/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "third_party/googletest/src/include/gtest/gtest.h" #include "./av1_rtcd.h" #include "./aom_dsp_rtcd.h" #include "test/acm_random.h" #include "test/clear_system_state.h" #include "test/register_state_check.h" #include "test/util.h" #include "av1/common/entropy.h" #include "av1/common/scan.h" #include "aom/aom_codec.h" #include "aom/aom_integer.h" #include "aom_ports/mem.h" using libaom_test::ACMRandom; namespace { const int kNumCoeffs = 64; const double kPi = 3.141592653589793238462643383279502884; const int kSignBiasMaxDiff255 = 1500; const int kSignBiasMaxDiff15 = 10000; typedef void (*FdctFunc)(const int16_t *in, tran_low_t *out, int stride); typedef void (*IdctFunc)(const tran_low_t *in, uint8_t *out, int stride); typedef void (*FhtFunc)(const int16_t *in, tran_low_t *out, int stride, int tx_type); typedef void (*IhtFunc)(const tran_low_t *in, uint8_t *out, int stride, int tx_type); typedef std::tr1::tuple Dct8x8Param; typedef std::tr1::tuple Ht8x8Param; typedef std::tr1::tuple Idct8x8Param; void reference_8x8_dct_1d(const double in[8], double out[8]) { const double kInvSqrt2 = 0.707106781186547524400844362104; for (int k = 0; k < 8; k++) { out[k] = 0.0; for (int n = 0; n < 8; n++) out[k] += in[n] * cos(kPi * (2 * n + 1) * k / 16.0); if (k == 0) out[k] = out[k] * kInvSqrt2; } } void reference_8x8_dct_2d(const int16_t input[kNumCoeffs], double output[kNumCoeffs]) { // First transform columns for (int i = 0; i < 8; ++i) { double temp_in[8], temp_out[8]; for (int j = 0; j < 8; ++j) temp_in[j] = input[j * 8 + i]; reference_8x8_dct_1d(temp_in, temp_out); for (int j = 0; j < 8; ++j) output[j * 8 + i] = temp_out[j]; } // Then transform rows for (int i = 0; i < 8; ++i) { double temp_in[8], temp_out[8]; for (int j = 0; j < 8; ++j) temp_in[j] = output[j + i * 8]; reference_8x8_dct_1d(temp_in, temp_out); // Scale by some magic number for (int j = 0; j < 8; ++j) output[j + i * 8] = temp_out[j] * 2; } } void fdct8x8_ref(const int16_t *in, tran_low_t *out, int stride, int /*tx_type*/) { aom_fdct8x8_c(in, out, stride); } void fht8x8_ref(const int16_t *in, tran_low_t *out, int stride, int tx_type) { av1_fht8x8_c(in, out, stride, tx_type); } #if CONFIG_AOM_HIGHBITDEPTH void idct8x8_10(const tran_low_t *in, uint8_t *out, int stride) { aom_highbd_idct8x8_64_add_c(in, out, stride, 10); } void idct8x8_12(const tran_low_t *in, uint8_t *out, int stride) { aom_highbd_idct8x8_64_add_c(in, out, stride, 12); } void iht8x8_10(const tran_low_t *in, uint8_t *out, int stride, int tx_type) { av1_highbd_iht8x8_64_add_c(in, out, stride, tx_type, 10); } void iht8x8_12(const tran_low_t *in, uint8_t *out, int stride, int tx_type) { av1_highbd_iht8x8_64_add_c(in, out, stride, tx_type, 12); } #if HAVE_SSE2 void idct8x8_10_add_10_c(const tran_low_t *in, uint8_t *out, int stride) { aom_highbd_idct8x8_10_add_c(in, out, stride, 10); } void idct8x8_10_add_12_c(const tran_low_t *in, uint8_t *out, int stride) { aom_highbd_idct8x8_10_add_c(in, out, stride, 12); } void idct8x8_10_add_10_sse2(const tran_low_t *in, uint8_t *out, int stride) { aom_highbd_idct8x8_10_add_sse2(in, out, stride, 10); } void idct8x8_10_add_12_sse2(const tran_low_t *in, uint8_t *out, int stride) { aom_highbd_idct8x8_10_add_sse2(in, out, stride, 12); } void idct8x8_64_add_10_sse2(const tran_low_t *in, uint8_t *out, int stride) { aom_highbd_idct8x8_64_add_sse2(in, out, stride, 10); } void idct8x8_64_add_12_sse2(const tran_low_t *in, uint8_t *out, int stride) { aom_highbd_idct8x8_64_add_sse2(in, out, stride, 12); } #endif // HAVE_SSE2 #endif // CONFIG_AOM_HIGHBITDEPTH class FwdTrans8x8TestBase { public: virtual ~FwdTrans8x8TestBase() {} protected: virtual void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) = 0; virtual void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) = 0; void RunSignBiasCheck() { ACMRandom rnd(ACMRandom::DeterministicSeed()); DECLARE_ALIGNED(16, int16_t, test_input_block[64]); DECLARE_ALIGNED(16, tran_low_t, test_output_block[64]); int count_sign_block[64][2]; const int count_test_block = 100000; memset(count_sign_block, 0, sizeof(count_sign_block)); for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-255, 255]. for (int j = 0; j < 64; ++j) test_input_block[j] = ((rnd.Rand16() >> (16 - bit_depth_)) & mask_) - ((rnd.Rand16() >> (16 - bit_depth_)) & mask_); ASM_REGISTER_STATE_CHECK( RunFwdTxfm(test_input_block, test_output_block, pitch_)); for (int j = 0; j < 64; ++j) { if (test_output_block[j] < 0) ++count_sign_block[j][0]; else if (test_output_block[j] > 0) ++count_sign_block[j][1]; } } for (int j = 0; j < 64; ++j) { const int diff = abs(count_sign_block[j][0] - count_sign_block[j][1]); const int max_diff = kSignBiasMaxDiff255; EXPECT_LT(diff, max_diff << (bit_depth_ - 8)) << "Error: 8x8 FDCT/FHT has a sign bias > " << 1. * max_diff / count_test_block * 100 << "%" << " for input range [-255, 255] at index " << j << " count0: " << count_sign_block[j][0] << " count1: " << count_sign_block[j][1] << " diff: " << diff; } memset(count_sign_block, 0, sizeof(count_sign_block)); for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-mask_ / 16, mask_ / 16]. for (int j = 0; j < 64; ++j) test_input_block[j] = ((rnd.Rand16() & mask_) >> 4) - ((rnd.Rand16() & mask_) >> 4); ASM_REGISTER_STATE_CHECK( RunFwdTxfm(test_input_block, test_output_block, pitch_)); for (int j = 0; j < 64; ++j) { if (test_output_block[j] < 0) ++count_sign_block[j][0]; else if (test_output_block[j] > 0) ++count_sign_block[j][1]; } } for (int j = 0; j < 64; ++j) { const int diff = abs(count_sign_block[j][0] - count_sign_block[j][1]); const int max_diff = kSignBiasMaxDiff15; EXPECT_LT(diff, max_diff << (bit_depth_ - 8)) << "Error: 8x8 FDCT/FHT has a sign bias > " << 1. * max_diff / count_test_block * 100 << "%" << " for input range [-15, 15] at index " << j << " count0: " << count_sign_block[j][0] << " count1: " << count_sign_block[j][1] << " diff: " << diff; } } void RunRoundTripErrorCheck() { ACMRandom rnd(ACMRandom::DeterministicSeed()); int max_error = 0; int total_error = 0; const int count_test_block = 100000; DECLARE_ALIGNED(16, int16_t, test_input_block[64]); DECLARE_ALIGNED(16, tran_low_t, test_temp_block[64]); DECLARE_ALIGNED(16, uint8_t, dst[64]); DECLARE_ALIGNED(16, uint8_t, src[64]); #if CONFIG_AOM_HIGHBITDEPTH DECLARE_ALIGNED(16, uint16_t, dst16[64]); DECLARE_ALIGNED(16, uint16_t, src16[64]); #endif for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-mask_, mask_]. for (int j = 0; j < 64; ++j) { if (bit_depth_ == AOM_BITS_8) { src[j] = rnd.Rand8(); dst[j] = rnd.Rand8(); test_input_block[j] = src[j] - dst[j]; #if CONFIG_AOM_HIGHBITDEPTH } else { src16[j] = rnd.Rand16() & mask_; dst16[j] = rnd.Rand16() & mask_; test_input_block[j] = src16[j] - dst16[j]; #endif } } ASM_REGISTER_STATE_CHECK( RunFwdTxfm(test_input_block, test_temp_block, pitch_)); for (int j = 0; j < 64; ++j) { if (test_temp_block[j] > 0) { test_temp_block[j] += 2; test_temp_block[j] /= 4; test_temp_block[j] *= 4; } else { test_temp_block[j] -= 2; test_temp_block[j] /= 4; test_temp_block[j] *= 4; } } if (bit_depth_ == AOM_BITS_8) { ASM_REGISTER_STATE_CHECK(RunInvTxfm(test_temp_block, dst, pitch_)); #if CONFIG_AOM_HIGHBITDEPTH } else { ASM_REGISTER_STATE_CHECK( RunInvTxfm(test_temp_block, CONVERT_TO_BYTEPTR(dst16), pitch_)); #endif } for (int j = 0; j < 64; ++j) { #if CONFIG_AOM_HIGHBITDEPTH const int diff = bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; #else const int diff = dst[j] - src[j]; #endif const int error = diff * diff; if (max_error < error) max_error = error; total_error += error; } } EXPECT_GE(1 << 2 * (bit_depth_ - 8), max_error) << "Error: 8x8 FDCT/IDCT or FHT/IHT has an individual" << " roundtrip error > 1"; EXPECT_GE((count_test_block << 2 * (bit_depth_ - 8)) / 5, total_error) << "Error: 8x8 FDCT/IDCT or FHT/IHT has average roundtrip " << "error > 1/5 per block"; } void RunExtremalCheck() { ACMRandom rnd(ACMRandom::DeterministicSeed()); int max_error = 0; int total_error = 0; int total_coeff_error = 0; const int count_test_block = 100000; DECLARE_ALIGNED(16, int16_t, test_input_block[64]); DECLARE_ALIGNED(16, tran_low_t, test_temp_block[64]); DECLARE_ALIGNED(16, tran_low_t, ref_temp_block[64]); DECLARE_ALIGNED(16, uint8_t, dst[64]); DECLARE_ALIGNED(16, uint8_t, src[64]); #if CONFIG_AOM_HIGHBITDEPTH DECLARE_ALIGNED(16, uint16_t, dst16[64]); DECLARE_ALIGNED(16, uint16_t, src16[64]); #endif for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-mask_, mask_]. for (int j = 0; j < 64; ++j) { if (bit_depth_ == AOM_BITS_8) { if (i == 0) { src[j] = 255; dst[j] = 0; } else if (i == 1) { src[j] = 0; dst[j] = 255; } else { src[j] = rnd.Rand8() % 2 ? 255 : 0; dst[j] = rnd.Rand8() % 2 ? 255 : 0; } test_input_block[j] = src[j] - dst[j]; #if CONFIG_AOM_HIGHBITDEPTH } else { if (i == 0) { src16[j] = mask_; dst16[j] = 0; } else if (i == 1) { src16[j] = 0; dst16[j] = mask_; } else { src16[j] = rnd.Rand8() % 2 ? mask_ : 0; dst16[j] = rnd.Rand8() % 2 ? mask_ : 0; } test_input_block[j] = src16[j] - dst16[j]; #endif } } ASM_REGISTER_STATE_CHECK( RunFwdTxfm(test_input_block, test_temp_block, pitch_)); ASM_REGISTER_STATE_CHECK( fwd_txfm_ref(test_input_block, ref_temp_block, pitch_, tx_type_)); if (bit_depth_ == AOM_BITS_8) { ASM_REGISTER_STATE_CHECK(RunInvTxfm(test_temp_block, dst, pitch_)); #if CONFIG_AOM_HIGHBITDEPTH } else { ASM_REGISTER_STATE_CHECK( RunInvTxfm(test_temp_block, CONVERT_TO_BYTEPTR(dst16), pitch_)); #endif } for (int j = 0; j < 64; ++j) { #if CONFIG_AOM_HIGHBITDEPTH const int diff = bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; #else const int diff = dst[j] - src[j]; #endif const int error = diff * diff; if (max_error < error) max_error = error; total_error += error; const int coeff_diff = test_temp_block[j] - ref_temp_block[j]; total_coeff_error += abs(coeff_diff); } EXPECT_GE(1 << 2 * (bit_depth_ - 8), max_error) << "Error: Extremal 8x8 FDCT/IDCT or FHT/IHT has" << "an individual roundtrip error > 1"; EXPECT_GE((count_test_block << 2 * (bit_depth_ - 8)) / 5, total_error) << "Error: Extremal 8x8 FDCT/IDCT or FHT/IHT has average" << " roundtrip error > 1/5 per block"; EXPECT_EQ(0, total_coeff_error) << "Error: Extremal 8x8 FDCT/FHT has" << "overflow issues in the intermediate steps > 1"; } } void RunInvAccuracyCheck() { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 1000; DECLARE_ALIGNED(16, int16_t, in[kNumCoeffs]); DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]); DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]); DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]); #if CONFIG_AOM_HIGHBITDEPTH DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]); DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]); #endif for (int i = 0; i < count_test_block; ++i) { double out_r[kNumCoeffs]; // Initialize a test block with input range [-255, 255]. for (int j = 0; j < kNumCoeffs; ++j) { if (bit_depth_ == AOM_BITS_8) { src[j] = rnd.Rand8() % 2 ? 255 : 0; dst[j] = src[j] > 0 ? 0 : 255; in[j] = src[j] - dst[j]; #if CONFIG_AOM_HIGHBITDEPTH } else { src16[j] = rnd.Rand8() % 2 ? mask_ : 0; dst16[j] = src16[j] > 0 ? 0 : mask_; in[j] = src16[j] - dst16[j]; #endif } } reference_8x8_dct_2d(in, out_r); for (int j = 0; j < kNumCoeffs; ++j) coeff[j] = static_cast(round(out_r[j])); if (bit_depth_ == AOM_BITS_8) { ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, pitch_)); #if CONFIG_AOM_HIGHBITDEPTH } else { ASM_REGISTER_STATE_CHECK( RunInvTxfm(coeff, CONVERT_TO_BYTEPTR(dst16), pitch_)); #endif } for (int j = 0; j < kNumCoeffs; ++j) { #if CONFIG_AOM_HIGHBITDEPTH const int diff = bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; #else const int diff = dst[j] - src[j]; #endif const uint32_t error = diff * diff; EXPECT_GE(1u << 2 * (bit_depth_ - 8), error) << "Error: 8x8 IDCT has error " << error << " at index " << j; } } } void RunFwdAccuracyCheck() { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 1000; DECLARE_ALIGNED(16, int16_t, in[kNumCoeffs]); DECLARE_ALIGNED(16, tran_low_t, coeff_r[kNumCoeffs]); DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]); for (int i = 0; i < count_test_block; ++i) { double out_r[kNumCoeffs]; // Initialize a test block with input range [-mask_, mask_]. for (int j = 0; j < kNumCoeffs; ++j) in[j] = rnd.Rand8() % 2 == 0 ? mask_ : -mask_; RunFwdTxfm(in, coeff, pitch_); reference_8x8_dct_2d(in, out_r); for (int j = 0; j < kNumCoeffs; ++j) coeff_r[j] = static_cast(round(out_r[j])); for (int j = 0; j < kNumCoeffs; ++j) { const int32_t diff = coeff[j] - coeff_r[j]; const uint32_t error = diff * diff; EXPECT_GE(9u << 2 * (bit_depth_ - 8), error) << "Error: 8x8 DCT has error " << error << " at index " << j; } } } void CompareInvReference(IdctFunc ref_txfm, int thresh) { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 10000; const int eob = 12; DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]); DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]); DECLARE_ALIGNED(16, uint8_t, ref[kNumCoeffs]); #if CONFIG_AOM_HIGHBITDEPTH DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]); DECLARE_ALIGNED(16, uint16_t, ref16[kNumCoeffs]); #endif const int16_t *scan = av1_default_scan_orders[TX_8X8].scan; for (int i = 0; i < count_test_block; ++i) { for (int j = 0; j < kNumCoeffs; ++j) { if (j < eob) { // Random values less than the threshold, either positive or negative coeff[scan[j]] = rnd(thresh) * (1 - 2 * (i % 2)); } else { coeff[scan[j]] = 0; } if (bit_depth_ == AOM_BITS_8) { dst[j] = 0; ref[j] = 0; #if CONFIG_AOM_HIGHBITDEPTH } else { dst16[j] = 0; ref16[j] = 0; #endif } } if (bit_depth_ == AOM_BITS_8) { ref_txfm(coeff, ref, pitch_); ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, pitch_)); #if CONFIG_AOM_HIGHBITDEPTH } else { ref_txfm(coeff, CONVERT_TO_BYTEPTR(ref16), pitch_); ASM_REGISTER_STATE_CHECK( RunInvTxfm(coeff, CONVERT_TO_BYTEPTR(dst16), pitch_)); #endif } for (int j = 0; j < kNumCoeffs; ++j) { #if CONFIG_AOM_HIGHBITDEPTH const int diff = bit_depth_ == AOM_BITS_8 ? dst[j] - ref[j] : dst16[j] - ref16[j]; #else const int diff = dst[j] - ref[j]; #endif const uint32_t error = diff * diff; EXPECT_EQ(0u, error) << "Error: 8x8 IDCT has error " << error << " at index " << j; } } } int pitch_; int tx_type_; FhtFunc fwd_txfm_ref; aom_bit_depth_t bit_depth_; int mask_; }; class FwdTrans8x8DCT : public FwdTrans8x8TestBase, public ::testing::TestWithParam { public: virtual ~FwdTrans8x8DCT() {} virtual void SetUp() { fwd_txfm_ = GET_PARAM(0); inv_txfm_ = GET_PARAM(1); tx_type_ = GET_PARAM(2); pitch_ = 8; fwd_txfm_ref = fdct8x8_ref; bit_depth_ = GET_PARAM(3); mask_ = (1 << bit_depth_) - 1; } virtual void TearDown() { libaom_test::ClearSystemState(); } protected: void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) { fwd_txfm_(in, out, stride); } void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) { inv_txfm_(out, dst, stride); } FdctFunc fwd_txfm_; IdctFunc inv_txfm_; }; TEST_P(FwdTrans8x8DCT, SignBiasCheck) { RunSignBiasCheck(); } TEST_P(FwdTrans8x8DCT, RoundTripErrorCheck) { RunRoundTripErrorCheck(); } TEST_P(FwdTrans8x8DCT, ExtremalCheck) { RunExtremalCheck(); } TEST_P(FwdTrans8x8DCT, FwdAccuracyCheck) { RunFwdAccuracyCheck(); } TEST_P(FwdTrans8x8DCT, InvAccuracyCheck) { RunInvAccuracyCheck(); } class FwdTrans8x8HT : public FwdTrans8x8TestBase, public ::testing::TestWithParam { public: virtual ~FwdTrans8x8HT() {} virtual void SetUp() { fwd_txfm_ = GET_PARAM(0); inv_txfm_ = GET_PARAM(1); tx_type_ = GET_PARAM(2); pitch_ = 8; fwd_txfm_ref = fht8x8_ref; bit_depth_ = GET_PARAM(3); mask_ = (1 << bit_depth_) - 1; } virtual void TearDown() { libaom_test::ClearSystemState(); } protected: void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) { fwd_txfm_(in, out, stride, tx_type_); } void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) { inv_txfm_(out, dst, stride, tx_type_); } FhtFunc fwd_txfm_; IhtFunc inv_txfm_; }; TEST_P(FwdTrans8x8HT, SignBiasCheck) { RunSignBiasCheck(); } TEST_P(FwdTrans8x8HT, RoundTripErrorCheck) { RunRoundTripErrorCheck(); } TEST_P(FwdTrans8x8HT, ExtremalCheck) { RunExtremalCheck(); } class InvTrans8x8DCT : public FwdTrans8x8TestBase, public ::testing::TestWithParam { public: virtual ~InvTrans8x8DCT() {} virtual void SetUp() { ref_txfm_ = GET_PARAM(0); inv_txfm_ = GET_PARAM(1); thresh_ = GET_PARAM(2); pitch_ = 8; bit_depth_ = GET_PARAM(3); mask_ = (1 << bit_depth_) - 1; } virtual void TearDown() { libaom_test::ClearSystemState(); } protected: void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) { inv_txfm_(out, dst, stride); } void RunFwdTxfm(int16_t * /*out*/, tran_low_t * /*dst*/, int /*stride*/) {} IdctFunc ref_txfm_; IdctFunc inv_txfm_; int thresh_; }; TEST_P(InvTrans8x8DCT, CompareReference) { CompareInvReference(ref_txfm_, thresh_); } using std::tr1::make_tuple; #if CONFIG_AOM_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P( C, FwdTrans8x8DCT, ::testing::Values( make_tuple(&aom_fdct8x8_c, &aom_idct8x8_64_add_c, 0, AOM_BITS_8), make_tuple(&aom_highbd_fdct8x8_c, &idct8x8_10, 0, AOM_BITS_10), make_tuple(&aom_highbd_fdct8x8_c, &idct8x8_12, 0, AOM_BITS_12))); #else INSTANTIATE_TEST_CASE_P(C, FwdTrans8x8DCT, ::testing::Values(make_tuple(&aom_fdct8x8_c, &aom_idct8x8_64_add_c, 0, AOM_BITS_8))); #endif // CONFIG_AOM_HIGHBITDEPTH #if CONFIG_AOM_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P( C, FwdTrans8x8HT, ::testing::Values( make_tuple(&av1_fht8x8_c, &av1_iht8x8_64_add_c, 0, AOM_BITS_8), make_tuple(&av1_highbd_fht8x8_c, &iht8x8_10, 0, AOM_BITS_10), make_tuple(&av1_highbd_fht8x8_c, &iht8x8_10, 1, AOM_BITS_10), make_tuple(&av1_highbd_fht8x8_c, &iht8x8_10, 2, AOM_BITS_10), make_tuple(&av1_highbd_fht8x8_c, &iht8x8_10, 3, AOM_BITS_10), make_tuple(&av1_highbd_fht8x8_c, &iht8x8_12, 0, AOM_BITS_12), make_tuple(&av1_highbd_fht8x8_c, &iht8x8_12, 1, AOM_BITS_12), make_tuple(&av1_highbd_fht8x8_c, &iht8x8_12, 2, AOM_BITS_12), make_tuple(&av1_highbd_fht8x8_c, &iht8x8_12, 3, AOM_BITS_12), make_tuple(&av1_fht8x8_c, &av1_iht8x8_64_add_c, 1, AOM_BITS_8), make_tuple(&av1_fht8x8_c, &av1_iht8x8_64_add_c, 2, AOM_BITS_8), make_tuple(&av1_fht8x8_c, &av1_iht8x8_64_add_c, 3, AOM_BITS_8))); #else INSTANTIATE_TEST_CASE_P( C, FwdTrans8x8HT, ::testing::Values( make_tuple(&av1_fht8x8_c, &av1_iht8x8_64_add_c, 0, AOM_BITS_8), make_tuple(&av1_fht8x8_c, &av1_iht8x8_64_add_c, 1, AOM_BITS_8), make_tuple(&av1_fht8x8_c, &av1_iht8x8_64_add_c, 2, AOM_BITS_8), make_tuple(&av1_fht8x8_c, &av1_iht8x8_64_add_c, 3, AOM_BITS_8))); #endif // CONFIG_AOM_HIGHBITDEPTH #if HAVE_NEON_ASM && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE INSTANTIATE_TEST_CASE_P(NEON, FwdTrans8x8DCT, ::testing::Values(make_tuple(&aom_fdct8x8_neon, &aom_idct8x8_64_add_neon, 0, AOM_BITS_8))); #endif // HAVE_NEON_ASM && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE #if HAVE_NEON && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE INSTANTIATE_TEST_CASE_P( NEON, FwdTrans8x8HT, ::testing::Values( make_tuple(&av1_fht8x8_c, &av1_iht8x8_64_add_neon, 0, AOM_BITS_8), make_tuple(&av1_fht8x8_c, &av1_iht8x8_64_add_neon, 1, AOM_BITS_8), make_tuple(&av1_fht8x8_c, &av1_iht8x8_64_add_neon, 2, AOM_BITS_8), make_tuple(&av1_fht8x8_c, &av1_iht8x8_64_add_neon, 3, AOM_BITS_8))); #endif // HAVE_NEON && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE #if HAVE_SSE2 && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE INSTANTIATE_TEST_CASE_P(SSE2, FwdTrans8x8DCT, ::testing::Values(make_tuple(&aom_fdct8x8_sse2, &aom_idct8x8_64_add_sse2, 0, AOM_BITS_8))); INSTANTIATE_TEST_CASE_P( SSE2, FwdTrans8x8HT, ::testing::Values( make_tuple(&av1_fht8x8_sse2, &av1_iht8x8_64_add_sse2, 0, AOM_BITS_8), make_tuple(&av1_fht8x8_sse2, &av1_iht8x8_64_add_sse2, 1, AOM_BITS_8), make_tuple(&av1_fht8x8_sse2, &av1_iht8x8_64_add_sse2, 2, AOM_BITS_8), make_tuple(&av1_fht8x8_sse2, &av1_iht8x8_64_add_sse2, 3, AOM_BITS_8))); #endif // HAVE_SSE2 && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE #if HAVE_SSE2 && CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE INSTANTIATE_TEST_CASE_P( SSE2, FwdTrans8x8DCT, ::testing::Values(make_tuple(&aom_fdct8x8_sse2, &aom_idct8x8_64_add_c, 0, AOM_BITS_8), make_tuple(&aom_highbd_fdct8x8_c, &idct8x8_64_add_10_sse2, 12, AOM_BITS_10), make_tuple(&aom_highbd_fdct8x8_sse2, &idct8x8_64_add_10_sse2, 12, AOM_BITS_10), make_tuple(&aom_highbd_fdct8x8_c, &idct8x8_64_add_12_sse2, 12, AOM_BITS_12), make_tuple(&aom_highbd_fdct8x8_sse2, &idct8x8_64_add_12_sse2, 12, AOM_BITS_12))); INSTANTIATE_TEST_CASE_P( SSE2, FwdTrans8x8HT, ::testing::Values( make_tuple(&av1_fht8x8_sse2, &av1_iht8x8_64_add_c, 0, AOM_BITS_8), make_tuple(&av1_fht8x8_sse2, &av1_iht8x8_64_add_c, 1, AOM_BITS_8), make_tuple(&av1_fht8x8_sse2, &av1_iht8x8_64_add_c, 2, AOM_BITS_8), make_tuple(&av1_fht8x8_sse2, &av1_iht8x8_64_add_c, 3, AOM_BITS_8))); // Optimizations take effect at a threshold of 6201, so we use a value close to // that to test both branches. INSTANTIATE_TEST_CASE_P( SSE2, InvTrans8x8DCT, ::testing::Values( make_tuple(&idct8x8_10_add_10_c, &idct8x8_10_add_10_sse2, 6225, AOM_BITS_10), make_tuple(&idct8x8_10, &idct8x8_64_add_10_sse2, 6225, AOM_BITS_10), make_tuple(&idct8x8_10_add_12_c, &idct8x8_10_add_12_sse2, 6225, AOM_BITS_12), make_tuple(&idct8x8_12, &idct8x8_64_add_12_sse2, 6225, AOM_BITS_12))); #endif // HAVE_SSE2 && CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE #if HAVE_SSSE3 && ARCH_X86_64 && !CONFIG_AOM_HIGHBITDEPTH && \ !CONFIG_EMULATE_HARDWARE INSTANTIATE_TEST_CASE_P(SSSE3, FwdTrans8x8DCT, ::testing::Values(make_tuple(&aom_fdct8x8_ssse3, &aom_idct8x8_64_add_ssse3, 0, AOM_BITS_8))); #endif #if HAVE_MSA && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE INSTANTIATE_TEST_CASE_P(MSA, FwdTrans8x8DCT, ::testing::Values(make_tuple(&aom_fdct8x8_msa, &aom_idct8x8_64_add_msa, 0, AOM_BITS_8))); INSTANTIATE_TEST_CASE_P( MSA, FwdTrans8x8HT, ::testing::Values( make_tuple(&av1_fht8x8_msa, &av1_iht8x8_64_add_msa, 0, AOM_BITS_8), make_tuple(&av1_fht8x8_msa, &av1_iht8x8_64_add_msa, 1, AOM_BITS_8), make_tuple(&av1_fht8x8_msa, &av1_iht8x8_64_add_msa, 2, AOM_BITS_8), make_tuple(&av1_fht8x8_msa, &av1_iht8x8_64_add_msa, 3, AOM_BITS_8))); #endif // HAVE_MSA && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE } // namespace