE plane_bsize = get_plane_block_size(AOMMAX(bsize, BLOCK_8X8), pd); const TX_SIZE max_tx_size = max_txsize_lookup[plane_bsize]; int bw = num_4x4_blocks_wide_txsize_lookup[max_tx_size]; int bh = num_4x4_blocks_high_txsize_lookup[max_tx_size]; const int step = num_4x4_blocks_txsize_lookup[max_tx_size]; int block = 0; #if CONFIG_EXT_TX && CONFIG_RECT_TX if (is_rect_tx(mbmi->tx_size)) { const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi, pd) : mbmi->tx_size; const int stepr = num_4x4_blocks_high_txsize_lookup[tx_size]; const int stepc = num_4x4_blocks_wide_txsize_lookup[tx_size]; const int max_blocks_wide = num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> (5 + pd->subsampling_x)); const int max_blocks_high = num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y)); for (row = 0; row < max_blocks_high; row += stepr) for (col = 0; col < max_blocks_wide; col += stepc) eobtotal += reconstruct_inter_block(xd, r, mbmi->segment_id, plane, row, col, tx_size); } else { #endif for (row = 0; row < num_4x4_h; row += bh) { for (col = 0; col < num_4x4_w; col += bw) { decode_reconstruct_tx(xd, r, mbmi, plane, plane_bsize, block, row, col, max_tx_size, &eobtotal); block += step; } } #if CONFIG_EXT_TX && CONFIG_RECT_TX } #endif #else const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi, pd) : mbmi->tx_size; const int stepr = num_4x4_blocks_high_txsize_lookup[tx_size]; const int stepc = num_4x4_blocks_wide_txsize_lookup[tx_size]; const int max_blocks_wide = num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> (5 + pd->subsampling_x)); const int max_blocks_high = num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y)); for (row = 0; row < max_blocks_high; row += stepr) for (col = 0; col < max_blocks_wide; col += stepc) eobtotal += reconstruct_inter_block(xd, r, mbmi->segment_id, plane, row, col, tx_size); #endif } if (!less8x8 && eobtotal == 0) mbmi->has_no_coeffs = 1; // skip loopfilter } } xd->corrupted |= aom_reader_has_error(r); } static INLINE int dec_partition_plane_context(const MACROBLOCKD *xd, int mi_row, int mi_col, int bsl) { const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col; const PARTITION_CONTEXT *left_ctx = xd->left_seg_context + (mi_row & MAX_MIB_MASK); int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1; // assert(bsl >= 0); return (left * 2 + above) + bsl * PARTITION_PLOFFSET; } #if !CONFIG_EXT_PARTITION_TYPES static INLINE void dec_update_partition_context(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE subsize, int bw) { PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col; PARTITION_CONTEXT *const left_ctx = xd->left_seg_context + (mi_row & MAX_MIB_MASK); // update the partition context at the end notes. set partition bits // of block sizes larger than the current one to be one, and partition // bits of smaller block sizes to be zero. memset(above_ctx, partition_context_lookup[subsize].above, bw); memset(left_ctx, partition_context_lookup[subsize].left, bw); } #endif // !CONFIG_EXT_PARTITION_TYPES static PARTITION_TYPE read_partition(AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, aom_reader *r, int has_rows, int has_cols, #if CONFIG_EXT_PARTITION_TYPES BLOCK_SIZE bsize, #endif int bsl) { const int ctx = dec_partition_plane_context(xd, mi_row, mi_col, bsl); const aom_prob *const probs = cm->fc->partition_prob[ctx]; FRAME_COUNTS *counts = xd->counts; PARTITION_TYPE p; if (has_rows && has_cols) #if CONFIG_EXT_PARTITION_TYPES if (bsize <= BLOCK_8X8) p = (PARTITION_TYPE)aom_read_tree(r, av1_partition_tree, probs); else p = (PARTITION_TYPE)aom_read_tree(r, av1_ext_partition_tree, probs); #else p = (PARTITION_TYPE)aom_read_tree(r, av1_partition_tree, probs); #endif // CONFIG_EXT_PARTITION_TYPES else if (!has_rows && has_cols) p = aom_read(r, probs[1]) ? PARTITION_SPLIT : PARTITION_HORZ; else if (has_rows && !has_cols) p = aom_read(r, probs[2]) ? PARTITION_SPLIT : PARTITION_VERT; else p = PARTITION_SPLIT; if (counts) ++counts->partition[ctx][p]; return p; } #if CONFIG_SUPERTX static int read_skip(AV1_COMMON *cm, const MACROBLOCKD *xd, int segment_id, aom_reader *r) { if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { return 1; } else { const int ctx = av1_get_skip_context(xd); const int skip = aom_read(r, cm->fc->skip_probs[ctx]); FRAME_COUNTS *counts = xd->counts; if (counts) ++counts->skip[ctx][skip]; return skip; } } #endif // CONFIG_SUPERTX #if CONFIG_CLPF static int clpf_all_skip(const AV1_COMMON *cm, int mi_col, int mi_row, int size) { int r, c; int skip = 1; const int maxc = AOMMIN(size, cm->mi_cols - mi_col); const int maxr = AOMMIN(size, cm->mi_rows - mi_row); for (r = 0; r < maxr && skip; r++) { for (c = 0; c < maxc && skip; c++) { skip &= !!cm->mi_grid_visible[(mi_row + r) * cm->mi_stride + mi_col + c] ->mbmi.skip; } } return skip; } #endif // TODO(slavarnway): eliminate bsize and subsize in future commits static void decode_partition(AV1Decoder *const pbi, MACROBLOCKD *const xd, #if CONFIG_SUPERTX int supertx_enabled, #endif int mi_row, int mi_col, aom_reader *r, BLOCK_SIZE bsize, int n4x4_l2) { AV1_COMMON *const cm = &pbi->common; const int n8x8_l2 = n4x4_l2 - 1; const int num_8x8_wh = 1 << n8x8_l2; const int hbs = num_8x8_wh >> 1; PARTITION_TYPE partition; BLOCK_SIZE subsize; #if CONFIG_EXT_PARTITION_TYPES BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT); #endif const int has_rows = (mi_row + hbs) < cm->mi_rows; const int has_cols = (mi_col + hbs) < cm->mi_cols; #if CONFIG_SUPERTX const int read_token = !supertx_enabled; int skip = 0; TX_SIZE supertx_size = b_width_log2_lookup[bsize]; const TileInfo *const tile = &xd->tile; int txfm = DCT_DCT; #endif // CONFIG_SUPERTX if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; partition = read_partition(cm, xd, mi_row, mi_col, r, has_rows, has_cols, #if CONFIG_EXT_PARTITION_TYPES bsize, #endif n8x8_l2); subsize = subsize_lookup[partition][bsize]; // get_subsize(bsize, partition); #if CONFIG_SUPERTX if (!frame_is_intra_only(cm) && partition != PARTITION_NONE && bsize <= MAX_SUPERTX_BLOCK_SIZE && !supertx_enabled && !xd->lossless[0]) { const int supertx_context = partition_supertx_context_lookup[partition]; supertx_enabled = aom_read(r, cm->fc->supertx_prob[supertx_context][supertx_size]); if (xd->counts) xd->counts->supertx[supertx_context][supertx_size][supertx_enabled]++; #if CONFIG_VAR_TX if (supertx_enabled) xd->supertx_size = supertx_size; #endif } #endif // CONFIG_SUPERTX if (!hbs) { // calculate bmode block dimensions (log 2) xd->bmode_blocks_wl = 1 >> !!(partition & PARTITION_VERT); xd->bmode_blocks_hl = 1 >> !!(partition & PARTITION_HORZ); decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif // CONFIG_SUPERTX mi_row, mi_col, r, #if CONFIG_EXT_PARTITION_TYPES partition, #endif // CONFIG_EXT_PARTITION_TYPES subsize, 1, 1); } else { switch (partition) { case PARTITION_NONE: decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif // CONFIG_SUPERTX mi_row, mi_col, r, #if CONFIG_EXT_PARTITION_TYPES partition, #endif // CONFIG_EXT_PARTITION_TYPES subsize, n4x4_l2, n4x4_l2); break; case PARTITION_HORZ: decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif // CONFIG_SUPERTX mi_row, mi_col, r, #if CONFIG_EXT_PARTITION_TYPES partition, #endif // CONFIG_EXT_PARTITION_TYPES subsize, n4x4_l2, n8x8_l2); if (has_rows) decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif // CONFIG_SUPERTX mi_row + hbs, mi_col, r, #if CONFIG_EXT_PARTITION_TYPES partition, #endif // CONFIG_EXT_PARTITION_TYPES subsize, n4x4_l2, n8x8_l2); break; case PARTITION_VERT: decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif // CONFIG_SUPERTX mi_row, mi_col, r, #if CONFIG_EXT_PARTITION_TYPES partition, #endif // CONFIG_EXT_PARTITION_TYPES subsize, n8x8_l2, n4x4_l2); if (has_cols) decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif // CONFIG_SUPERTX mi_row, mi_col + hbs, r, #if CONFIG_EXT_PARTITION_TYPES partition, #endif // CONFIG_EXT_PARTITION_TYPES subsize, n8x8_l2, n4x4_l2); break; case PARTITION_SPLIT: decode_partition(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif // CONFIG_SUPERTX mi_row, mi_col, r, subsize, n8x8_l2); decode_partition(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif // CONFIG_SUPERTX mi_row, mi_col + hbs, r, subsize, n8x8_l2); decode_partition(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif // CONFIG_SUPERTX mi_row + hbs, mi_col, r, subsize, n8x8_l2); decode_partition(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif // CONFIG_SUPERTX mi_row + hbs, mi_col + hbs, r, subsize, n8x8_l2); break; #if CONFIG_EXT_PARTITION_TYPES case PARTITION_HORZ_A: decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row, mi_col, r, partition, bsize2, n8x8_l2, n8x8_l2); decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row, mi_col + hbs, r, partition, bsize2, n8x8_l2, n8x8_l2); decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row + hbs, mi_col, r, partition, subsize, n4x4_l2, n8x8_l2); break; case PARTITION_HORZ_B: decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row, mi_col, r, partition, subsize, n4x4_l2, n8x8_l2); decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row + hbs, mi_col, r, partition, bsize2, n8x8_l2, n8x8_l2); decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row + hbs, mi_col + hbs, r, partition, bsize2, n8x8_l2, n8x8_l2); break; case PARTITION_VERT_A: decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row, mi_col, r, partition, bsize2, n8x8_l2, n8x8_l2); decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row + hbs, mi_col, r, partition, bsize2, n8x8_l2, n8x8_l2); decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row, mi_col + hbs, r, partition, subsize, n8x8_l2, n4x4_l2); break; case PARTITION_VERT_B: decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row, mi_col, r, partition, subsize, n8x8_l2, n4x4_l2); decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row, mi_col + hbs, r, partition, bsize2, n8x8_l2, n8x8_l2); decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row + hbs, mi_col + hbs, r, partition, bsize2, n8x8_l2, n8x8_l2); break; #endif default: assert(0 && "Invalid partition type"); } } #if CONFIG_SUPERTX if (supertx_enabled && read_token) { uint8_t *dst_buf[3]; int dst_stride[3], i; int offset = mi_row * cm->mi_stride + mi_col; set_segment_id_supertx(cm, mi_row, mi_col, bsize); xd->mi = cm->mi_grid_visible + offset; xd->mi[0] = cm->mi + offset; set_mi_row_col(xd, tile, mi_row, num_8x8_blocks_high_lookup[bsize], mi_col, num_8x8_blocks_wide_lookup[bsize], cm->mi_rows, cm->mi_cols); set_skip_context(xd, mi_row, mi_col); skip = read_skip(cm, xd, xd->mi[0]->mbmi.segment_id_supertx, r); if (skip) { reset_skip_context(xd, bsize); } else { #if CONFIG_EXT_TX if (get_ext_tx_types(supertx_size, bsize, 1) > 1) { int eset = get_ext_tx_set(supertx_size, bsize, 1); if (eset > 0) { txfm = aom_read_tree(r, av1_ext_tx_inter_tree[eset], cm->fc->inter_ext_tx_prob[eset][supertx_size]); if (xd->counts) ++xd->counts->inter_ext_tx[eset][supertx_size][txfm]; } } #else if (supertx_size < TX_32X32) { txfm = aom_read_tree(r, av1_ext_tx_tree, cm->fc->inter_ext_tx_prob[supertx_size]); if (xd->counts) ++xd->counts->inter_ext_tx[supertx_size][txfm]; } #endif // CONFIG_EXT_TX } av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); for (i = 0; i < MAX_MB_PLANE; i++) { dst_buf[i] = xd->plane[i].dst.buf; dst_stride[i] = xd->plane[i].dst.stride; } dec_predict_sb_complex(pbi, xd, tile, mi_row, mi_col, mi_row, mi_col, bsize, bsize, dst_buf, dst_stride); if (!skip) { int eobtotal = 0; MB_MODE_INFO *mbmi; set_offsets_topblock(cm, xd, tile, bsize, mi_row, mi_col); mbmi = &xd->mi[0]->mbmi; mbmi->tx_type = txfm; assert(mbmi->segment_id_supertx != MAX_SEGMENTS); for (i = 0; i < MAX_MB_PLANE; ++i) { const struct macroblockd_plane *const pd = &xd->plane[i]; const int num_4x4_w = pd->n4_w; const int num_4x4_h = pd->n4_h; int row, col; const TX_SIZE tx_size = i ? get_uv_tx_size(mbmi, pd) : mbmi->tx_size; const int stepr = num_4x4_blocks_high_txsize_lookup[tx_size]; const int stepc = num_4x4_blocks_wide_txsize_lookup[tx_size]; const int max_blocks_wide = num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> (5 + pd->subsampling_x)); const int max_blocks_high = num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y)); for (row = 0; row < max_blocks_high; row += stepr) for (col = 0; col < max_blocks_wide; col += stepc) eobtotal += reconstruct_inter_block(xd, r, mbmi->segment_id_supertx, i, row, col, tx_size); } if (!(subsize < BLOCK_8X8) && eobtotal == 0) skip = 1; } set_param_topblock(cm, xd, bsize, mi_row, mi_col, txfm, skip); } #endif // CONFIG_SUPERTX #if CONFIG_EXT_PARTITION_TYPES if (bsize >= BLOCK_8X8) { switch (partition) { case PARTITION_SPLIT: if (bsize > BLOCK_8X8) break; case PARTITION_NONE: case PARTITION_HORZ: case PARTITION_VERT: update_partition_context(xd, mi_row, mi_col, subsize, bsize); break; case PARTITION_HORZ_A: update_partition_context(xd, mi_row, mi_col, bsize2, subsize); update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize); break; case PARTITION_HORZ_B: update_partition_context(xd, mi_row, mi_col, subsize, subsize); update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize); break; case PARTITION_VERT_A: update_partition_context(xd, mi_row, mi_col, bsize2, subsize); update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize); break; case PARTITION_VERT_B: update_partition_context(xd, mi_row, mi_col, subsize, subsize); update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize); break; default: assert(0 && "Invalid partition type"); } } #else // update partition context if (bsize >= BLOCK_8X8 && (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT)) dec_update_partition_context(xd, mi_row, mi_col, subsize, num_8x8_wh); #if CONFIG_CLPF if (bsize == BLOCK_64X64 && cm->clpf_strength_y && cm->clpf_size != CLPF_NOSIZE) { const int tl = mi_row * MI_SIZE / MIN_FB_SIZE * cm->clpf_stride + mi_col * MI_SIZE / MIN_FB_SIZE; if (!((mi_row * MI_SIZE) & 127) && !((mi_col * MI_SIZE) & 127) && cm->clpf_size == CLPF_128X128) { cm->clpf_blocks[tl] = aom_read_literal(r, 1, ACCT_STR); } else if (cm->clpf_size == CLPF_64X64 && !clpf_all_skip(cm, mi_col, mi_row, 64 / MI_SIZE)) { cm->clpf_blocks[tl] = aom_read_literal(r, 1, ACCT_STR); } else if (cm->clpf_size == CLPF_32X32) { const int tr = tl + 1; const int bl = tl + cm->clpf_stride; const int br = tr + cm->clpf_stride; const int size = 32 / MI_SIZE; // Up to four bits per SB if (!clpf_all_skip(cm, mi_col, mi_row, size)) cm->clpf_blocks[tl] = aom_read_literal(r, 1, ACCT_STR); if (mi_col + size < cm->mi_cols && !clpf_all_skip(cm, mi_col + size, mi_row, size)) cm->clpf_blocks[tr] = aom_read_literal(r, 1, ACCT_STR); if (mi_row + size < cm->mi_rows && !clpf_all_skip(cm, mi_col, mi_row + size, size)) cm->clpf_blocks[bl] = aom_read_literal(r, 1, ACCT_STR); if (mi_col + size < cm->mi_cols && mi_row + size < cm->mi_rows && !clpf_all_skip(cm, mi_col + size, mi_row + size, size)) cm->clpf_blocks[br] = aom_read_literal(r, 1, ACCT_STR); } } #endif #if CONFIG_DERING if (bsize == BLOCK_64X64) { if (cm->dering_level != 0 && !sb_all_skip(cm, mi_row, mi_col)) { cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]->mbmi.dering_gain = aom_read_literal(r, DERING_REFINEMENT_BITS); } else { cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]->mbmi.dering_gain = 0; } } #endif #endif // CONFIG_EXT_PARTITION_TYPES } #if !CONFIG_ANS static void setup_bool_decoder(const uint8_t *data, const uint8_t *data_end, const size_t read_size, struct aom_internal_error_info *error_info, aom_reader *r, aom_decrypt_cb decrypt_cb, void *decrypt_state) { // Validate the calculated partition length. If the buffer // described by the partition can't be fully read, then restrict // it to the portion that can be (for EC mode) or throw an error. if (!read_is_valid(data, read_size, data_end)) aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt tile length"); if (aom_reader_init(r, data, read_size, decrypt_cb, decrypt_state)) aom_internal_error(error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate bool decoder %d", 1); } #else static void setup_token_decoder(const uint8_t *data, const uint8_t *data_end, const size_t read_size, struct aom_internal_error_info *error_info, struct AnsDecoder *const ans, aom_decrypt_cb decrypt_cb, void *decrypt_state) { (void)decrypt_cb; (void)decrypt_state; // Validate the calculated partition length. If the buffer // described by the partition can't be fully read, then restrict // it to the portion that can be (for EC mode) or throw an error. if (!read_is_valid(data, read_size, data_end)) aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt tile length"); if (read_size > INT_MAX || ans_read_init(ans, data, (int)read_size)) aom_internal_error(error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate token decoder %d", 1); } #endif static void read_coef_probs_common(av1_coeff_probs_model *coef_probs, aom_reader *r) { int i, j, k, l, m; if (aom_read_bit(r)) for (i = 0; i < PLANE_TYPES; ++i) for (j = 0; j < REF_TYPES; ++j) for (k = 0; k < COEF_BANDS; ++k) for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) for (m = 0; m < UNCONSTRAINED_NODES; ++m) av1_diff_update_prob(r, &coef_probs[i][j][k][l][m]); } static void read_coef_probs(FRAME_CONTEXT *fc, TX_MODE tx_mode, aom_reader *r) { const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode]; TX_SIZE tx_size; for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) read_coef_probs_common(fc->coef_probs[tx_size], r); #if CONFIG_ANS av1_coef_pareto_cdfs(fc); #endif // CONFIG_ANS } static void setup_segmentation(AV1_COMMON *const cm, struct aom_read_bit_buffer *rb) { struct segmentation *const seg = &cm->seg; int i, j; seg->update_map = 0; seg->update_data = 0; seg->enabled = aom_rb_read_bit(rb); if (!seg->enabled) return; // Segmentation map update if (frame_is_intra_only(cm) || cm->error_resilient_mode) { seg->update_map = 1; } else { seg->update_map = aom_rb_read_bit(rb); } if (seg->update_map) { if (frame_is_intra_only(cm) || cm->error_resilient_mode) { seg->temporal_update = 0; } else { seg->temporal_update = aom_rb_read_bit(rb); } } // Segmentation data update seg->update_data = aom_rb_read_bit(rb); if (seg->update_data) { seg->abs_delta = aom_rb_read_bit(rb); av1_clearall_segfeatures(seg); for (i = 0; i < MAX_SEGMENTS; i++) { for (j = 0; j < SEG_LVL_MAX; j++) { int data = 0; const int feature_enabled = aom_rb_read_bit(rb); if (feature_enabled) { av1_enable_segfeature(seg, i, j); data = decode_unsigned_max(rb, av1_seg_feature_data_max(j)); if (av1_is_segfeature_signed(j)) data = aom_rb_read_bit(rb) ? -data : data; } av1_set_segdata(seg, i, j, data); } } } } #if CONFIG_LOOP_RESTORATION static void decode_restoration_mode(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { RestorationInfo *rsi = &cm->rst_info; if (aom_rb_read_bit(rb)) { rsi->frame_restoration_type = aom_rb_read_bit(rb) ? RESTORE_WIENER : RESTORE_BILATERAL; } else { rsi->frame_restoration_type = aom_rb_read_bit(rb) ? RESTORE_SWITCHABLE : RESTORE_NONE; } } static void decode_restoration(AV1_COMMON *cm, aom_reader *rb) { int i; RestorationInfo *rsi = &cm->rst_info; const int ntiles = av1_get_rest_ntiles(cm->width, cm->height, NULL, NULL, NULL, NULL); if (rsi->frame_restoration_type != RESTORE_NONE) { rsi->restoration_type = (RestorationType *)aom_realloc( rsi->restoration_type, sizeof(*rsi->restoration_type) * ntiles); if (rsi->frame_restoration_type == RESTORE_SWITCHABLE) { rsi->bilateral_info = (BilateralInfo *)aom_realloc( rsi->bilateral_info, sizeof(*rsi->bilateral_info) * ntiles); assert(rsi->bilateral_info != NULL); rsi->wiener_info = (WienerInfo *)aom_realloc( rsi->wiener_info, sizeof(*rsi->wiener_info) * ntiles); assert(rsi->wiener_info != NULL); for (i = 0; i < ntiles; ++i) { rsi->restoration_type[i] = aom_read_tree( rb, av1_switchable_restore_tree, cm->fc->switchable_restore_prob); if (rsi->restoration_type[i] == RESTORE_WIENER) { rsi->wiener_info[i].level = 1; rsi->wiener_info[i].vfilter[0] = aom_read_literal(rb, WIENER_FILT_TAP0_BITS) + WIENER_FILT_TAP0_MINV; rsi->wiener_info[i].vfilter[1] = aom_read_literal(rb, WIENER_FILT_TAP1_BITS) + WIENER_FILT_TAP1_MINV; rsi->wiener_info[i].vfilter[2] = aom_read_literal(rb, WIENER_FILT_TAP2_BITS) + WIENER_FILT_TAP2_MINV; rsi->wiener_info[i].hfilter[0] = aom_read_literal(rb, WIENER_FILT_TAP0_BITS) + WIENER_FILT_TAP0_MINV; rsi->wiener_info[i].hfilter[1] = aom_read_literal(rb, WIENER_FILT_TAP1_BITS) + WIENER_FILT_TAP1_MINV; rsi->wiener_info[i].hfilter[2] = aom_read_literal(rb, WIENER_FILT_TAP2_BITS) + WIENER_FILT_TAP2_MINV; } else if (rsi->restoration_type[i] == RESTORE_BILATERAL) { int s; for (s = 0; s < BILATERAL_SUBTILES; ++s) { #if BILATERAL_SUBTILES == 0 rsi->bilateral_info[i].level[s] = aom_read_literal(rb, av1_bilateral_level_bits(cm)); #else if (aom_read(rb, RESTORE_NONE_BILATERAL_PROB)) { rsi->bilateral_info[i].level[s] = aom_read_literal(rb, av1_bilateral_level_bits(cm)); } else { rsi->bilateral_info[i].level[s] = -1; } #endif } } } } else if (rsi->frame_restoration_type == RESTORE_WIENER) { rsi->wiener_info = (WienerInfo *)aom_realloc( rsi->wiener_info, sizeof(*rsi->wiener_info) * ntiles); assert(rsi->wiener_info != NULL); for (i = 0; i < ntiles; ++i) { if (aom_read(rb, RESTORE_NONE_WIENER_PROB)) { rsi->wiener_info[i].level = 1; rsi->restoration_type[i] = RESTORE_WIENER; rsi->wiener_info[i].vfilter[0] = aom_read_literal(rb, WIENER_FILT_TAP0_BITS) + WIENER_FILT_TAP0_MINV; rsi->wiener_info[i].vfilter[1] = aom_read_literal(rb, WIENER_FILT_TAP1_BITS) + WIENER_FILT_TAP1_MINV; rsi->wiener_info[i].vfilter[2] = aom_read_literal(rb, WIENER_FILT_TAP2_BITS) + WIENER_FILT_TAP2_MINV; rsi->wiener_info[i].hfilter[0] = aom_read_literal(rb, WIENER_FILT_TAP0_BITS) + WIENER_FILT_TAP0_MINV; rsi->wiener_info[i].hfilter[1] = aom_read_literal(rb, WIENER_FILT_TAP1_BITS) + WIENER_FILT_TAP1_MINV; rsi->wiener_info[i].hfilter[2] = aom_read_literal(rb, WIENER_FILT_TAP2_BITS) + WIENER_FILT_TAP2_MINV; } else { rsi->wiener_info[i].level = 0; rsi->restoration_type[i] = RESTORE_NONE; } } } else { rsi->bilateral_info = (BilateralInfo *)aom_realloc( rsi->bilateral_info, sizeof(*rsi->bilateral_info) * ntiles); assert(rsi->bilateral_info != NULL); for (i = 0; i < ntiles; ++i) { int s; rsi->restoration_type[i] = RESTORE_BILATERAL; for (s = 0; s < BILATERAL_SUBTILES; ++s) { if (aom_read(rb, RESTORE_NONE_BILATERAL_PROB)) { rsi->bilateral_info[i].level[s] = aom_read_literal(rb, av1_bilateral_level_bits(cm)); } else { rsi->bilateral_info[i].level[s] = -1; } } } } } else { rsi->frame_restoration_type = RESTORE_NONE; } } #endif // CONFIG_LOOP_RESTORATION static void setup_loopfilter(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { struct loopfilter *lf = &cm->lf; lf->filter_level = aom_rb_read_literal(rb, 6); lf->sharpness_level = aom_rb_read_literal(rb, 3); // Read in loop filter deltas applied at the MB level based on mode or ref // frame. lf->mode_ref_delta_update = 0; lf->mode_ref_delta_enabled = aom_rb_read_bit(rb); if (lf->mode_ref_delta_enabled) { lf->mode_ref_delta_update = aom_rb_read_bit(rb); if (lf->mode_ref_delta_update) { int i; for (i = 0; i < TOTAL_REFS_PER_FRAME; i++) if (aom_rb_read_bit(rb)) lf->ref_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6); for (i = 0; i < MAX_MODE_LF_DELTAS; i++) if (aom_rb_read_bit(rb)) lf->mode_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6); } } } #if CONFIG_CLPF static void setup_clpf(AV1Decoder *pbi, struct aom_read_bit_buffer *rb) { AV1_COMMON *const cm = &pbi->common; const int width = pbi->cur_buf->buf.y_crop_width; const int height = pbi->cur_buf->buf.y_crop_height; cm->clpf_blocks = 0; cm->clpf_strength_y = aom_rb_read_literal(rb, 2); cm->clpf_strength_u = aom_rb_read_literal(rb, 2); cm->clpf_strength_v = aom_rb_read_literal(rb, 2); if (cm->clpf_strength_y) { cm->clpf_size = aom_rb_read_literal(rb, 2); if (cm->clpf_size != CLPF_NOSIZE) { int size; cm->clpf_stride = ((width + MIN_FB_SIZE - 1) & ~(MIN_FB_SIZE - 1)) >> MIN_FB_SIZE_LOG2; size = cm->clpf_stride * ((height + MIN_FB_SIZE - 1) & ~(MIN_FB_SIZE - 1)) >> MIN_FB_SIZE_LOG2; CHECK_MEM_ERROR(cm, cm->clpf_blocks, aom_malloc(size)); memset(cm->clpf_blocks, -1, size); } } } static int clpf_bit(UNUSED int k, UNUSED int l, UNUSED const YV12_BUFFER_CONFIG *rec, UNUSED const YV12_BUFFER_CONFIG *org, UNUSED const AV1_COMMON *cm, UNUSED int block_size, UNUSED int w, UNUSED int h, UNUSED unsigned int strength, UNUSED unsigned int fb_size_log2, int8_t *bit) { return *bit; } #endif #if CONFIG_DERING static void setup_dering(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { cm->dering_level = aom_rb_read_literal(rb, DERING_LEVEL_BITS); } #endif // CONFIG_DERING static INLINE int read_delta_q(struct aom_read_bit_buffer *rb) { return aom_rb_read_bit(rb) ? aom_rb_read_inv_signed_literal(rb, 6) : 0; } static void setup_quantization(AV1_COMMON *const cm, struct aom_read_bit_buffer *rb) { cm->base_qindex = aom_rb_read_literal(rb, QINDEX_BITS); cm->y_dc_delta_q = read_delta_q(rb); cm->uv_dc_delta_q = read_delta_q(rb); cm->uv_ac_delta_q = read_delta_q(rb); cm->dequant_bit_depth = cm->bit_depth; #if CONFIG_AOM_QM cm->using_qmatrix = aom_rb_read_bit(rb); if (cm->using_qmatrix) { cm->min_qmlevel = aom_rb_read_literal(rb, QM_LEVEL_BITS); cm->max_qmlevel = aom_rb_read_literal(rb, QM_LEVEL_BITS); } else { cm->min_qmlevel = 0; cm->max_qmlevel = 0; } #endif } static void setup_segmentation_dequant(AV1_COMMON *const cm) { // Build y/uv dequant values based on segmentation. int i = 0; #if CONFIG_AOM_QM int lossless; int j = 0; int qmlevel; int using_qm = cm->using_qmatrix; int minqm = cm->min_qmlevel; int maxqm = cm->max_qmlevel; #endif #if CONFIG_NEW_QUANT int b; int dq; #endif // CONFIG_NEW_QUANT if (cm->seg.enabled) { for (i = 0; i < MAX_SEGMENTS; ++i) { const int qindex = av1_get_qindex(&cm->seg, i, cm->base_qindex); cm->y_dequant[i][0] = av1_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth); cm->y_dequant[i][1] = av1_ac_quant(qindex, 0, cm->bit_depth); cm->uv_dequant[i][0] = av1_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth); cm->uv_dequant[i][1] = av1_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth); #if CONFIG_AOM_QM lossless = qindex == 0 && cm->y_dc_delta_q == 0 && cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0; // NB: depends on base index so there is only 1 set per frame // No quant weighting when lossless or signalled not using QM qmlevel = (lossless || using_qm == 0) ? NUM_QM_LEVELS - 1 : aom_get_qmlevel(cm->base_qindex, minqm, maxqm); for (j = 0; j < TX_SIZES; ++j) { cm->y_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 0, j, 1); cm->y_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 0, j, 0); cm->uv_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 1, j, 1); cm->uv_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 1, j, 0); } #endif // CONFIG_AOM_QM #if CONFIG_NEW_QUANT for (dq = 0; dq < QUANT_PROFILES; dq++) { for (b = 0; b < COEF_BANDS; ++b) { av1_get_dequant_val_nuq(cm->y_dequant[i][b != 0], b, cm->y_dequant_nuq[i][dq][b], NULL, dq); av1_get_dequant_val_nuq(cm->uv_dequant[i][b != 0], b, cm->uv_dequant_nuq[i][dq][b], NULL, dq); } } #endif // CONFIG_NEW_QUANT } } else { const int qindex = cm->base_qindex; // When segmentation is disabled, only the first value is used. The // remaining are don't cares. cm->y_dequant[0][0] = av1_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth); cm->y_dequant[0][1] = av1_ac_quant(qindex, 0, cm->bit_depth); cm->uv_dequant[0][0] = av1_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth); cm->uv_dequant[0][1] = av1_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth); #if CONFIG_AOM_QM lossless = qindex == 0 && cm->y_dc_delta_q == 0 && cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0; // No quant weighting when lossless or signalled not using QM qmlevel = (lossless || using_qm == 0) ? NUM_QM_LEVELS - 1 : aom_get_qmlevel(cm->base_qindex, minqm, maxqm); for (j = 0; j < TX_SIZES; ++j) { cm->y_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 0, j, 1); cm->y_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 0, j, 0); cm->uv_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 1, j, 1); cm->uv_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 1, j, 0); } #endif #if CONFIG_NEW_QUANT for (dq = 0; dq < QUANT_PROFILES; dq++) { for (b = 0; b < COEF_BANDS; ++b) { av1_get_dequant_val_nuq(cm->y_dequant[0][b != 0], b, cm->y_dequant_nuq[0][dq][b], NULL, dq); av1_get_dequant_val_nuq(cm->uv_dequant[0][b != 0], b, cm->uv_dequant_nuq[0][dq][b], NULL, dq); } } #endif // CONFIG_NEW_QUANT } } static InterpFilter read_interp_filter(struct aom_read_bit_buffer *rb) { return aom_rb_read_bit(rb) ? SWITCHABLE : aom_rb_read_literal(rb, 2 + CONFIG_EXT_INTERP); } static void setup_render_size(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { cm->render_width = cm->width; cm->render_height = cm->height; if (aom_rb_read_bit(rb)) av1_read_frame_size(rb, &cm->render_width, &cm->render_height); } static void resize_mv_buffer(AV1_COMMON *cm) { aom_free(cm->cur_frame->mvs); cm->cur_frame->mi_rows = cm->mi_rows; cm->cur_frame->mi_cols = cm->mi_cols; CHECK_MEM_ERROR(cm, cm->cur_frame->mvs, (MV_REF *)aom_calloc(cm->mi_rows * cm->mi_cols, sizeof(*cm->cur_frame->mvs))); } static void resize_context_buffers(AV1_COMMON *cm, int width, int height) { #if CONFIG_SIZE_LIMIT if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT) aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Dimensions of %dx%d beyond allowed size of %dx%d.", width, height, DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT); #endif if (cm->width != width || cm->height != height) { const int new_mi_rows = ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2) >> MI_SIZE_LOG2; const int new_mi_cols = ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2) >> MI_SIZE_LOG2; // Allocations in av1_alloc_context_buffers() depend on individual // dimensions as well as the overall size. if (new_mi_cols > cm->mi_cols || new_mi_rows > cm->mi_rows) { if (av1_alloc_context_buffers(cm, width, height)) aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate context buffers"); } else { av1_set_mb_mi(cm, width, height); } av1_init_context_buffers(cm); cm->width = width; cm->height = height; } if (cm->cur_frame->mvs == NULL || cm->mi_rows > cm->cur_frame->mi_rows || cm->mi_cols > cm->cur_frame->mi_cols) { resize_mv_buffer(cm); } } static void setup_frame_size(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { int width, height; BufferPool *const pool = cm->buffer_pool; av1_read_frame_size(rb, &width, &height); resize_context_buffers(cm, width, height); setup_render_size(cm, rb); lock_buffer_pool(pool); if (aom_realloc_frame_buffer( get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, #if CONFIG_AOM_HIGHBITDEPTH cm->use_highbitdepth, #endif AOM_BORDER_IN_PIXELS, cm->byte_alignment, &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb, pool->cb_priv)) { unlock_buffer_pool(pool); aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate frame buffer"); } unlock_buffer_pool(pool); pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x; pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y; pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth; pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space; pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range; pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width; pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height; } static INLINE int valid_ref_frame_img_fmt(aom_bit_depth_t ref_bit_depth, int ref_xss, int ref_yss, aom_bit_depth_t this_bit_depth, int this_xss, int this_yss) { return ref_bit_depth == this_bit_depth && ref_xss == this_xss && ref_yss == this_yss; } static void setup_frame_size_with_refs(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { int width, height; int found = 0, i; int has_valid_ref_frame = 0; BufferPool *const pool = cm->buffer_pool; for (i = 0; i < INTER_REFS_PER_FRAME; ++i) { if (aom_rb_read_bit(rb)) { YV12_BUFFER_CONFIG *const buf = cm->frame_refs[i].buf; width = buf->y_crop_width; height = buf->y_crop_height; cm->render_width = buf->render_width; cm->render_height = buf->render_height; found = 1; break; } } if (!found) { av1_read_frame_size(rb, &width, &height); setup_render_size(cm, rb); } if (width <= 0 || height <= 0) aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Invalid frame size"); // Check to make sure at least one of frames that this frame references // has valid dimensions. for (i = 0; i < INTER_REFS_PER_FRAME; ++i) { RefBuffer *const ref_frame = &cm->frame_refs[i]; has_valid_ref_frame |= valid_ref_frame_size(ref_frame->buf->y_crop_width, ref_frame->buf->y_crop_height, width, height); } if (!has_valid_ref_frame) aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Referenced frame has invalid size"); for (i = 0; i < INTER_REFS_PER_FRAME; ++i) { RefBuffer *const ref_frame = &cm->frame_refs[i]; if (!valid_ref_frame_img_fmt(ref_frame->buf->bit_depth, ref_frame->buf->subsampling_x, ref_frame->buf->subsampling_y, cm->bit_depth, cm->subsampling_x, cm->subsampling_y)) aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Referenced frame has incompatible color format"); } resize_context_buffers(cm, width, height); lock_buffer_pool(pool); if (aom_realloc_frame_buffer( get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, #if CONFIG_AOM_HIGHBITDEPTH cm->use_highbitdepth, #endif AOM_BORDER_IN_PIXELS, cm->byte_alignment, &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb, pool->cb_priv)) { unlock_buffer_pool(pool); aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate frame buffer"); } unlock_buffer_pool(pool); pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x; pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y; pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth; pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space; pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range; pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width; pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height; } static void read_tile_info(AV1Decoder *const pbi, struct aom_read_bit_buffer *const rb) { AV1_COMMON *const cm = &pbi->common; #if CONFIG_EXT_TILE // Read the tile width/height #if CONFIG_EXT_PARTITION if (cm->sb_size == BLOCK_128X128) { cm->tile_width = aom_rb_read_literal(rb, 5) + 1; cm->tile_height = aom_rb_read_literal(rb, 5) + 1; } else #endif // CONFIG_EXT_PARTITION { cm->tile_width = aom_rb_read_literal(rb, 6) + 1; cm->tile_height = aom_rb_read_literal(rb, 6) + 1; } cm->tile_width <<= cm->mib_size_log2; cm->tile_height <<= cm->mib_size_log2; cm->tile_width = AOMMIN(cm->tile_width, cm->mi_cols); cm->tile_height = AOMMIN(cm->tile_height, cm->mi_rows); // Get the number of tiles cm->tile_cols = 1; while (cm->tile_cols * cm->tile_width < cm->mi_cols) ++cm->tile_cols; cm->tile_rows = 1; while (cm->tile_rows * cm->tile_height < cm->mi_rows) ++cm->tile_rows; if (cm->tile_cols * cm->tile_rows > 1) { // Read the number of bytes used to store tile size pbi->tile_col_size_bytes = aom_rb_read_literal(rb, 2) + 1; pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1; } #else int min_log2_tile_cols, max_log2_tile_cols, max_ones; av1_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols); // columns max_ones = max_log2_tile_cols - min_log2_tile_cols; cm->log2_tile_cols = min_log2_tile_cols; while (max_ones-- && aom_rb_read_bit(rb)) cm->log2_tile_cols++; if (cm->log2_tile_cols > 6) aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Invalid number of tile columns"); // rows cm->log2_tile_rows = aom_rb_read_bit(rb); if (cm->log2_tile_rows) cm->log2_tile_rows += aom_rb_read_bit(rb); cm->tile_cols = 1 << cm->log2_tile_cols; cm->tile_rows = 1 << cm->log2_tile_rows; cm->tile_width = ALIGN_POWER_OF_TWO(cm->mi_cols, MAX_MIB_SIZE_LOG2); cm->tile_width >>= cm->log2_tile_cols; cm->tile_height = ALIGN_POWER_OF_TWO(cm->mi_rows, MAX_MIB_SIZE_LOG2); cm->tile_height >>= cm->log2_tile_rows; // round to integer multiples of superblock size cm->tile_width = ALIGN_POWER_OF_TWO(cm->tile_width, MAX_MIB_SIZE_LOG2); cm->tile_height = ALIGN_POWER_OF_TWO(cm->tile_height, MAX_MIB_SIZE_LOG2); // tile size magnitude if (cm->tile_rows > 1 || cm->tile_cols > 1) { pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1; } #endif // CONFIG_EXT_TILE } static int mem_get_varsize(const uint8_t *src, const int sz) { switch (sz) { case 1: return src[0]; case 2: return mem_get_le16(src); case 3: return mem_get_le24(src); case 4: return mem_get_le32(src); default: assert("Invalid size" && 0); return -1; } } #if CONFIG_EXT_TILE // Reads the next tile returning its size and adjusting '*data' accordingly // based on 'is_last'. static void get_tile_buffer(const uint8_t *const data_end, struct aom_internal_error_info *error_info, const uint8_t **data, aom_decrypt_cb decrypt_cb, void *decrypt_state, TileBufferDec (*const tile_buffers)[MAX_TILE_COLS], int tile_size_bytes, int col, int row) { size_t size; size_t copy_size = 0; const uint8_t *copy_data = NULL; if (!read_is_valid(*data, tile_size_bytes, data_end)) aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt tile length"); if (decrypt_cb) { uint8_t be_data[4]; decrypt_cb(decrypt_state, *data, be_data, tile_size_bytes); // Only read number of bytes in cm->tile_size_bytes. size = mem_get_varsize(be_data, tile_size_bytes); } else { size = mem_get_varsize(*data, tile_size_bytes); } // The top bit indicates copy mode if ((size >> (tile_size_bytes * 8 - 1)) == 1) { // The remaining bits in the top byte signal the row offset int offset = (size >> (tile_size_bytes - 1) * 8) & 0x7f; // Currently, only use tiles in same column as reference tiles. copy_data = tile_buffers[row - offset][col].data; copy_size = tile_buffers[row - offset][col].size; size = 0; } *data += tile_size_bytes; if (size > (size_t)(data_end - *data)) aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt tile size"); if (size > 0) { tile_buffers[row][col].data = *data; tile_buffers[row][col].size = size; } else { tile_buffers[row][col].data = copy_data; tile_buffers[row][col].size = copy_size; } *data += size; tile_buffers[row][col].raw_data_end = *data; } static void get_tile_buffers( AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end, TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) { AV1_COMMON *const cm = &pbi->common; const int tile_cols = cm->tile_cols; const int tile_rows = cm->tile_rows; const int have_tiles = tile_cols * tile_rows > 1; if (!have_tiles) { const uint32_t tile_size = data_end - data; tile_buffers[0][0].data = data; tile_buffers[0][0].size = tile_size; tile_buffers[0][0].raw_data_end = NULL; } else { // We locate only the tile buffers that are required, which are the ones // specified by pbi->dec_tile_col and pbi->dec_tile_row. Also, we always // need the last (bottom right) tile buffer, as we need to know where the // end of the compressed frame buffer is for proper superframe decoding. const uint8_t *tile_col_data_end[MAX_TILE_COLS]; const uint8_t *const data_start = data; const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); const int single_row = pbi->dec_tile_row >= 0; const int tile_rows_start = single_row ? dec_tile_row : 0; const int tile_rows_end = single_row ? tile_rows_start + 1 : tile_rows; const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); const int single_col = pbi->dec_tile_col >= 0; const int tile_cols_start = single_col ? dec_tile_col : 0; const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; const int tile_col_size_bytes = pbi->tile_col_size_bytes; const int tile_size_bytes = pbi->tile_size_bytes; size_t tile_col_size; int r, c; // Read tile column sizes for all columns (we need the last tile buffer) for (c = 0; c < tile_cols; ++c) { const int is_last = c == tile_cols - 1; if (!is_last) { tile_col_size = mem_get_varsize(data, tile_col_size_bytes); data += tile_col_size_bytes; tile_col_data_end[c] = data + tile_col_size; } else { tile_col_size = data_end - data; tile_col_data_end[c] = data_end; } data += tile_col_size; } data = data_start; // Read the required tile sizes. for (c = tile_cols_start; c < tile_cols_end; ++c) { const int is_last = c == tile_cols - 1; if (c > 0) data = tile_col_data_end[c - 1]; if (!is_last) data += tile_col_size_bytes; // Get the whole of the last column, otherwise stop at the required tile. for (r = 0; r < (is_last ? tile_rows : tile_rows_end); ++r) { tile_buffers[r][c].col = c; get_tile_buffer(tile_col_data_end[c], &pbi->common.error, &data, pbi->decrypt_cb, pbi->decrypt_state, tile_buffers, tile_size_bytes, c, r); } } // If we have not read the last column, then read it to get the last tile. if (tile_cols_end != tile_cols) { c = tile_cols - 1; data = tile_col_data_end[c - 1]; for (r = 0; r < tile_rows; ++r) { tile_buffers[r][c].col = c; get_tile_buffer(tile_col_data_end[c], &pbi->common.error, &data, pbi->decrypt_cb, pbi->decrypt_state, tile_buffers, tile_size_bytes, c, r); } } } } #else // Reads the next tile returning its size and adjusting '*data' accordingly // based on 'is_last'. static void get_tile_buffer(const uint8_t *const data_end, const int tile_size_bytes, int is_last, struct aom_internal_error_info *error_info, const uint8_t **data, aom_decrypt_cb decrypt_cb, void *decrypt_state, TileBufferDec *const buf) { size_t size; if (!is_last) { if (!read_is_valid(*data, 4, data_end)) aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt tile length"); if (decrypt_cb) { uint8_t be_data[4]; decrypt_cb(decrypt_state, *data, be_data, tile_size_bytes); size = mem_get_varsize(be_data, tile_size_bytes); } else { size = mem_get_varsize(*data, tile_size_bytes); } *data += tile_size_bytes; if (size > (size_t)(data_end - *data)) aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt tile size"); } else { size = data_end - *data; } buf->data = *data; buf->size = size; *data += size; } static void get_tile_buffers( AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end, TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) { AV1_COMMON *const cm = &pbi->common; int r, c; const int tile_cols = cm->tile_cols; const int tile_rows = cm->tile_rows; for (r = 0; r < tile_rows; ++r) { for (c = 0; c < tile_cols; ++c) { const int is_last = (r == tile_rows - 1) && (c == tile_cols - 1); TileBufferDec *const buf = &tile_buffers[r][c]; buf->col = c; get_tile_buffer(data_end, pbi->tile_size_bytes, is_last, &cm->error, &data, pbi->decrypt_cb, pbi->decrypt_state, buf); } } } #endif // CONFIG_EXT_TILE static const uint8_t *decode_tiles(AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end) { AV1_COMMON *const cm = &pbi->common; const AVxWorkerInterface *const winterface = aom_get_worker_interface(); const int tile_cols = cm->tile_cols; const int tile_rows = cm->tile_rows; const int n_tiles = tile_cols * tile_rows; TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers; #if CONFIG_EXT_TILE const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); const int single_row = pbi->dec_tile_row >= 0; const int tile_rows_start = single_row ? dec_tile_row : 0; const int tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows; const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); const int single_col = pbi->dec_tile_col >= 0; const int tile_cols_start = single_col ? dec_tile_col : 0; const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; const int inv_col_order = pbi->inv_tile_order && !single_col; const int inv_row_order = pbi->inv_tile_order && !single_row; #else const int tile_rows_start = 0; const int tile_rows_end = tile_rows; const int tile_cols_start = 0; const int tile_cols_end = tile_cols; const int inv_col_order = pbi->inv_tile_order; const int inv_row_order = pbi->inv_tile_order; #endif // CONFIG_EXT_TILE int tile_row, tile_col; #if CONFIG_ENTROPY cm->do_subframe_update = n_tiles == 1; #endif // CONFIG_ENTROPY if (cm->lf.filter_level && !cm->skip_loop_filter && pbi->lf_worker.data1 == NULL) { CHECK_MEM_ERROR(cm, pbi->lf_worker.data1, aom_memalign(32, sizeof(LFWorkerData))); pbi->lf_worker.hook = (AVxWorkerHook)av1_loop_filter_worker; if (pbi->max_threads > 1 && !winterface->reset(&pbi->lf_worker)) { aom_internal_error(&cm->error, AOM_CODEC_ERROR, "Loop filter thread creation failed"); } } if (cm->lf.filter_level && !cm->skip_loop_filter) { LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1; // Be sure to sync as we might be resuming after a failed frame decode. winterface->sync(&pbi->lf_worker); av1_loop_filter_data_reset(lf_data, get_frame_new_buffer(cm), cm, pbi->mb.plane); } assert(tile_rows <= MAX_TILE_ROWS); assert(tile_cols <= MAX_TILE_COLS); get_tile_buffers(pbi, data, data_end, tile_buffers); if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) { aom_free(pbi->tile_data); CHECK_MEM_ERROR(cm, pbi->tile_data, aom_memalign(32, n_tiles * (sizeof(*pbi->tile_data)))); pbi->allocated_tiles = n_tiles; } // Load all tile information into tile_data. for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) { for (tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) { const TileBufferDec *const buf = &tile_buffers[tile_row][tile_col]; TileData *const td = pbi->tile_data + tile_cols * tile_row + tile_col; td->cm = cm; td->xd = pbi->mb; td->xd.corrupted = 0; td->xd.counts = cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD ? &cm->counts : NULL; av1_zero(td->dqcoeff); av1_tile_init(&td->xd.tile, td->cm, tile_row, tile_col); #if !CONFIG_ANS setup_bool_decoder(buf->data, data_end, buf->size, &cm->error, &td->bit_reader, pbi->decrypt_cb, pbi->decrypt_state); #else setup_token_decoder(buf->data, data_end, buf->size, &cm->error, &td->bit_reader, pbi->decrypt_cb, pbi->decrypt_state); #endif av1_init_macroblockd(cm, &td->xd, td->dqcoeff); td->xd.plane[0].color_index_map = td->color_index_map[0]; td->xd.plane[1].color_index_map = td->color_index_map[1]; } } for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) { const int row = inv_row_order ? tile_rows - 1 - tile_row : tile_row; int mi_row = 0; TileInfo tile_info; av1_tile_set_row(&tile_info, cm, row); for (tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) { const int col = inv_col_order ? tile_cols - 1 - tile_col : tile_col; TileData *const td = pbi->tile_data + tile_cols * row + col; av1_tile_set_col(&tile_info, cm, col); av1_zero_above_context(cm, tile_info.mi_col_start, tile_info.mi_col_end); for (mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end; mi_row += cm->mib_size) { int mi_col; av1_zero_left_context(&td->xd); for (mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end; mi_col += cm->mib_size) { decode_partition(pbi, &td->xd, #if CONFIG_SUPERTX 0, #endif // CONFIG_SUPERTX mi_row, mi_col, &td->bit_reader, cm->sb_size, b_width_log2_lookup[cm->sb_size]); } pbi->mb.corrupted |= td->xd.corrupted; if (pbi->mb.corrupted) aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Failed to decode tile data"); #if CONFIG_ENTROPY if (cm->do_subframe_update && cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { if ((mi_row + MI_SIZE) % (MI_SIZE * AOMMAX(cm->mi_rows / MI_SIZE / COEF_PROBS_BUFS, 1)) == 0 && mi_row + MI_SIZE < cm->mi_rows && cm->coef_probs_update_idx < COEF_PROBS_BUFS - 1) { av1_partial_adapt_probs(cm, mi_row, mi_col); ++cm->coef_probs_update_idx; } } #endif // CONFIG_ENTROPY } } assert(mi_row > 0); #if !CONFIG_VAR_TX // Loopfilter one tile row. if (cm->lf.filter_level && !cm->skip_loop_filter) { LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1; const int lf_start = AOMMAX(0, tile_info.mi_row_start - cm->mib_size); const int lf_end = tile_info.mi_row_end - cm->mib_size; // Delay the loopfilter if the first tile row is only // a single superblock high. if (lf_end <= 0) continue; // Decoding has completed. Finish up the loop filter in this thread. if (tile_info.mi_row_end >= cm->mi_rows) continue; winterface->sync(&pbi->lf_worker); lf_data->start = lf_start; lf_data->stop = lf_end; if (pbi->max_threads > 1) { winterface->launch(&pbi->lf_worker); } else { winterface->execute(&pbi->lf_worker); } } // After loopfiltering, the last 7 row pixels in each superblock row may // still be changed by the longest loopfilter of the next superblock row. if (cm->frame_parallel_decode) av1_frameworker_broadcast(pbi->cur_buf, mi_row << cm->mib_size_log2); #endif // !CONFIG_VAR_TX } #if CONFIG_VAR_TX // Loopfilter the whole frame. av1_loop_filter_frame(get_frame_new_buffer(cm), cm, &pbi->mb, cm->lf.filter_level, 0, 0); #else // Loopfilter remaining rows in the frame. if (cm->lf.filter_level && !cm->skip_loop_filter) { LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1; winterface->sync(&pbi->lf_worker); lf_data->start = lf_data->stop; lf_data->stop = cm->mi_rows; winterface->execute(&pbi->lf_worker); } #endif // CONFIG_VAR_TX if (cm->frame_parallel_decode) av1_frameworker_broadcast(pbi->cur_buf, INT_MAX); #if CONFIG_EXT_TILE if (n_tiles == 1) { #if CONFIG_ANS return data_end; #else // Find the end of the single tile buffer return aom_reader_find_end(&pbi->tile_data->bit_reader); #endif // CONFIG_ANS } else { // Return the end of the last tile buffer return tile_buffers[tile_rows - 1][tile_cols - 1].raw_data_end; } #else #if CONFIG_ANS return data_end; #else { // Get last tile data. TileData *const td = pbi->tile_data + tile_cols * tile_rows - 1; return aom_reader_find_end(&td->bit_reader); } #endif // CONFIG_ANS #endif // CONFIG_EXT_TILE } static int tile_worker_hook(TileWorkerData *const tile_data, const TileInfo *const tile) { AV1Decoder *const pbi = tile_data->pbi; const AV1_COMMON *const cm = &pbi->common; int mi_row, mi_col; if (setjmp(tile_data->error_info.jmp)) { tile_data->error_info.setjmp = 0; tile_data->xd.corrupted = 1; return 0; } tile_data->error_info.setjmp = 1; tile_data->xd.error_info = &tile_data->error_info; av1_zero_above_context(&pbi->common, tile->mi_col_start, tile->mi_col_end); for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end; mi_row += cm->mib_size) { av1_zero_left_context(&tile_data->xd); for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end; mi_col += cm->mib_size) { decode_partition(pbi, &tile_data->xd, #if CONFIG_SUPERTX 0, #endif mi_row, mi_col, &tile_data->bit_reader, cm->sb_size, b_width_log2_lookup[cm->sb_size]); } } return !tile_data->xd.corrupted; } // sorts in descending order static int compare_tile_buffers(const void *a, const void *b) { const TileBufferDec *const buf1 = (const TileBufferDec *)a; const TileBufferDec *const buf2 = (const TileBufferDec *)b; return (int)(buf2->size - buf1->size); } static const uint8_t *decode_tiles_mt(AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end) { AV1_COMMON *const cm = &pbi->common; const AVxWorkerInterface *const winterface = aom_get_worker_interface(); const int tile_cols = cm->tile_cols; const int tile_rows = cm->tile_rows; const int num_workers = AOMMIN(pbi->max_threads & ~1, tile_cols); TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers; #if CONFIG_EXT_TILE const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); const int single_row = pbi->dec_tile_row >= 0; const int tile_rows_start = single_row ? dec_tile_row : 0; const int tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows; const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); const int single_col = pbi->dec_tile_col >= 0; const int tile_cols_start = single_col ? dec_tile_col : 0; const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; #else const int tile_rows_start = 0; const int tile_rows_end = tile_rows; const int tile_cols_start = 0; const int tile_cols_end = tile_cols; #endif // CONFIG_EXT_TILE int tile_row, tile_col; int i; #if !(CONFIG_ANS || CONFIG_EXT_TILE) int final_worker = -1; #endif // !(CONFIG_ANS || CONFIG_EXT_TILE) assert(tile_rows <= MAX_TILE_ROWS); assert(tile_cols <= MAX_TILE_COLS); assert(tile_cols * tile_rows > 1); #if CONFIG_ANS // TODO(any): This might just work now. Needs to be tested. abort(); // FIXME: Tile parsing broken #endif // CONFIG_ANS // TODO(jzern): See if we can remove the restriction of passing in max // threads to the decoder. if (pbi->num_tile_workers == 0) { const int num_threads = pbi->max_threads & ~1; CHECK_MEM_ERROR(cm, pbi->tile_workers, aom_malloc(num_threads * sizeof(*pbi->tile_workers))); // Ensure tile data offsets will be properly aligned. This may fail on // platforms without DECLARE_ALIGNED(). assert((sizeof(*pbi->tile_worker_data) % 16) == 0); CHECK_MEM_ERROR( cm, pbi->tile_worker_data, aom_memalign(32, num_threads * sizeof(*pbi->tile_worker_data))); CHECK_MEM_ERROR(cm, pbi->tile_worker_info, aom_malloc(num_threads * sizeof(*pbi->tile_worker_info))); for (i = 0; i < num_threads; ++i) { AVxWorker *const worker = &pbi->tile_workers[i]; ++pbi->num_tile_workers; winterface->init(worker); if (i < num_threads - 1 && !winterface->reset(worker)) { aom_internal_error(&cm->error, AOM_CODEC_ERROR, "Tile decoder thread creation failed"); } } } // Reset tile decoding hook for (i = 0; i < num_workers; ++i) { AVxWorker *const worker = &pbi->tile_workers[i]; winterface->sync(worker); worker->hook = (AVxWorkerHook)tile_worker_hook; worker->data1 = &pbi->tile_worker_data[i]; worker->data2 = &pbi->tile_worker_info[i]; } // Initialize thread frame counts. if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { for (i = 0; i < num_workers; ++i) { TileWorkerData *const twd = (TileWorkerData *)pbi->tile_workers[i].data1; av1_zero(twd->counts); } } // Load tile data into tile_buffers get_tile_buffers(pbi, data, data_end, tile_buffers); for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) { // Sort the buffers in this tile row based on size in descending order. qsort(&tile_buffers[tile_row][tile_cols_start], tile_cols_end - tile_cols_start, sizeof(tile_buffers[0][0]), compare_tile_buffers); // Rearrange the tile buffers in this tile row such that per-tile group // the largest, and presumably the most difficult tile will be decoded in // the main thread. This should help minimize the number of instances // where the main thread is waiting for a worker to complete. { int group_start; for (group_start = tile_cols_start; group_start < tile_cols_end; group_start += num_workers) { const int group_end = AOMMIN(group_start + num_workers, tile_cols); const TileBufferDec largest = tile_buffers[tile_row][group_start]; memmove(&tile_buffers[tile_row][group_start], &tile_buffers[tile_row][group_start + 1], (group_end - group_start - 1) * sizeof(tile_buffers[0][0])); tile_buffers[tile_row][group_end - 1] = largest; } } for (tile_col = tile_cols_start; tile_col < tile_cols_end;) { // Launch workers for individual columns for (i = 0; i < num_workers && tile_col < tile_cols_end; ++i, ++tile_col) { TileBufferDec *const buf = &tile_buffers[tile_row][tile_col]; AVxWorker *const worker = &pbi->tile_workers[i]; TileWorkerData *const twd = (TileWorkerData *)worker->data1; TileInfo *const tile_info = (TileInfo *)worker->data2; twd->pbi = pbi; twd->xd = pbi->mb; twd->xd.corrupted = 0; twd->xd.counts = cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD ? &twd->counts : NULL; av1_zero(twd->dqcoeff); av1_tile_init(tile_info, cm, tile_row, buf->col); av1_tile_init(&twd->xd.tile, cm, tile_row, buf->col); #if !CONFIG_ANS setup_bool_decoder(buf->data, data_end, buf->size, &cm->error, &twd->bit_reader, pbi->decrypt_cb, pbi->decrypt_state); #else setup_token_decoder(buf->data, data_end, buf->size, &cm->error, &twd->bit_reader, pbi->decrypt_cb, pbi->decrypt_state); #endif // CONFIG_ANS av1_init_macroblockd(cm, &twd->xd, twd->dqcoeff); twd->xd.plane[0].color_index_map = twd->color_index_map[0]; twd->xd.plane[1].color_index_map = twd->color_index_map[1]; worker->had_error = 0; if (i == num_workers - 1 || tile_col == tile_cols_end - 1) { winterface->execute(worker); } else { winterface->launch(worker); } #if !(CONFIG_ANS || CONFIG_EXT_TILE) if (tile_row == tile_rows - 1 && buf->col == tile_cols - 1) { final_worker = i; } #endif // !(CONFIG_ANS || CONFIG_EXT_TILE) } // Sync all workers for (; i > 0; --i) { AVxWorker *const worker = &pbi->tile_workers[i - 1]; // TODO(jzern): The tile may have specific error data associated with // its aom_internal_error_info which could be propagated to the main // info in cm. Additionally once the threads have been synced and an // error is detected, there's no point in continuing to decode tiles. pbi->mb.corrupted |= !winterface->sync(worker); } } } // Accumulate thread frame counts. if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { for (i = 0; i < num_workers; ++i) { TileWorkerData *const twd = (TileWorkerData *)pbi->tile_workers[i].data1; av1_accumulate_frame_counts(cm, &twd->counts); } } #if CONFIG_EXT_TILE // Return the end of the last tile buffer return tile_buffers[tile_rows - 1][tile_cols - 1].raw_data_end; #else #if CONFIG_ANS return data_end; #else assert(final_worker != -1); { TileWorkerData *const twd = (TileWorkerData *)pbi->tile_workers[final_worker].data1; return aom_reader_find_end(&twd->bit_reader); } #endif // CONFIG_ANS #endif // CONFIG_EXT_TILE } static void error_handler(void *data) { AV1_COMMON *const cm = (AV1_COMMON *)data; aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Truncated packet"); } static void read_bitdepth_colorspace_sampling(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { if (cm->profile >= PROFILE_2) { cm->bit_depth = aom_rb_read_bit(rb) ? AOM_BITS_12 : AOM_BITS_10; #if CONFIG_AOM_HIGHBITDEPTH cm->use_highbitdepth = 1; #endif } else { cm->bit_depth = AOM_BITS_8; #if CONFIG_AOM_HIGHBITDEPTH cm->use_highbitdepth = 0; #endif } cm->color_space = aom_rb_read_literal(rb, 3); if (cm->color_space != AOM_CS_SRGB) { // [16,235] (including xvycc) vs [0,255] range cm->color_range = aom_rb_read_bit(rb); if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) { cm->subsampling_x = aom_rb_read_bit(rb); cm->subsampling_y = aom_rb_read_bit(rb); if (cm->subsampling_x == 1 && cm->subsampling_y == 1) aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "4:2:0 color not supported in profile 1 or 3"); if (aom_rb_read_bit(rb)) aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "Reserved bit set"); } else { cm->subsampling_y = cm->subsampling_x = 1; } } else { if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) { // Note if colorspace is SRGB then 4:4:4 chroma sampling is assumed. // 4:2:2 or 4:4:0 chroma sampling is not allowed. cm->subsampling_y = cm->subsampling_x = 0; if (aom_rb_read_bit(rb)) aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "Reserved bit set"); } else { aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "4:4:4 color not supported in profile 0 or 2"); } } } static size_t read_uncompressed_header(AV1Decoder *pbi, struct aom_read_bit_buffer *rb) { AV1_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; BufferPool *const pool = cm->buffer_pool; RefCntBuffer *const frame_bufs = pool->frame_bufs; int i, mask, ref_index = 0; size_t sz; #if CONFIG_EXT_REFS cm->last3_frame_type = cm->last2_frame_type; cm->last2_frame_type = cm->last_frame_type; #endif // CONFIG_EXT_REFS cm->last_frame_type = cm->frame_type; cm->last_intra_only = cm->intra_only; #if CONFIG_EXT_REFS // NOTE: By default all coded frames to be used as a reference cm->is_reference_frame = 1; #endif // CONFIG_EXT_REFS if (aom_rb_read_literal(rb, 2) != AOM_FRAME_MARKER) aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "Invalid frame marker"); cm->profile = av1_read_profile(rb); #if CONFIG_AOM_HIGHBITDEPTH if (cm->profile >= MAX_PROFILES) aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "Unsupported bitstream profile"); #else if (cm->profile >= PROFILE_2) aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "Unsupported bitstream profile"); #endif cm->show_existing_frame = aom_rb_read_bit(rb); if (cm->show_existing_frame) { // Show an existing frame directly. const int frame_to_show = cm->ref_frame_map[aom_rb_read_literal(rb, 3)]; lock_buffer_pool(pool); if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) { unlock_buffer_pool(pool); aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "Buffer %d does not contain a decoded frame", frame_to_show); } ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show); unlock_buffer_pool(pool); cm->lf.filter_level = 0; cm->show_frame = 1; pbi->refresh_frame_flags = 0; if (cm->frame_parallel_decode) { for (i = 0; i < REF_FRAMES; ++i) cm->next_ref_frame_map[i] = cm->ref_frame_map[i]; } return 0; } cm->frame_type = (FRAME_TYPE)aom_rb_read_bit(rb); cm->show_frame = aom_rb_read_bit(rb); cm->error_resilient_mode = aom_rb_read_bit(rb); if (cm->frame_type == KEY_FRAME) { if (!av1_read_sync_code(rb)) aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "Invalid frame sync code"); read_bitdepth_colorspace_sampling(cm, rb); pbi->refresh_frame_flags = (1 << REF_FRAMES) - 1; for (i = 0; i < INTER_REFS_PER_FRAME; ++i) { cm->frame_refs[i].idx = INVALID_IDX; cm->frame_refs[i].buf = NULL; } setup_frame_size(cm, rb); if (pbi->need_resync) { memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map)); pbi->need_resync = 0; } cm->allow_screen_content_tools = aom_rb_read_bit(rb); } else { cm->intra_only = cm->show_frame ? 0 : aom_rb_read_bit(rb); if (cm->intra_only) cm->allow_screen_content_tools = aom_rb_read_bit(rb); if (cm->error_resilient_mode) { cm->reset_frame_context = RESET_FRAME_CONTEXT_ALL; } else { if (cm->intra_only) { cm->reset_frame_context = aom_rb_read_bit(rb) ? RESET_FRAME_CONTEXT_ALL : RESET_FRAME_CONTEXT_CURRENT; } else { cm->reset_frame_context = aom_rb_read_bit(rb) ? RESET_FRAME_CONTEXT_CURRENT : RESET_FRAME_CONTEXT_NONE; if (cm->reset_frame_context == RESET_FRAME_CONTEXT_CURRENT) cm->reset_frame_context = aom_rb_read_bit(rb) ? RESET_FRAME_CONTEXT_ALL : RESET_FRAME_CONTEXT_CURRENT; } } if (cm->intra_only) { if (!av1_read_sync_code(rb)) aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "Invalid frame sync code"); read_bitdepth_colorspace_sampling(cm, rb); pbi->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES); setup_frame_size(cm, rb); if (pbi->need_resync) { memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map)); pbi->need_resync = 0; } } else if (pbi->need_resync != 1) { /* Skip if need resync */ pbi->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES); #if CONFIG_EXT_REFS if (!pbi->refresh_frame_flags) { // NOTE: "pbi->refresh_frame_flags == 0" indicates that the coded frame // will not be used as a reference cm->is_reference_frame = 0; } #endif // CONFIG_EXT_REFS for (i = 0; i < INTER_REFS_PER_FRAME; ++i) { const int ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2); const int idx = cm->ref_frame_map[ref]; RefBuffer *const ref_frame = &cm->frame_refs[i]; ref_frame->idx = idx; ref_frame->buf = &frame_bufs[idx].buf; cm->ref_frame_sign_bias[LAST_FRAME + i] = aom_rb_read_bit(rb); } setup_frame_size_with_refs(cm, rb); cm->allow_high_precision_mv = aom_rb_read_bit(rb); cm->interp_filter = read_interp_filter(rb); for (i = 0; i < INTER_REFS_PER_FRAME; ++i) { RefBuffer *const ref_buf = &cm->frame_refs[i]; #if CONFIG_AOM_HIGHBITDEPTH av1_setup_scale_factors_for_frame( &ref_buf->sf, ref_buf->buf->y_crop_width, ref_buf->buf->y_crop_height, cm->width, cm->height, cm->use_highbitdepth); #else av1_setup_scale_factors_for_frame( &ref_buf->sf, ref_buf->buf->y_crop_width, ref_buf->buf->y_crop_height, cm->width, cm->height); #endif } } } #if CONFIG_AOM_HIGHBITDEPTH get_frame_new_buffer(cm)->bit_depth = cm->bit_depth; #endif get_frame_new_buffer(cm)->color_space = cm->color_space; get_frame_new_buffer(cm)->color_range = cm->color_range; get_frame_new_buffer(cm)->render_width = cm->render_width; get_frame_new_buffer(cm)->render_height = cm->render_height; if (pbi->need_resync) { aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Keyframe / intra-only frame required to reset decoder" " state"); } if (!cm->error_resilient_mode) { cm->refresh_frame_context = aom_rb_read_bit(rb) ? REFRESH_FRAME_CONTEXT_FORWARD : REFRESH_FRAME_CONTEXT_BACKWARD; } else { cm->refresh_frame_context = REFRESH_FRAME_CONTEXT_FORWARD; } // This flag will be overridden by the call to av1_setup_past_independence // below, forcing the use of context 0 for those frame types. cm->frame_context_idx = aom_rb_read_literal(rb, FRAME_CONTEXTS_LOG2); // Generate next_ref_frame_map. lock_buffer_pool(pool); for (mask = pbi->refresh_frame_flags; mask; mask >>= 1) { if (mask & 1) { cm->next_ref_frame_map[ref_index] = cm->new_fb_idx; ++frame_bufs[cm->new_fb_idx].ref_count; } else { cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index]; } // Current thread holds the reference frame. if (cm->ref_frame_map[ref_index] >= 0) ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count; ++ref_index; } for (; ref_index < REF_FRAMES; ++ref_index) { cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index]; // Current thread holds the reference frame. if (cm->ref_frame_map[ref_index] >= 0) ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count; } unlock_buffer_pool(pool); pbi->hold_ref_buf = 1; if (frame_is_intra_only(cm) || cm->error_resilient_mode) av1_setup_past_independence(cm); #if CONFIG_EXT_PARTITION set_sb_size(cm, aom_rb_read_bit(rb) ? BLOCK_128X128 : BLOCK_64X64); #else set_sb_size(cm, BLOCK_64X64); #endif // CONFIG_EXT_PARTITION setup_loopfilter(cm, rb); #if CONFIG_CLPF setup_clpf(pbi, rb); #endif #if CONFIG_DERING setup_dering(cm, rb); #endif #if CONFIG_LOOP_RESTORATION decode_restoration_mode(cm, rb); #endif // CONFIG_LOOP_RESTORATION setup_quantization(cm, rb); #if CONFIG_AOM_HIGHBITDEPTH xd->bd = (int)cm->bit_depth; #endif #if CONFIG_ENTROPY av1_default_coef_probs(cm); if (cm->frame_type == KEY_FRAME || cm->error_resilient_mode || cm->reset_frame_context == RESET_FRAME_CONTEXT_ALL) { for (i = 0; i < FRAME_CONTEXTS; ++i) cm->frame_contexts[i] = *cm->fc; } else if (cm->reset_frame_context == RESET_FRAME_CONTEXT_CURRENT) { cm->frame_contexts[cm->frame_context_idx] = *cm->fc; } #endif // CONFIG_ENTROPY setup_segmentation(cm, rb); { int i; for (i = 0; i < MAX_SEGMENTS; ++i) { const int qindex = cm->seg.enabled ? av1_get_qindex(&cm->seg, i, cm->base_qindex) : cm->base_qindex; xd->lossless[i] = qindex == 0 && cm->y_dc_delta_q == 0 && cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0; xd->qindex[i] = qindex; } } setup_segmentation_dequant(cm); cm->tx_mode = (!cm->seg.enabled && xd->lossless[0]) ? ONLY_4X4 : read_tx_mode(rb); cm->reference_mode = read_frame_reference_mode(cm, rb); read_tile_info(pbi, rb); sz = aom_rb_read_literal(rb, 16); if (sz == 0) aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Invalid header size"); return sz; } #if CONFIG_EXT_TX static void read_ext_tx_probs(FRAME_CONTEXT *fc, aom_reader *r) { int i, j, k; int s; for (s = 1; s < EXT_TX_SETS_INTER; ++s) { if (aom_read(r, GROUP_DIFF_UPDATE_PROB)) { for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { if (!use_inter_ext_tx_for_txsize[s][i]) continue; for (j = 0; j < num_ext_tx_set_inter[s] - 1; ++j) av1_diff_update_prob(r, &fc->inter_ext_tx_prob[s][i][j]); } } } for (s = 1; s < EXT_TX_SETS_INTRA; ++s) { if (aom_read(r, GROUP_DIFF_UPDATE_PROB)) { for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { if (!use_intra_ext_tx_for_txsize[s][i]) continue; for (j = 0; j < INTRA_MODES; ++j) for (k = 0; k < num_ext_tx_set_intra[s] - 1; ++k) av1_diff_update_prob(r, &fc->intra_ext_tx_prob[s][i][j][k]); } } } } #else static void read_ext_tx_probs(FRAME_CONTEXT *fc, aom_reader *r) { int i, j, k; if (aom_read(r, GROUP_DIFF_UPDATE_PROB)) { for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { for (j = 0; j < TX_TYPES; ++j) for (k = 0; k < TX_TYPES - 1; ++k) av1_diff_update_prob(r, &fc->intra_ext_tx_prob[i][j][k]); } } if (aom_read(r, GROUP_DIFF_UPDATE_PROB)) { for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { for (k = 0; k < TX_TYPES - 1; ++k) av1_diff_update_prob(r, &fc->inter_ext_tx_prob[i][k]); } } } #endif // CONFIG_EXT_TX #if CONFIG_SUPERTX static void read_supertx_probs(FRAME_CONTEXT *fc, aom_reader *r) { int i, j; if (aom_read(r, GROUP_DIFF_UPDATE_PROB)) { for (i = 0; i < PARTITION_SUPERTX_CONTEXTS; ++i) { for (j = 1; j < TX_SIZES; ++j) { av1_diff_update_prob(r, &fc->supertx_prob[i][j]); } } } } #endif // CONFIG_SUPERTX #if CONFIG_GLOBAL_MOTION static void read_global_motion_params(Global_Motion_Params *params, aom_prob *probs, aom_reader *r) { GLOBAL_MOTION_TYPE gmtype = aom_read_tree(r, av1_global_motion_types_tree, probs); params->gmtype = gmtype; params->motion_params.wmtype = gm_to_trans_type(gmtype); switch (gmtype) { case GLOBAL_ZERO: break; case GLOBAL_AFFINE: params->motion_params.wmmat[2].as_mv.row = (aom_read_primitive_symmetric(r, GM_ABS_ALPHA_BITS) * GM_ALPHA_DECODE_FACTOR); params->motion_params.wmmat[2].as_mv.col = aom_read_primitive_symmetric(r, GM_ABS_ALPHA_BITS) * GM_ALPHA_DECODE_FACTOR + (1 << WARPEDMODEL_PREC_BITS); // fallthrough intended case GLOBAL_ROTZOOM: params->motion_params.wmmat[1].as_mv.row = aom_read_primitive_symmetric(r, GM_ABS_ALPHA_BITS) * GM_ALPHA_DECODE_FACTOR; params->motion_params.wmmat[1].as_mv.col = (aom_read_primitive_symmetric(r, GM_ABS_ALPHA_BITS) * GM_ALPHA_DECODE_FACTOR) + (1 << WARPEDMODEL_PREC_BITS); // fallthrough intended case GLOBAL_TRANSLATION: params->motion_params.wmmat[0].as_mv.row = aom_read_primitive_symmetric(r, GM_ABS_TRANS_BITS) * GM_TRANS_DECODE_FACTOR; params->motion_params.wmmat[0].as_mv.col = aom_read_primitive_symmetric(r, GM_ABS_TRANS_BITS) * GM_TRANS_DECODE_FACTOR; break; default: assert(0); } } static void read_global_motion(AV1_COMMON *cm, aom_reader *r) { int frame; memset(cm->global_motion, 0, sizeof(cm->global_motion)); for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) { read_global_motion_params(&cm->global_motion[frame], cm->fc->global_motion_types_prob, r); /* printf("Dec Ref %d [%d]: %d %d %d %d\n", frame, cm->current_video_frame, cm->global_motion[frame].motion_params.wmmat[0].as_mv.row, cm->global_motion[frame].motion_params.wmmat[0].as_mv.col, cm->global_motion[frame].motion_params.wmmat[1].as_mv.row, cm->global_motion[frame].motion_params.wmmat[1].as_mv.col); */ } } #endif // CONFIG_GLOBAL_MOTION static int read_compressed_header(AV1Decoder *pbi, const uint8_t *data, size_t partition_size) { AV1_COMMON *const cm = &pbi->common; #if CONFIG_SUPERTX MACROBLOCKD *const xd = &pbi->mb; #endif FRAME_CONTEXT *const fc = cm->fc; aom_reader r; int k, i, j; #if !CONFIG_ANS if (aom_reader_init(&r, data, partition_size, pbi->decrypt_cb, pbi->decrypt_state)) aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate bool decoder 0"); #else if (ans_read_init(&r, data, (int)partition_size)) aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate compressed header ANS decoder"); #endif // !CONFIG_ANS #if CONFIG_LOOP_RESTORATION decode_restoration(cm, &r); #endif if (cm->tx_mode == TX_MODE_SELECT) { for (i = 0; i < TX_SIZES - 1; ++i) for (j = 0; j < TX_SIZE_CONTEXTS; ++j) for (k = 0; k < i + 1; ++k) av1_diff_update_prob(&r, &fc->tx_size_probs[i][j][k]); } read_coef_probs(fc, cm->tx_mode, &r); #if CONFIG_VAR_TX for (k = 0; k < TXFM_PARTITION_CONTEXTS; ++k) av1_diff_update_prob(&r, &fc->txfm_partition_prob[k]); #if CONFIG_EXT_TX && CONFIG_RECT_TX if (cm->tx_mode == TX_MODE_SELECT) { for (i = 1; i < TX_SIZES - 1; ++i) av1_diff_update_prob(&r, &fc->rect_tx_prob[i]); } #endif // CONFIG_EXT_TX && CONFIG_RECT_TX #endif for (k = 0; k < SKIP_CONTEXTS; ++k) av1_diff_update_prob(&r, &fc->skip_probs[k]); if (cm->seg.enabled && cm->seg.update_map) { if (cm->seg.temporal_update) { for (k = 0; k < PREDICTION_PROBS; k++) av1_diff_update_prob(&r, &cm->fc->seg.pred_probs[k]); } for (k = 0; k < MAX_SEGMENTS - 1; k++) av1_diff_update_prob(&r, &cm->fc->seg.tree_probs[k]); } for (j = 0; j < INTRA_MODES; j++) for (i = 0; i < INTRA_MODES - 1; ++i) av1_diff_update_prob(&r, &fc->uv_mode_prob[j][i]); #if CONFIG_EXT_PARTITION_TYPES for (i = 0; i < PARTITION_TYPES - 1; ++i) av1_diff_update_prob(&r, &fc->partition_prob[0][i]); for (j = 1; j < PARTITION_CONTEXTS; ++j) for (i = 0; i < EXT_PARTITION_TYPES - 1; ++i) av1_diff_update_prob(&r, &fc->partition_prob[j][i]); #else for (j = 0; j < PARTITION_CONTEXTS; ++j) for (i = 0; i < PARTITION_TYPES - 1; ++i) av1_diff_update_prob(&r, &fc->partition_prob[j][i]); #endif // CONFIG_EXT_PARTITION_TYPES #if CONFIG_EXT_INTRA for (i = 0; i < INTRA_FILTERS + 1; ++i) for (j = 0; j < INTRA_FILTERS - 1; ++j) av1_diff_update_prob(&r, &fc->intra_filter_probs[i][j]); #endif // CONFIG_EXT_INTRA if (frame_is_intra_only(cm)) { av1_copy(cm->kf_y_prob, av1_kf_y_mode_prob); for (k = 0; k < INTRA_MODES; k++) for (j = 0; j < INTRA_MODES; j++) for (i = 0; i < INTRA_MODES - 1; ++i) av1_diff_update_prob(&r, &cm->kf_y_prob[k][j][i]); } else { #if !CONFIG_REF_MV nmv_context *const nmvc = &fc->nmvc; #endif read_inter_mode_probs(fc, &r); #if CONFIG_EXT_INTER read_inter_compound_mode_probs(fc, &r); if (cm->reference_mode != COMPOUND_REFERENCE) { for (i = 0; i < BLOCK_SIZE_GROUPS; i++) { if (is_interintra_allowed_bsize_group(i)) { av1_diff_update_prob(&r, &fc->interintra_prob[i]); } } for (i = 0; i < BLOCK_SIZE_GROUPS; i++) { for (j = 0; j < INTERINTRA_MODES - 1; j++) av1_diff_update_prob(&r, &fc->interintra_mode_prob[i][j]); } for (i = 0; i < BLOCK_SIZES; i++) { if (is_interintra_allowed_bsize(i) && is_interintra_wedge_used(i)) { av1_diff_update_prob(&r, &fc->wedge_interintra_prob[i]); } } } if (cm->reference_mode != SINGLE_REFERENCE) { for (i = 0; i < BLOCK_SIZES; i++) { if (is_interinter_wedge_used(i)) { av1_diff_update_prob(&r, &fc->wedge_interinter_prob[i]); } } } #endif // CONFIG_EXT_INTER #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION for (i = BLOCK_8X8; i < BLOCK_SIZES; ++i) { for (j = 0; j < MOTION_MODES - 1; ++j) av1_diff_update_prob(&r, &fc->motion_mode_prob[i][j]); } #endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION if (cm->interp_filter == SWITCHABLE) read_switchable_interp_probs(fc, &r); for (i = 0; i < INTRA_INTER_CONTEXTS; i++) av1_diff_update_prob(&r, &fc->intra_inter_prob[i]); if (cm->reference_mode != SINGLE_REFERENCE) setup_compound_reference_mode(cm); read_frame_reference_mode_probs(cm, &r); for (j = 0; j < BLOCK_SIZE_GROUPS; j++) for (i = 0; i < INTRA_MODES - 1; ++i) av1_diff_update_prob(&r, &fc->y_mode_prob[j][i]); #if CONFIG_REF_MV for (i = 0; i < NMV_CONTEXTS; ++i) read_mv_probs(&fc->nmvc[i], cm->allow_high_precision_mv, &r); #else read_mv_probs(nmvc, cm->allow_high_precision_mv, &r); #endif read_ext_tx_probs(fc, &r); #if CONFIG_SUPERTX if (!xd->lossless[0]) read_supertx_probs(fc, &r); #endif #if CONFIG_GLOBAL_MOTION read_global_motion(cm, &r); #endif // CONFIG_GLOBAL_MOTION } return aom_reader_has_error(&r); } #ifdef NDEBUG #define debug_check_frame_counts(cm) (void)0 #else // !NDEBUG // Counts should only be incremented when frame_parallel_decoding_mode and // error_resilient_mode are disabled. static void debug_check_frame_counts(const AV1_COMMON *const cm) { FRAME_COUNTS zero_counts; av1_zero(zero_counts); assert(cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_BACKWARD || cm->error_resilient_mode); assert(!memcmp(cm->counts.y_mode, zero_counts.y_mode, sizeof(cm->counts.y_mode))); assert(!memcmp(cm->counts.uv_mode, zero_counts.uv_mode, sizeof(cm->counts.uv_mode))); assert(!memcmp(cm->counts.partition, zero_counts.partition, sizeof(cm->counts.partition))); assert(!memcmp(cm->counts.coef, zero_counts.coef, sizeof(cm->counts.coef))); assert(!memcmp(cm->counts.eob_branch, zero_counts.eob_branch, sizeof(cm->counts.eob_branch))); assert(!memcmp(cm->counts.switchable_interp, zero_counts.switchable_interp, sizeof(cm->counts.switchable_interp))); assert(!memcmp(cm->counts.inter_mode, zero_counts.inter_mode, sizeof(cm->counts.inter_mode))); #if CONFIG_EXT_INTER assert(!memcmp(cm->counts.inter_compound_mode, zero_counts.inter_compound_mode, sizeof(cm->counts.inter_compound_mode))); assert(!memcmp(cm->counts.interintra, zero_counts.interintra, sizeof(cm->counts.interintra))); assert(!memcmp(cm->counts.wedge_interintra, zero_counts.wedge_interintra, sizeof(cm->counts.wedge_interintra))); assert(!memcmp(cm->counts.wedge_interinter, zero_counts.wedge_interinter, sizeof(cm->counts.wedge_interinter))); #endif // CONFIG_EXT_INTER #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION assert(!memcmp(cm->counts.motion_mode, zero_counts.motion_mode, sizeof(cm->counts.motion_mode))); #endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION assert(!memcmp(cm->counts.intra_inter, zero_counts.intra_inter, sizeof(cm->counts.intra_inter))); assert(!memcmp(cm->counts.comp_inter, zero_counts.comp_inter, sizeof(cm->counts.comp_inter))); assert(!memcmp(cm->counts.single_ref, zero_counts.single_ref, sizeof(cm->counts.single_ref))); assert(!memcmp(cm->counts.comp_ref, zero_counts.comp_ref, sizeof(cm->counts.comp_ref))); #if CONFIG_EXT_REFS assert(!memcmp(cm->counts.comp_bwdref, zero_counts.comp_bwdref, sizeof(cm->counts.comp_bwdref))); #endif // CONFIG_EXT_REFS assert(!memcmp(&cm->counts.tx_size, &zero_counts.tx_size, sizeof(cm->counts.tx_size))); assert(!memcmp(cm->counts.skip, zero_counts.skip, sizeof(cm->counts.skip))); #if CONFIG_REF_MV assert( !memcmp(&cm->counts.mv[0], &zero_counts.mv[0], sizeof(cm->counts.mv[0]))); assert( !memcmp(&cm->counts.mv[1], &zero_counts.mv[1], sizeof(cm->counts.mv[0]))); #else assert(!memcmp(&cm->counts.mv, &zero_counts.mv, sizeof(cm->counts.mv))); #endif assert(!memcmp(cm->counts.inter_ext_tx, zero_counts.inter_ext_tx, sizeof(cm->counts.inter_ext_tx))); assert(!memcmp(cm->counts.intra_ext_tx, zero_counts.intra_ext_tx, sizeof(cm->counts.intra_ext_tx))); } #endif // NDEBUG static struct aom_read_bit_buffer *init_read_bit_buffer( AV1Decoder *pbi, struct aom_read_bit_buffer *rb, const uint8_t *data, const uint8_t *data_end, uint8_t clear_data[MAX_AV1_HEADER_SIZE]) { rb->bit_offset = 0; rb->error_handler = error_handler; rb->error_handler_data = &pbi->common; if (pbi->decrypt_cb) { const int n = (int)AOMMIN(MAX_AV1_HEADER_SIZE, data_end - data); pbi->decrypt_cb(pbi->decrypt_state, data, clear_data, n); rb->bit_buffer = clear_data; rb->bit_buffer_end = clear_data + n; } else { rb->bit_buffer = data; rb->bit_buffer_end = data_end; } return rb; } //------------------------------------------------------------------------------ int av1_read_sync_code(struct aom_read_bit_buffer *const rb) { return aom_rb_read_literal(rb, 8) == AV1_SYNC_CODE_0 && aom_rb_read_literal(rb, 8) == AV1_SYNC_CODE_1 && aom_rb_read_literal(rb, 8) == AV1_SYNC_CODE_2; } void av1_read_frame_size(struct aom_read_bit_buffer *rb, int *width, int *height) { *width = aom_rb_read_literal(rb, 16) + 1; *height = aom_rb_read_literal(rb, 16) + 1; } BITSTREAM_PROFILE av1_read_profile(struct aom_read_bit_buffer *rb) { int profile = aom_rb_read_bit(rb); profile |= aom_rb_read_bit(rb) << 1; if (profile > 2) profile += aom_rb_read_bit(rb); return (BITSTREAM_PROFILE)profile; } void av1_decode_frame(AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end, const uint8_t **p_data_end) { AV1_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; struct aom_read_bit_buffer rb; int context_updated = 0; uint8_t clear_data[MAX_AV1_HEADER_SIZE]; size_t first_partition_size; YV12_BUFFER_CONFIG *new_fb; #if CONFIG_BITSTREAM_DEBUG bitstream_queue_set_frame_read(cm->current_video_frame * 2 + cm->show_frame); #endif first_partition_size = read_uncompressed_header( pbi, init_read_bit_buffer(pbi, &rb, data, data_end, clear_data)); new_fb = get_frame_new_buffer(cm); xd->cur_buf = new_fb; #if CONFIG_GLOBAL_MOTION xd->global_motion = cm->global_motion; #endif // CONFIG_GLOBAL_MOTION if (!first_partition_size) { // showing a frame directly #if CONFIG_EXT_REFS if (cm->show_existing_frame) *p_data_end = data + aom_rb_bytes_read(&rb); else #endif // CONFIG_EXT_REFS *p_data_end = data + (cm->profile <= PROFILE_2 ? 1 : 2); return; } data += aom_rb_bytes_read(&rb); if (!read_is_valid(data, first_partition_size, data_end)) aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt header length"); cm->use_prev_frame_mvs = !cm->error_resilient_mode && cm->width == cm->last_width && cm->height == cm->last_height && !cm->last_intra_only && cm->last_show_frame && (cm->last_frame_type != KEY_FRAME); #if CONFIG_EXT_REFS // NOTE(zoeliu): As cm->prev_frame can take neither a frame of // show_exisiting_frame=1, nor can it take a frame not used as // a reference, it is probable that by the time it is being // referred to, the frame buffer it originally points to may // already get expired and have been reassigned to the current // newly coded frame. Hence, we need to check whether this is // the case, and if yes, we have 2 choices: // (1) Simply disable the use of previous frame mvs; or // (2) Have cm->prev_frame point to one reference frame buffer, // e.g. LAST_FRAME. if (cm->use_prev_frame_mvs && !dec_is_ref_frame_buf(pbi, cm->prev_frame)) { // Reassign the LAST_FRAME buffer to cm->prev_frame. RefBuffer *last_fb_ref_buf = &cm->frame_refs[LAST_FRAME - LAST_FRAME]; cm->prev_frame = &cm->buffer_pool->frame_bufs[last_fb_ref_buf->idx]; } #endif // CONFIG_EXT_REFS av1_setup_block_planes(xd, cm->subsampling_x, cm->subsampling_y); *cm->fc = cm->frame_contexts[cm->frame_context_idx]; if (!cm->fc->initialized) aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Uninitialized entropy context."); av1_zero(cm->counts); xd->corrupted = 0; new_fb->corrupted = read_compressed_header(pbi, data, first_partition_size); if (new_fb->corrupted) aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Decode failed. Frame data header is corrupted."); if (cm->lf.filter_level && !cm->skip_loop_filter) { av1_loop_filter_frame_init(cm, cm->lf.filter_level); } // If encoded in frame parallel mode, frame context is ready after decoding // the frame header. if (cm->frame_parallel_decode && cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_BACKWARD) { AVxWorker *const worker = pbi->frame_worker_owner; FrameWorkerData *const frame_worker_data = worker->data1; if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_FORWARD) { context_updated = 1; cm->frame_contexts[cm->frame_context_idx] = *cm->fc; } av1_frameworker_lock_stats(worker); pbi->cur_buf->row = -1; pbi->cur_buf->col = -1; frame_worker_data->frame_context_ready = 1; // Signal the main thread that context is ready. av1_frameworker_signal_stats(worker); av1_frameworker_unlock_stats(worker); } #if CONFIG_ENTROPY av1_copy(cm->starting_coef_probs, cm->fc->coef_probs); cm->coef_probs_update_idx = 0; #endif // CONFIG_ENTROPY if (pbi->max_threads > 1 #if CONFIG_EXT_TILE && pbi->dec_tile_col < 0 // Decoding all columns #endif // CONFIG_EXT_TILE && cm->tile_cols > 1) { // Multi-threaded tile decoder *p_data_end = decode_tiles_mt(pbi, data + first_partition_size, data_end); if (!xd->corrupted) { if (!cm->skip_loop_filter) { // If multiple threads are used to decode tiles, then we use those // threads to do parallel loopfiltering. av1_loop_filter_frame_mt(new_fb, cm, pbi->mb.plane, cm->lf.filter_level, 0, 0, pbi->tile_workers, pbi->num_tile_workers, &pbi->lf_row_sync); } } else { aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Decode failed. Frame data is corrupted."); } } else { *p_data_end = decode_tiles(pbi, data + first_partition_size, data_end); } #if CONFIG_LOOP_RESTORATION if (cm->rst_info.restoration_type != RESTORE_NONE) { av1_loop_restoration_init(&cm->rst_internal, &cm->rst_info, cm->frame_type == KEY_FRAME, cm->width, cm->height); av1_loop_restoration_rows(new_fb, cm, 0, cm->mi_rows, 0); } #endif // CONFIG_LOOP_RESTORATION #if CONFIG_CLPF if (!cm->skip_loop_filter) { const YV12_BUFFER_CONFIG *const frame = &pbi->cur_buf->buf; if (cm->clpf_strength_y) { av1_clpf_frame(frame, NULL, cm, cm->clpf_size != CLPF_NOSIZE, cm->clpf_strength_y + (cm->clpf_strength_y == 3), 4 + cm->clpf_size, AOM_PLANE_Y, clpf_bit); } if (cm->clpf_strength_u) { av1_clpf_frame(frame, NULL, cm, 0, // No block signals for chroma cm->clpf_strength_u + (cm->clpf_strength_u == 3), 4, AOM_PLANE_U, NULL); } if (cm->clpf_strength_v) { av1_clpf_frame(frame, NULL, cm, 0, // No block signals for chroma cm->clpf_strength_v + (cm->clpf_strength_v == 3), 4, AOM_PLANE_V, NULL); } } if (cm->clpf_blocks) aom_free(cm->clpf_blocks); #endif #if CONFIG_DERING if (cm->dering_level && !cm->skip_loop_filter) { av1_dering_frame(&pbi->cur_buf->buf, cm, &pbi->mb, cm->dering_level); } #endif // CONFIG_DERING if (!xd->corrupted) { if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { #if CONFIG_ENTROPY cm->partial_prob_update = 0; #endif // CONFIG_ENTROPY av1_adapt_coef_probs(cm); av1_adapt_intra_frame_probs(cm); if (!frame_is_intra_only(cm)) { av1_adapt_inter_frame_probs(cm); av1_adapt_mv_probs(cm, cm->allow_high_precision_mv); } } else { debug_check_frame_counts(cm); } } else { aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Decode failed. Frame data is corrupted."); } // Non frame parallel update frame context here. if (!cm->error_resilient_mode && !context_updated) cm->frame_contexts[cm->frame_context_idx] = *cm->fc; }