/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "./aom_config.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_mem/aom_mem.h" #include "av1/common/entropymode.h" #include "av1/common/thread_common.h" #include "av1/common/reconinter.h" #include "av1/common/loopfilter.h" #if CONFIG_MULTITHREAD static INLINE void mutex_lock(pthread_mutex_t *const mutex) { const int kMaxTryLocks = 4000; int locked = 0; int i; for (i = 0; i < kMaxTryLocks; ++i) { if (!pthread_mutex_trylock(mutex)) { locked = 1; break; } } if (!locked) pthread_mutex_lock(mutex); } #endif // CONFIG_MULTITHREAD static INLINE void sync_read(AV1LfSync *const lf_sync, int r, int c) { #if CONFIG_MULTITHREAD const int nsync = lf_sync->sync_range; if (r && !(c & (nsync - 1))) { pthread_mutex_t *const mutex = &lf_sync->mutex_[r - 1]; mutex_lock(mutex); while (c > lf_sync->cur_sb_col[r - 1] - nsync) { pthread_cond_wait(&lf_sync->cond_[r - 1], mutex); } pthread_mutex_unlock(mutex); } #else (void)lf_sync; (void)r; (void)c; #endif // CONFIG_MULTITHREAD } static INLINE void sync_write(AV1LfSync *const lf_sync, int r, int c, const int sb_cols) { #if CONFIG_MULTITHREAD const int nsync = lf_sync->sync_range; int cur; // Only signal when there are enough filtered SB for next row to run. int sig = 1; if (c < sb_cols - 1) { cur = c; if (c % nsync) sig = 0; } else { cur = sb_cols + nsync; } if (sig) { mutex_lock(&lf_sync->mutex_[r]); lf_sync->cur_sb_col[r] = cur; pthread_cond_signal(&lf_sync->cond_[r]); pthread_mutex_unlock(&lf_sync->mutex_[r]); } #else (void)lf_sync; (void)r; (void)c; (void)sb_cols; #endif // CONFIG_MULTITHREAD } // Implement row loopfiltering for each thread. static INLINE void thread_loop_filter_rows( const YV12_BUFFER_CONFIG *const frame_buffer, AV1_COMMON *const cm, struct macroblockd_plane planes[MAX_MB_PLANE], int start, int stop, int y_only, AV1LfSync *const lf_sync) { const int num_planes = y_only ? 1 : MAX_MB_PLANE; const int sb_cols = mi_cols_aligned_to_sb(cm->mi_cols) >> MI_BLOCK_SIZE_LOG2; int mi_row, mi_col; enum lf_path path; if (y_only) path = LF_PATH_444; else if (planes[1].subsampling_y == 1 && planes[1].subsampling_x == 1) path = LF_PATH_420; else if (planes[1].subsampling_y == 0 && planes[1].subsampling_x == 0) path = LF_PATH_444; else path = LF_PATH_SLOW; for (mi_row = start; mi_row < stop; mi_row += lf_sync->num_workers * MI_BLOCK_SIZE) { MODE_INFO **const mi = cm->mi_grid_visible + mi_row * cm->mi_stride; for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE) { const int r = mi_row >> MI_BLOCK_SIZE_LOG2; const int c = mi_col >> MI_BLOCK_SIZE_LOG2; LOOP_FILTER_MASK lfm; int plane; sync_read(lf_sync, r, c); av1_setup_dst_planes(planes, frame_buffer, mi_row, mi_col); // TODO(JBB): Make setup_mask work for non 420. av1_setup_mask(cm, mi_row, mi_col, mi + mi_col, cm->mi_stride, &lfm); av1_filter_block_plane_ss00(cm, &planes[0], mi_row, &lfm); for (plane = 1; plane < num_planes; ++plane) { switch (path) { case LF_PATH_420: av1_filter_block_plane_ss11(cm, &planes[plane], mi_row, &lfm); break; case LF_PATH_444: av1_filter_block_plane_ss00(cm, &planes[plane], mi_row, &lfm); break; case LF_PATH_SLOW: av1_filter_block_plane_non420(cm, &planes[plane], mi + mi_col, mi_row, mi_col); break; } } sync_write(lf_sync, r, c, sb_cols); } } } // Row-based multi-threaded loopfilter hook static int loop_filter_row_worker(AV1LfSync *const lf_sync, LFWorkerData *const lf_data) { thread_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes, lf_data->start, lf_data->stop, lf_data->y_only, lf_sync); return 1; } static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, struct macroblockd_plane planes[MAX_MB_PLANE], int start, int stop, int y_only, AVxWorker *workers, int nworkers, AV1LfSync *lf_sync) { const AVxWorkerInterface *const winterface = aom_get_worker_interface(); // Number of superblock rows and cols const int sb_rows = mi_cols_aligned_to_sb(cm->mi_rows) >> MI_BLOCK_SIZE_LOG2; // Decoder may allocate more threads than number of tiles based on user's // input. const int tile_cols = 1 << cm->log2_tile_cols; const int num_workers = AOMMIN(nworkers, tile_cols); int i; if (!lf_sync->sync_range || sb_rows != lf_sync->rows || num_workers > lf_sync->num_workers) { av1_loop_filter_dealloc(lf_sync); av1_loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_workers); } // Initialize cur_sb_col to -1 for all SB rows. memset(lf_sync->cur_sb_col, -1, sizeof(*lf_sync->cur_sb_col) * sb_rows); // Set up loopfilter thread data. // The decoder is capping num_workers because it has been observed that using // more threads on the loopfilter than there are cores will hurt performance // on Android. This is because the system will only schedule the tile decode // workers on cores equal to the number of tile columns. Then if the decoder // tries to use more threads for the loopfilter, it will hurt performance // because of contention. If the multithreading code changes in the future // then the number of workers used by the loopfilter should be revisited. for (i = 0; i < num_workers; ++i) { AVxWorker *const worker = &workers[i]; LFWorkerData *const lf_data = &lf_sync->lfdata[i]; worker->hook = (AVxWorkerHook)loop_filter_row_worker; worker->data1 = lf_sync; worker->data2 = lf_data; // Loopfilter data av1_loop_filter_data_reset(lf_data, frame, cm, planes); lf_data->start = start + i * MI_BLOCK_SIZE; lf_data->stop = stop; lf_data->y_only = y_only; // Start loopfiltering if (i == num_workers - 1) { winterface->execute(worker); } else { winterface->launch(worker); } } // Wait till all rows are finished for (i = 0; i < num_workers; ++i) { winterface->sync(&workers[i]); } } void av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, struct macroblockd_plane planes[MAX_MB_PLANE], int frame_filter_level, int y_only, int partial_frame, AVxWorker *workers, int num_workers, AV1LfSync *lf_sync) { int start_mi_row, end_mi_row, mi_rows_to_filter; if (!frame_filter_level) return; start_mi_row = 0; mi_rows_to_filter = cm->mi_rows; if (partial_frame && cm->mi_rows > 8) { start_mi_row = cm->mi_rows >> 1; start_mi_row &= 0xfffffff8; mi_rows_to_filter = AOMMAX(cm->mi_rows / 8, 8); } end_mi_row = start_mi_row + mi_rows_to_filter; av1_loop_filter_frame_init(cm, frame_filter_level); loop_filter_rows_mt(frame, cm, planes, start_mi_row, end_mi_row, y_only, workers, num_workers, lf_sync); } // Set up nsync by width. static INLINE int get_sync_range(int width) { // nsync numbers are picked by testing. For example, for 4k // video, using 4 gives best performance. if (width < 640) return 1; else if (width <= 1280) return 2; else if (width <= 4096) return 4; else return 8; } // Allocate memory for lf row synchronization void av1_loop_filter_alloc(AV1LfSync *lf_sync, AV1_COMMON *cm, int rows, int width, int num_workers) { lf_sync->rows = rows; #if CONFIG_MULTITHREAD { int i; CHECK_MEM_ERROR(cm, lf_sync->mutex_, aom_malloc(sizeof(*lf_sync->mutex_) * rows)); if (lf_sync->mutex_) { for (i = 0; i < rows; ++i) { pthread_mutex_init(&lf_sync->mutex_[i], NULL); } } CHECK_MEM_ERROR(cm, lf_sync->cond_, aom_malloc(sizeof(*lf_sync->cond_) * rows)); if (lf_sync->cond_) { for (i = 0; i < rows; ++i) { pthread_cond_init(&lf_sync->cond_[i], NULL); } } } #endif // CONFIG_MULTITHREAD CHECK_MEM_ERROR(cm, lf_sync->lfdata, aom_malloc(num_workers * sizeof(*lf_sync->lfdata))); lf_sync->num_workers = num_workers; CHECK_MEM_ERROR(cm, lf_sync->cur_sb_col, aom_malloc(sizeof(*lf_sync->cur_sb_col) * rows)); // Set up nsync. lf_sync->sync_range = get_sync_range(width); } // Deallocate lf synchronization related mutex and data void av1_loop_filter_dealloc(AV1LfSync *lf_sync) { if (lf_sync != NULL) { #if CONFIG_MULTITHREAD int i; if (lf_sync->mutex_ != NULL) { for (i = 0; i < lf_sync->rows; ++i) { pthread_mutex_destroy(&lf_sync->mutex_[i]); } aom_free(lf_sync->mutex_); } if (lf_sync->cond_ != NULL) { for (i = 0; i < lf_sync->rows; ++i) { pthread_cond_destroy(&lf_sync->cond_[i]); } aom_free(lf_sync->cond_); } #endif // CONFIG_MULTITHREAD aom_free(lf_sync->lfdata); aom_free(lf_sync->cur_sb_col); // clear the structure as the source of this call may be a resize in which // case this call will be followed by an _alloc() which may fail. av1_zero(*lf_sync); } } // Accumulate frame counts. void av1_accumulate_frame_counts(AV1_COMMON *cm, FRAME_COUNTS *counts, int is_dec) { int i, j, k, l, m; for (i = 0; i < BLOCK_SIZE_GROUPS; i++) for (j = 0; j < INTRA_MODES; j++) cm->counts.y_mode[i][j] += counts->y_mode[i][j]; for (i = 0; i < INTRA_MODES; i++) for (j = 0; j < INTRA_MODES; j++) cm->counts.uv_mode[i][j] += counts->uv_mode[i][j]; for (i = 0; i < PARTITION_CONTEXTS; i++) for (j = 0; j < PARTITION_TYPES; j++) cm->counts.partition[i][j] += counts->partition[i][j]; if (is_dec) { int n; for (i = 0; i < TX_SIZES; i++) for (j = 0; j < PLANE_TYPES; j++) for (k = 0; k < REF_TYPES; k++) for (l = 0; l < COEF_BANDS; l++) for (m = 0; m < COEFF_CONTEXTS; m++) { cm->counts.eob_branch[i][j][k][l][m] += counts->eob_branch[i][j][k][l][m]; for (n = 0; n < UNCONSTRAINED_NODES + 1; n++) cm->counts.coef[i][j][k][l][m][n] += counts->coef[i][j][k][l][m][n]; } } else { for (i = 0; i < TX_SIZES; i++) for (j = 0; j < PLANE_TYPES; j++) for (k = 0; k < REF_TYPES; k++) for (l = 0; l < COEF_BANDS; l++) for (m = 0; m < COEFF_CONTEXTS; m++) cm->counts.eob_branch[i][j][k][l][m] += counts->eob_branch[i][j][k][l][m]; // In the encoder, cm->counts.coef is only updated at frame // level, so not need to accumulate it here. // for (n = 0; n < UNCONSTRAINED_NODES + 1; n++) // cm->counts.coef[i][j][k][l][m][n] += // counts->coef[i][j][k][l][m][n]; } for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) for (j = 0; j < SWITCHABLE_FILTERS; j++) cm->counts.switchable_interp[i][j] += counts->switchable_interp[i][j]; #if CONFIG_REF_MV for (i = 0; i < NEWMV_MODE_CONTEXTS; ++i) for (j = 0; j < 2; ++j) cm->counts.newmv_mode[i][j] += counts->newmv_mode[i][j]; for (i = 0; i < ZEROMV_MODE_CONTEXTS; ++i) for (j = 0; j < 2; ++j) cm->counts.zeromv_mode[i][j] += counts->zeromv_mode[i][j]; for (i = 0; i < REFMV_MODE_CONTEXTS; ++i) for (j = 0; j < 2; ++j) cm->counts.refmv_mode[i][j] += counts->refmv_mode[i][j]; for (i = 0; i < DRL_MODE_CONTEXTS; ++i) for (j = 0; j < 2; ++j) cm->counts.drl_mode[i][j] += counts->drl_mode[i][j]; #endif for (i = 0; i < INTER_MODE_CONTEXTS; i++) for (j = 0; j < INTER_MODES; j++) cm->counts.inter_mode[i][j] += counts->inter_mode[i][j]; for (i = 0; i < INTRA_INTER_CONTEXTS; i++) for (j = 0; j < 2; j++) cm->counts.intra_inter[i][j] += counts->intra_inter[i][j]; for (i = 0; i < COMP_INTER_CONTEXTS; i++) for (j = 0; j < 2; j++) cm->counts.comp_inter[i][j] += counts->comp_inter[i][j]; for (i = 0; i < REF_CONTEXTS; i++) for (j = 0; j < 2; j++) for (k = 0; k < 2; k++) cm->counts.single_ref[i][j][k] += counts->single_ref[i][j][k]; for (i = 0; i < REF_CONTEXTS; i++) for (j = 0; j < 2; j++) cm->counts.comp_ref[i][j] += counts->comp_ref[i][j]; for (i = 0; i < TX_SIZE_CONTEXTS; i++) { for (j = 0; j < TX_SIZES; j++) cm->counts.tx.p32x32[i][j] += counts->tx.p32x32[i][j]; for (j = 0; j < TX_SIZES - 1; j++) cm->counts.tx.p16x16[i][j] += counts->tx.p16x16[i][j]; for (j = 0; j < TX_SIZES - 2; j++) cm->counts.tx.p8x8[i][j] += counts->tx.p8x8[i][j]; } for (i = 0; i < TX_SIZES; i++) cm->counts.tx.tx_totals[i] += counts->tx.tx_totals[i]; for (i = 0; i < SKIP_CONTEXTS; i++) for (j = 0; j < 2; j++) cm->counts.skip[i][j] += counts->skip[i][j]; #if CONFIG_REF_MV for (m = 0; m < NMV_CONTEXTS; ++m) { for (i = 0; i < MV_JOINTS; i++) cm->counts.mv[m].joints[i] += counts->mv[m].joints[i]; for (k = 0; k < 2; k++) { nmv_component_counts *comps = &cm->counts.mv[m].comps[k]; nmv_component_counts *comps_t = &counts->mv[m].comps[k]; for (i = 0; i < 2; i++) { comps->sign[i] += comps_t->sign[i]; comps->class0_hp[i] += comps_t->class0_hp[i]; comps->hp[i] += comps_t->hp[i]; } for (i = 0; i < MV_CLASSES; i++) comps->classes[i] += comps_t->classes[i]; for (i = 0; i < CLASS0_SIZE; i++) { comps->class0[i] += comps_t->class0[i]; for (j = 0; j < MV_FP_SIZE; j++) comps->class0_fp[i][j] += comps_t->class0_fp[i][j]; } for (i = 0; i < MV_OFFSET_BITS; i++) for (j = 0; j < 2; j++) comps->bits[i][j] += comps_t->bits[i][j]; for (i = 0; i < MV_FP_SIZE; i++) comps->fp[i] += comps_t->fp[i]; } } #else for (i = 0; i < MV_JOINTS; i++) cm->counts.mv.joints[i] += counts->mv.joints[i]; for (k = 0; k < 2; k++) { nmv_component_counts *comps = &cm->counts.mv.comps[k]; nmv_component_counts *comps_t = &counts->mv.comps[k]; for (i = 0; i < 2; i++) { comps->sign[i] += comps_t->sign[i]; comps->class0_hp[i] += comps_t->class0_hp[i]; comps->hp[i] += comps_t->hp[i]; } for (i = 0; i < MV_CLASSES; i++) comps->classes[i] += comps_t->classes[i]; for (i = 0; i < CLASS0_SIZE; i++) { comps->class0[i] += comps_t->class0[i]; for (j = 0; j < MV_FP_SIZE; j++) comps->class0_fp[i][j] += comps_t->class0_fp[i][j]; } for (i = 0; i < MV_OFFSET_BITS; i++) for (j = 0; j < 2; j++) comps->bits[i][j] += comps_t->bits[i][j]; for (i = 0; i < MV_FP_SIZE; i++) comps->fp[i] += comps_t->fp[i]; } #endif for (i = 0; i < EXT_TX_SIZES; i++) { int j; for (j = 0; j < TX_TYPES; ++j) for (k = 0; k < TX_TYPES; k++) cm->counts.intra_ext_tx[i][j][k] += counts->intra_ext_tx[i][j][k]; } for (i = 0; i < EXT_TX_SIZES; i++) { for (k = 0; k < TX_TYPES; k++) cm->counts.inter_ext_tx[i][k] += counts->inter_ext_tx[i][k]; } #if CONFIG_MISC_FIXES for (i = 0; i < PREDICTION_PROBS; i++) for (j = 0; j < 2; j++) cm->counts.seg.pred[i][j] += counts->seg.pred[i][j]; for (i = 0; i < MAX_SEGMENTS; i++) { cm->counts.seg.tree_total[i] += counts->seg.tree_total[i]; cm->counts.seg.tree_mispred[i] += counts->seg.tree_mispred[i]; } #endif }