/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include #include #include #include "third_party/googletest/src/include/gtest/gtest.h" #include "test/acm_random.h" #include "aom_dsp/ansreader.h" #include "aom_dsp/answriter.h" namespace { typedef std::vector > PvVec; const int kPrintStats = 0; PvVec abs_encode_build_vals(int iters) { PvVec ret; libaom_test::ACMRandom gen(0x30317076); double entropy = 0; for (int i = 0; i < iters; ++i) { uint8_t p; do { p = gen.Rand8(); } while (p == 0); // zero is not a valid coding probability bool b = gen.Rand8() < p; ret.push_back(std::make_pair(static_cast(p), b)); if (kPrintStats) { double d = p / 256.; entropy += -d * log2(d) - (1 - d) * log2(1 - d); } } if (kPrintStats) printf("entropy %f\n", entropy); return ret; } bool check_uabs(const PvVec &pv_vec, uint8_t *buf) { AnsCoder a; ans_write_init(&a, buf); std::clock_t start = std::clock(); for (PvVec::const_reverse_iterator it = pv_vec.rbegin(); it != pv_vec.rend(); ++it) { uabs_write(&a, it->second, 256 - it->first); } std::clock_t enc_time = std::clock() - start; int offset = ans_write_end(&a); bool okay = true; AnsDecoder d; if (ans_read_init(&d, buf, offset)) return false; start = std::clock(); for (PvVec::const_iterator it = pv_vec.begin(); it != pv_vec.end(); ++it) { okay &= uabs_read(&d, 256 - it->first) == it->second; } std::clock_t dec_time = std::clock() - start; if (!okay) return false; if (kPrintStats) printf("uABS size %d enc_time %f dec_time %f\n", offset, static_cast(enc_time) / CLOCKS_PER_SEC, static_cast(dec_time) / CLOCKS_PER_SEC); return ans_read_end(&d); } // TODO(aconverse@google.com): replace this with a more representative // distribution from the codec. const rans_sym rans_sym_tab[] = { { 67, 0 }, { 99, 67 }, { 575, 166 }, { 283, 741 }, }; std::vector ans_encode_build_vals(const rans_sym *tab, int iters) { std::vector p_to_sym; int i = 0; while (p_to_sym.size() < RANS_PRECISION) { p_to_sym.insert(p_to_sym.end(), tab[i].prob, i); ++i; } assert(p_to_sym.size() == RANS_PRECISION); std::vector ret; libaom_test::ACMRandom gen(18543637); for (int i = 0; i < iters; ++i) { int sym = p_to_sym[gen.Rand8() * 4]; ret.push_back(sym); } return ret; } void rans_build_dec_tab(const struct rans_sym sym_tab[], rans_lut dec_tab) { dec_tab[0] = 0; for (int i = 1; dec_tab[i - 1] < RANS_PRECISION; ++i) { dec_tab[i] = dec_tab[i - 1] + sym_tab[i - 1].prob; } } bool check_rans(const std::vector &sym_vec, const rans_sym *const tab, uint8_t *buf) { AnsCoder a; ans_write_init(&a, buf); rans_lut dec_tab; rans_build_dec_tab(tab, dec_tab); std::clock_t start = std::clock(); for (std::vector::const_reverse_iterator it = sym_vec.rbegin(); it != sym_vec.rend(); ++it) { rans_write(&a, &tab[*it]); } std::clock_t enc_time = std::clock() - start; int offset = ans_write_end(&a); bool okay = true; AnsDecoder d; if (ans_read_init(&d, buf, offset)) return false; start = std::clock(); for (std::vector::const_iterator it = sym_vec.begin(); it != sym_vec.end(); ++it) { okay &= rans_read(&d, dec_tab) == *it; } std::clock_t dec_time = std::clock() - start; if (!okay) return false; if (kPrintStats) printf("rANS size %d enc_time %f dec_time %f\n", offset, static_cast(enc_time) / CLOCKS_PER_SEC, static_cast(dec_time) / CLOCKS_PER_SEC); return ans_read_end(&d); } class AbsTest : public ::testing::Test { protected: static void SetUpTestCase() { pv_vec_ = abs_encode_build_vals(kNumBools); } virtual void SetUp() { buf_ = new uint8_t[kNumBools / 8]; } virtual void TearDown() { delete[] buf_; } static const int kNumBools = 100000000; static PvVec pv_vec_; uint8_t *buf_; }; PvVec AbsTest::pv_vec_; class AnsTest : public ::testing::Test { protected: static void SetUpTestCase() { sym_vec_ = ans_encode_build_vals(rans_sym_tab, kNumSyms); } virtual void SetUp() { buf_ = new uint8_t[kNumSyms / 2]; } virtual void TearDown() { delete[] buf_; } static const int kNumSyms = 25000000; static std::vector sym_vec_; uint8_t *buf_; }; std::vector AnsTest::sym_vec_; TEST_F(AbsTest, Uabs) { EXPECT_TRUE(check_uabs(pv_vec_, buf_)); } TEST_F(AnsTest, Rans) { EXPECT_TRUE(check_rans(sym_vec_, rans_sym_tab, buf_)); } } // namespace