/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "third_party/googletest/src/include/gtest/gtest.h" #include "./av1_rtcd.h" #include "./aom_dsp_rtcd.h" #include "test/acm_random.h" #include "test/clear_system_state.h" #include "test/register_state_check.h" #include "test/util.h" #include "av1/common/entropy.h" #include "aom/aom_codec.h" #include "aom/aom_integer.h" #include "aom_ports/mem.h" using libaom_test::ACMRandom; namespace { const int kNumCoeffs = 16; typedef void (*FdctFunc)(const int16_t *in, tran_low_t *out, int stride); typedef void (*IdctFunc)(const tran_low_t *in, uint8_t *out, int stride); typedef void (*FhtFunc)(const int16_t *in, tran_low_t *out, int stride, int tx_type); typedef void (*IhtFunc)(const tran_low_t *in, uint8_t *out, int stride, int tx_type); typedef std::tr1::tuple Dct4x4Param; typedef std::tr1::tuple Ht4x4Param; void fdct4x4_ref(const int16_t *in, tran_low_t *out, int stride, int tx_type) { aom_fdct4x4_c(in, out, stride); } void fht4x4_ref(const int16_t *in, tran_low_t *out, int stride, int tx_type) { av1_fht4x4_c(in, out, stride, tx_type); } void fwht4x4_ref(const int16_t *in, tran_low_t *out, int stride, int tx_type) { av1_fwht4x4_c(in, out, stride); } #if CONFIG_AOM_HIGHBITDEPTH void idct4x4_10(const tran_low_t *in, uint8_t *out, int stride) { aom_highbd_idct4x4_16_add_c(in, out, stride, 10); } void idct4x4_12(const tran_low_t *in, uint8_t *out, int stride) { aom_highbd_idct4x4_16_add_c(in, out, stride, 12); } void iht4x4_10(const tran_low_t *in, uint8_t *out, int stride, int tx_type) { av1_highbd_iht4x4_16_add_c(in, out, stride, tx_type, 10); } void iht4x4_12(const tran_low_t *in, uint8_t *out, int stride, int tx_type) { av1_highbd_iht4x4_16_add_c(in, out, stride, tx_type, 12); } void iwht4x4_10(const tran_low_t *in, uint8_t *out, int stride) { aom_highbd_iwht4x4_16_add_c(in, out, stride, 10); } void iwht4x4_12(const tran_low_t *in, uint8_t *out, int stride) { aom_highbd_iwht4x4_16_add_c(in, out, stride, 12); } #if HAVE_SSE2 void idct4x4_10_sse2(const tran_low_t *in, uint8_t *out, int stride) { aom_highbd_idct4x4_16_add_sse2(in, out, stride, 10); } void idct4x4_12_sse2(const tran_low_t *in, uint8_t *out, int stride) { aom_highbd_idct4x4_16_add_sse2(in, out, stride, 12); } #endif // HAVE_SSE2 #endif // CONFIG_AOM_HIGHBITDEPTH class Trans4x4TestBase { public: virtual ~Trans4x4TestBase() {} protected: virtual void RunFwdTxfm(const int16_t *in, tran_low_t *out, int stride) = 0; virtual void RunInvTxfm(const tran_low_t *out, uint8_t *dst, int stride) = 0; void RunAccuracyCheck(int limit) { ACMRandom rnd(ACMRandom::DeterministicSeed()); uint32_t max_error = 0; int64_t total_error = 0; const int count_test_block = 10000; for (int i = 0; i < count_test_block; ++i) { DECLARE_ALIGNED(16, int16_t, test_input_block[kNumCoeffs]); DECLARE_ALIGNED(16, tran_low_t, test_temp_block[kNumCoeffs]); DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]); DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]); #if CONFIG_AOM_HIGHBITDEPTH DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]); DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]); #endif // Initialize a test block with input range [-255, 255]. for (int j = 0; j < kNumCoeffs; ++j) { if (bit_depth_ == AOM_BITS_8) { src[j] = rnd.Rand8(); dst[j] = rnd.Rand8(); test_input_block[j] = src[j] - dst[j]; #if CONFIG_AOM_HIGHBITDEPTH } else { src16[j] = rnd.Rand16() & mask_; dst16[j] = rnd.Rand16() & mask_; test_input_block[j] = src16[j] - dst16[j]; #endif } } ASM_REGISTER_STATE_CHECK( RunFwdTxfm(test_input_block, test_temp_block, pitch_)); if (bit_depth_ == AOM_BITS_8) { ASM_REGISTER_STATE_CHECK(RunInvTxfm(test_temp_block, dst, pitch_)); #if CONFIG_AOM_HIGHBITDEPTH } else { ASM_REGISTER_STATE_CHECK( RunInvTxfm(test_temp_block, CONVERT_TO_BYTEPTR(dst16), pitch_)); #endif } for (int j = 0; j < kNumCoeffs; ++j) { #if CONFIG_AOM_HIGHBITDEPTH const int diff = bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; #else ASSERT_EQ(AOM_BITS_8, bit_depth_); const int diff = dst[j] - src[j]; #endif const uint32_t error = diff * diff; if (max_error < error) max_error = error; total_error += error; } } EXPECT_GE(static_cast(limit), max_error) << "Error: 4x4 FHT/IHT has an individual round trip error > " << limit; EXPECT_GE(count_test_block * limit, total_error) << "Error: 4x4 FHT/IHT has average round trip error > " << limit << " per block"; } void RunCoeffCheck() { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 5000; DECLARE_ALIGNED(16, int16_t, input_block[kNumCoeffs]); DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]); DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]); for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-mask_, mask_]. for (int j = 0; j < kNumCoeffs; ++j) input_block[j] = (rnd.Rand16() & mask_) - (rnd.Rand16() & mask_); fwd_txfm_ref(input_block, output_ref_block, pitch_, tx_type_); ASM_REGISTER_STATE_CHECK(RunFwdTxfm(input_block, output_block, pitch_)); // The minimum quant value is 4. for (int j = 0; j < kNumCoeffs; ++j) EXPECT_EQ(output_block[j], output_ref_block[j]); } } void RunMemCheck() { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 5000; DECLARE_ALIGNED(16, int16_t, input_extreme_block[kNumCoeffs]); DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]); DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]); for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-mask_, mask_]. for (int j = 0; j < kNumCoeffs; ++j) { input_extreme_block[j] = rnd.Rand8() % 2 ? mask_ : -mask_; } if (i == 0) { for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = mask_; } else if (i == 1) { for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = -mask_; } fwd_txfm_ref(input_extreme_block, output_ref_block, pitch_, tx_type_); ASM_REGISTER_STATE_CHECK( RunFwdTxfm(input_extreme_block, output_block, pitch_)); // The minimum quant value is 4. for (int j = 0; j < kNumCoeffs; ++j) { EXPECT_EQ(output_block[j], output_ref_block[j]); EXPECT_GE(4 * DCT_MAX_VALUE << (bit_depth_ - 8), abs(output_block[j])) << "Error: 4x4 FDCT has coefficient larger than 4*DCT_MAX_VALUE"; } } } void RunInvAccuracyCheck(int limit) { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 1000; DECLARE_ALIGNED(16, int16_t, in[kNumCoeffs]); DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]); DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]); DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]); #if CONFIG_AOM_HIGHBITDEPTH DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]); DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]); #endif for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-mask_, mask_]. for (int j = 0; j < kNumCoeffs; ++j) { if (bit_depth_ == AOM_BITS_8) { src[j] = rnd.Rand8(); dst[j] = rnd.Rand8(); in[j] = src[j] - dst[j]; #if CONFIG_AOM_HIGHBITDEPTH } else { src16[j] = rnd.Rand16() & mask_; dst16[j] = rnd.Rand16() & mask_; in[j] = src16[j] - dst16[j]; #endif } } fwd_txfm_ref(in, coeff, pitch_, tx_type_); if (bit_depth_ == AOM_BITS_8) { ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, pitch_)); #if CONFIG_AOM_HIGHBITDEPTH } else { ASM_REGISTER_STATE_CHECK( RunInvTxfm(coeff, CONVERT_TO_BYTEPTR(dst16), pitch_)); #endif } for (int j = 0; j < kNumCoeffs; ++j) { #if CONFIG_AOM_HIGHBITDEPTH const int diff = bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; #else const int diff = dst[j] - src[j]; #endif const uint32_t error = diff * diff; EXPECT_GE(static_cast(limit), error) << "Error: 4x4 IDCT has error " << error << " at index " << j; } } } int pitch_; int tx_type_; FhtFunc fwd_txfm_ref; aom_bit_depth_t bit_depth_; int mask_; }; class Trans4x4DCT : public Trans4x4TestBase, public ::testing::TestWithParam { public: virtual ~Trans4x4DCT() {} virtual void SetUp() { fwd_txfm_ = GET_PARAM(0); inv_txfm_ = GET_PARAM(1); tx_type_ = GET_PARAM(2); pitch_ = 4; fwd_txfm_ref = fdct4x4_ref; bit_depth_ = GET_PARAM(3); mask_ = (1 << bit_depth_) - 1; } virtual void TearDown() { libaom_test::ClearSystemState(); } protected: void RunFwdTxfm(const int16_t *in, tran_low_t *out, int stride) { fwd_txfm_(in, out, stride); } void RunInvTxfm(const tran_low_t *out, uint8_t *dst, int stride) { inv_txfm_(out, dst, stride); } FdctFunc fwd_txfm_; IdctFunc inv_txfm_; }; TEST_P(Trans4x4DCT, AccuracyCheck) { RunAccuracyCheck(1); } TEST_P(Trans4x4DCT, CoeffCheck) { RunCoeffCheck(); } TEST_P(Trans4x4DCT, MemCheck) { RunMemCheck(); } TEST_P(Trans4x4DCT, InvAccuracyCheck) { RunInvAccuracyCheck(1); } class Trans4x4HT : public Trans4x4TestBase, public ::testing::TestWithParam { public: virtual ~Trans4x4HT() {} virtual void SetUp() { fwd_txfm_ = GET_PARAM(0); inv_txfm_ = GET_PARAM(1); tx_type_ = GET_PARAM(2); pitch_ = 4; fwd_txfm_ref = fht4x4_ref; bit_depth_ = GET_PARAM(3); mask_ = (1 << bit_depth_) - 1; } virtual void TearDown() { libaom_test::ClearSystemState(); } protected: void RunFwdTxfm(const int16_t *in, tran_low_t *out, int stride) { fwd_txfm_(in, out, stride, tx_type_); } void RunInvTxfm(const tran_low_t *out, uint8_t *dst, int stride) { inv_txfm_(out, dst, stride, tx_type_); } FhtFunc fwd_txfm_; IhtFunc inv_txfm_; }; TEST_P(Trans4x4HT, AccuracyCheck) { RunAccuracyCheck(1); } TEST_P(Trans4x4HT, CoeffCheck) { RunCoeffCheck(); } TEST_P(Trans4x4HT, MemCheck) { RunMemCheck(); } TEST_P(Trans4x4HT, InvAccuracyCheck) { RunInvAccuracyCheck(1); } class Trans4x4WHT : public Trans4x4TestBase, public ::testing::TestWithParam { public: virtual ~Trans4x4WHT() {} virtual void SetUp() { fwd_txfm_ = GET_PARAM(0); inv_txfm_ = GET_PARAM(1); tx_type_ = GET_PARAM(2); pitch_ = 4; fwd_txfm_ref = fwht4x4_ref; bit_depth_ = GET_PARAM(3); mask_ = (1 << bit_depth_) - 1; } virtual void TearDown() { libaom_test::ClearSystemState(); } protected: void RunFwdTxfm(const int16_t *in, tran_low_t *out, int stride) { fwd_txfm_(in, out, stride); } void RunInvTxfm(const tran_low_t *out, uint8_t *dst, int stride) { inv_txfm_(out, dst, stride); } FdctFunc fwd_txfm_; IdctFunc inv_txfm_; }; TEST_P(Trans4x4WHT, AccuracyCheck) { RunAccuracyCheck(0); } TEST_P(Trans4x4WHT, CoeffCheck) { RunCoeffCheck(); } TEST_P(Trans4x4WHT, MemCheck) { RunMemCheck(); } TEST_P(Trans4x4WHT, InvAccuracyCheck) { RunInvAccuracyCheck(0); } using std::tr1::make_tuple; #if CONFIG_AOM_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P( C, Trans4x4DCT, ::testing::Values( make_tuple(&aom_highbd_fdct4x4_c, &idct4x4_10, 0, AOM_BITS_10), make_tuple(&aom_highbd_fdct4x4_c, &idct4x4_12, 0, AOM_BITS_12), make_tuple(&aom_fdct4x4_c, &aom_idct4x4_16_add_c, 0, AOM_BITS_8))); #else INSTANTIATE_TEST_CASE_P(C, Trans4x4DCT, ::testing::Values(make_tuple(&aom_fdct4x4_c, &aom_idct4x4_16_add_c, 0, AOM_BITS_8))); #endif // CONFIG_AOM_HIGHBITDEPTH #if CONFIG_AOM_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P( C, Trans4x4HT, ::testing::Values( make_tuple(&av1_highbd_fht4x4_c, &iht4x4_10, 0, AOM_BITS_10), make_tuple(&av1_highbd_fht4x4_c, &iht4x4_10, 1, AOM_BITS_10), make_tuple(&av1_highbd_fht4x4_c, &iht4x4_10, 2, AOM_BITS_10), make_tuple(&av1_highbd_fht4x4_c, &iht4x4_10, 3, AOM_BITS_10), make_tuple(&av1_highbd_fht4x4_c, &iht4x4_12, 0, AOM_BITS_12), make_tuple(&av1_highbd_fht4x4_c, &iht4x4_12, 1, AOM_BITS_12), make_tuple(&av1_highbd_fht4x4_c, &iht4x4_12, 2, AOM_BITS_12), make_tuple(&av1_highbd_fht4x4_c, &iht4x4_12, 3, AOM_BITS_12), make_tuple(&av1_fht4x4_c, &av1_iht4x4_16_add_c, 0, AOM_BITS_8), make_tuple(&av1_fht4x4_c, &av1_iht4x4_16_add_c, 1, AOM_BITS_8), make_tuple(&av1_fht4x4_c, &av1_iht4x4_16_add_c, 2, AOM_BITS_8), make_tuple(&av1_fht4x4_c, &av1_iht4x4_16_add_c, 3, AOM_BITS_8))); #else INSTANTIATE_TEST_CASE_P( C, Trans4x4HT, ::testing::Values( make_tuple(&av1_fht4x4_c, &av1_iht4x4_16_add_c, 0, AOM_BITS_8), make_tuple(&av1_fht4x4_c, &av1_iht4x4_16_add_c, 1, AOM_BITS_8), make_tuple(&av1_fht4x4_c, &av1_iht4x4_16_add_c, 2, AOM_BITS_8), make_tuple(&av1_fht4x4_c, &av1_iht4x4_16_add_c, 3, AOM_BITS_8))); #endif // CONFIG_AOM_HIGHBITDEPTH #if CONFIG_AOM_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P( C, Trans4x4WHT, ::testing::Values( make_tuple(&av1_highbd_fwht4x4_c, &iwht4x4_10, 0, AOM_BITS_10), make_tuple(&av1_highbd_fwht4x4_c, &iwht4x4_12, 0, AOM_BITS_12), make_tuple(&av1_fwht4x4_c, &aom_iwht4x4_16_add_c, 0, AOM_BITS_8))); #else INSTANTIATE_TEST_CASE_P(C, Trans4x4WHT, ::testing::Values(make_tuple(&av1_fwht4x4_c, &aom_iwht4x4_16_add_c, 0, AOM_BITS_8))); #endif // CONFIG_AOM_HIGHBITDEPTH #if HAVE_NEON_ASM && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE INSTANTIATE_TEST_CASE_P(NEON, Trans4x4DCT, ::testing::Values(make_tuple(&aom_fdct4x4_c, &aom_idct4x4_16_add_neon, 0, AOM_BITS_8))); #endif // HAVE_NEON_ASM && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE #if HAVE_NEON && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE INSTANTIATE_TEST_CASE_P( NEON, Trans4x4HT, ::testing::Values( make_tuple(&av1_fht4x4_c, &av1_iht4x4_16_add_neon, 0, AOM_BITS_8), make_tuple(&av1_fht4x4_c, &av1_iht4x4_16_add_neon, 1, AOM_BITS_8), make_tuple(&av1_fht4x4_c, &av1_iht4x4_16_add_neon, 2, AOM_BITS_8), make_tuple(&av1_fht4x4_c, &av1_iht4x4_16_add_neon, 3, AOM_BITS_8))); #endif // HAVE_NEON && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE #if CONFIG_USE_X86INC && HAVE_SSE2 && !CONFIG_EMULATE_HARDWARE INSTANTIATE_TEST_CASE_P( SSE2, Trans4x4WHT, ::testing::Values( make_tuple(&av1_fwht4x4_sse2, &aom_iwht4x4_16_add_c, 0, AOM_BITS_8), make_tuple(&av1_fwht4x4_c, &aom_iwht4x4_16_add_sse2, 0, AOM_BITS_8))); #endif #if HAVE_SSE2 && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE INSTANTIATE_TEST_CASE_P(SSE2, Trans4x4DCT, ::testing::Values(make_tuple(&aom_fdct4x4_sse2, &aom_idct4x4_16_add_sse2, 0, AOM_BITS_8))); INSTANTIATE_TEST_CASE_P( SSE2, Trans4x4HT, ::testing::Values( make_tuple(&av1_fht4x4_sse2, &av1_iht4x4_16_add_sse2, 0, AOM_BITS_8), make_tuple(&av1_fht4x4_sse2, &av1_iht4x4_16_add_sse2, 1, AOM_BITS_8), make_tuple(&av1_fht4x4_sse2, &av1_iht4x4_16_add_sse2, 2, AOM_BITS_8), make_tuple(&av1_fht4x4_sse2, &av1_iht4x4_16_add_sse2, 3, AOM_BITS_8))); #endif // HAVE_SSE2 && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE #if HAVE_SSE2 && CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE INSTANTIATE_TEST_CASE_P( SSE2, Trans4x4DCT, ::testing::Values( make_tuple(&aom_highbd_fdct4x4_c, &idct4x4_10_sse2, 0, AOM_BITS_10), make_tuple(&aom_highbd_fdct4x4_sse2, &idct4x4_10_sse2, 0, AOM_BITS_10), make_tuple(&aom_highbd_fdct4x4_c, &idct4x4_12_sse2, 0, AOM_BITS_12), make_tuple(&aom_highbd_fdct4x4_sse2, &idct4x4_12_sse2, 0, AOM_BITS_12), make_tuple(&aom_fdct4x4_sse2, &aom_idct4x4_16_add_c, 0, AOM_BITS_8))); INSTANTIATE_TEST_CASE_P( SSE2, Trans4x4HT, ::testing::Values( make_tuple(&av1_fht4x4_sse2, &av1_iht4x4_16_add_c, 0, AOM_BITS_8), make_tuple(&av1_fht4x4_sse2, &av1_iht4x4_16_add_c, 1, AOM_BITS_8), make_tuple(&av1_fht4x4_sse2, &av1_iht4x4_16_add_c, 2, AOM_BITS_8), make_tuple(&av1_fht4x4_sse2, &av1_iht4x4_16_add_c, 3, AOM_BITS_8))); #endif // HAVE_SSE2 && CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE #if HAVE_MSA && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE INSTANTIATE_TEST_CASE_P(MSA, Trans4x4DCT, ::testing::Values(make_tuple(&aom_fdct4x4_msa, &aom_idct4x4_16_add_msa, 0, AOM_BITS_8))); INSTANTIATE_TEST_CASE_P( MSA, Trans4x4HT, ::testing::Values( make_tuple(&av1_fht4x4_msa, &av1_iht4x4_16_add_msa, 0, AOM_BITS_8), make_tuple(&av1_fht4x4_msa, &av1_iht4x4_16_add_msa, 1, AOM_BITS_8), make_tuple(&av1_fht4x4_msa, &av1_iht4x4_16_add_msa, 2, AOM_BITS_8), make_tuple(&av1_fht4x4_msa, &av1_iht4x4_16_add_msa, 3, AOM_BITS_8))); #endif // HAVE_MSA && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE } // namespace