/* * Copyright (c) 2010 The VP8 project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vpx_ports/config.h" #include "encodemb.h" #include "reconinter.h" #include "quantize.h" #include "tokenize.h" #include "invtrans.h" #include "recon.h" #include "reconintra.h" #include "dct.h" #include "vpx_mem/vpx_mem.h" #if CONFIG_RUNTIME_CPU_DETECT #define IF_RTCD(x) (x) #else #define IF_RTCD(x) NULL #endif void vp8_subtract_b_c(BLOCK *be, BLOCKD *bd, int pitch) { unsigned char *src_ptr = (*(be->base_src) + be->src); short *diff_ptr = be->src_diff; unsigned char *pred_ptr = bd->predictor; int src_stride = be->src_stride; int r, c; for (r = 0; r < 4; r++) { for (c = 0; c < 4; c++) { diff_ptr[c] = src_ptr[c] - pred_ptr[c]; } diff_ptr += pitch; pred_ptr += pitch; src_ptr += src_stride; } } void vp8_subtract_mbuv_c(short *diff, unsigned char *usrc, unsigned char *vsrc, unsigned char *pred, int stride) { short *udiff = diff + 256; short *vdiff = diff + 320; unsigned char *upred = pred + 256; unsigned char *vpred = pred + 320; int r, c; for (r = 0; r < 8; r++) { for (c = 0; c < 8; c++) { udiff[c] = usrc[c] - upred[c]; } udiff += 8; upred += 8; usrc += stride; } for (r = 0; r < 8; r++) { for (c = 0; c < 8; c++) { vdiff[c] = vsrc[c] - vpred[c]; } vdiff += 8; vpred += 8; vsrc += stride; } } void vp8_subtract_mby_c(short *diff, unsigned char *src, unsigned char *pred, int stride) { int r, c; for (r = 0; r < 16; r++) { for (c = 0; c < 16; c++) { diff[c] = src[c] - pred[c]; } diff += 16; pred += 16; src += stride; } } static void vp8_subtract_mb(const VP8_ENCODER_RTCD *rtcd, MACROBLOCK *x) { ENCODEMB_INVOKE(&rtcd->encodemb, submby)(x->src_diff, x->src.y_buffer, x->e_mbd.predictor, x->src.y_stride); ENCODEMB_INVOKE(&rtcd->encodemb, submbuv)(x->src_diff, x->src.u_buffer, x->src.v_buffer, x->e_mbd.predictor, x->src.uv_stride); } void vp8_build_dcblock(MACROBLOCK *x) { short *src_diff_ptr = &x->src_diff[384]; int i; for (i = 0; i < 16; i++) { src_diff_ptr[i] = x->coeff[i * 16]; } } void vp8_transform_mbuv(MACROBLOCK *x) { int i; for (i = 16; i < 24; i += 2) { x->vp8_short_fdct8x4(&x->block[i].src_diff[0], &x->block[i].coeff[0], 16); } } void vp8_transform_intra_mby(MACROBLOCK *x) { int i; for (i = 0; i < 16; i += 2) { x->vp8_short_fdct8x4(&x->block[i].src_diff[0], &x->block[i].coeff[0], 32); } // build dc block from 16 y dc values vp8_build_dcblock(x); // do 2nd order transform on the dc block x->short_walsh4x4(&x->block[24].src_diff[0], &x->block[24].coeff[0], 8); } void vp8_transform_mb(MACROBLOCK *x) { int i; for (i = 0; i < 16; i += 2) { x->vp8_short_fdct8x4(&x->block[i].src_diff[0], &x->block[i].coeff[0], 32); } // build dc block from 16 y dc values if (x->e_mbd.mbmi.mode != SPLITMV) vp8_build_dcblock(x); for (i = 16; i < 24; i += 2) { x->vp8_short_fdct8x4(&x->block[i].src_diff[0], &x->block[i].coeff[0], 16); } // do 2nd order transform on the dc block if (x->e_mbd.mbmi.mode != SPLITMV) x->short_walsh4x4(&x->block[24].src_diff[0], &x->block[24].coeff[0], 8); } void vp8_transform_mby(MACROBLOCK *x) { int i; for (i = 0; i < 16; i += 2) { x->vp8_short_fdct8x4(&x->block[i].src_diff[0], &x->block[i].coeff[0], 32); } // build dc block from 16 y dc values if (x->e_mbd.mbmi.mode != SPLITMV) { vp8_build_dcblock(x); x->short_walsh4x4(&x->block[24].src_diff[0], &x->block[24].coeff[0], 8); } } void vp8_stuff_inter16x16(MACROBLOCK *x) { vp8_build_inter_predictors_mb_s(&x->e_mbd); /* // recon = copy from predictors to destination { BLOCKD *b = &x->e_mbd.block[0]; unsigned char *pred_ptr = b->predictor; unsigned char *dst_ptr = *(b->base_dst) + b->dst; int stride = b->dst_stride; int i; for(i=0;i<16;i++) vpx_memcpy(dst_ptr+i*stride,pred_ptr+16*i,16); b = &x->e_mbd.block[16]; pred_ptr = b->predictor; dst_ptr = *(b->base_dst) + b->dst; stride = b->dst_stride; for(i=0;i<8;i++) vpx_memcpy(dst_ptr+i*stride,pred_ptr+8*i,8); b = &x->e_mbd.block[20]; pred_ptr = b->predictor; dst_ptr = *(b->base_dst) + b->dst; stride = b->dst_stride; for(i=0;i<8;i++) vpx_memcpy(dst_ptr+i*stride,pred_ptr+8*i,8); } */ } #if !(CONFIG_REALTIME_ONLY) #define RDCOST(RM,DM,R,D) ( ((128+(R)*(RM)) >> 8) + (DM)*(D) ) #define RDTRUNC(RM,DM,R,D) ( (128+(R)*(RM)) & 0xFF ) typedef struct vp8_token_state vp8_token_state; struct vp8_token_state{ int rate; int error; signed char next; signed char token; short qc; }; void vp8_optimize_b(MACROBLOCK *mb, int i, int type, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l, const VP8_ENCODER_RTCD *rtcd) { BLOCK *b; BLOCKD *d; vp8_token_state tokens[17][2]; unsigned best_mask[2]; const short *dequant_ptr; const short *coeff_ptr; short *qcoeff_ptr; short *dqcoeff_ptr; int eob; int i0; int rc; int x; int sz; int next; int path; int rdmult; int rddiv; int final_eob; int rd_cost0; int rd_cost1; int rate0; int rate1; int error0; int error1; int t0; int t1; int best; int band; int pt; b = &mb->block[i]; d = &mb->e_mbd.block[i]; /* Enable this to test the effect of RDO as a replacement for the dynamic * zero bin instead of an augmentation of it. */ #if 0 vp8_strict_quantize_b(b, d); #endif dequant_ptr = &d->dequant[0][0]; coeff_ptr = &b->coeff[0]; qcoeff_ptr = d->qcoeff; dqcoeff_ptr = d->dqcoeff; i0 = !type; eob = d->eob; /* Now set up a Viterbi trellis to evaluate alternative roundings. */ /* TODO: These should vary with the block type, since the quantizer does. */ rdmult = mb->rdmult << 2; rddiv = mb->rddiv; best_mask[0] = best_mask[1] = 0; /* Initialize the sentinel node of the trellis. */ tokens[eob][0].rate = 0; tokens[eob][0].error = 0; tokens[eob][0].next = 16; tokens[eob][0].token = DCT_EOB_TOKEN; tokens[eob][0].qc = 0; *(tokens[eob] + 1) = *(tokens[eob] + 0); next = eob; for (i = eob; i-- > i0;) { int base_bits; int d2; int dx; rc = vp8_default_zig_zag1d[i]; x = qcoeff_ptr[rc]; /* Only add a trellis state for non-zero coefficients. */ if (x) { int shortcut=0; error0 = tokens[next][0].error; error1 = tokens[next][1].error; /* Evaluate the first possibility for this state. */ rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; t0 = (vp8_dct_value_tokens_ptr + x)->Token; /* Consider both possible successor states. */ if (next < 16) { band = vp8_coef_bands[i + 1]; pt = vp8_prev_token_class[t0]; rate0 += mb->token_costs[type][band][pt][tokens[next][0].token]; rate1 += mb->token_costs[type][band][pt][tokens[next][1].token]; } rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0); rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1); if (rd_cost0 == rd_cost1) { rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0); rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1); } /* And pick the best. */ best = rd_cost1 < rd_cost0; base_bits = *(vp8_dct_value_cost_ptr + x); dx = dqcoeff_ptr[rc] - coeff_ptr[rc]; d2 = dx*dx; tokens[i][0].rate = base_bits + (best ? rate1 : rate0); tokens[i][0].error = d2 + (best ? error1 : error0); tokens[i][0].next = next; tokens[i][0].token = t0; tokens[i][0].qc = x; best_mask[0] |= best << i; /* Evaluate the second possibility for this state. */ rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; if((abs(x)*dequant_ptr[rc]>abs(coeff_ptr[rc])) && (abs(x)*dequant_ptr[rc]Token; } if (next < 16) { band = vp8_coef_bands[i + 1]; if(t0!=DCT_EOB_TOKEN) { pt = vp8_prev_token_class[t0]; rate0 += mb->token_costs[type][band][pt][ tokens[next][0].token]; } if(t1!=DCT_EOB_TOKEN) { pt = vp8_prev_token_class[t1]; rate1 += mb->token_costs[type][band][pt][ tokens[next][1].token]; } } rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0); rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1); if (rd_cost0 == rd_cost1) { rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0); rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1); } /* And pick the best. */ best = rd_cost1 < rd_cost0; base_bits = *(vp8_dct_value_cost_ptr + x); if(shortcut) { dx -= (dequant_ptr[rc] + sz) ^ sz; d2 = dx*dx; } tokens[i][1].rate = base_bits + (best ? rate1 : rate0); tokens[i][1].error = d2 + (best ? error1 : error0); tokens[i][1].next = next; tokens[i][1].token =best?t1:t0; tokens[i][1].qc = x; best_mask[1] |= best << i; /* Finally, make this the new head of the trellis. */ next = i; } /* There's no choice to make for a zero coefficient, so we don't * add a new trellis node, but we do need to update the costs. */ else { band = vp8_coef_bands[i + 1]; t0 = tokens[next][0].token; t1 = tokens[next][1].token; /* Update the cost of each path if we're past the EOB token. */ if (t0 != DCT_EOB_TOKEN) { tokens[next][0].rate += mb->token_costs[type][band][0][t0]; tokens[next][0].token = ZERO_TOKEN; } if (t1 != DCT_EOB_TOKEN) { tokens[next][1].rate += mb->token_costs[type][band][0][t1]; tokens[next][1].token = ZERO_TOKEN; } /* Don't update next, because we didn't add a new node. */ } } /* Now pick the best path through the whole trellis. */ band = vp8_coef_bands[i + 1]; VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l); rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; error0 = tokens[next][0].error; error1 = tokens[next][1].error; t0 = tokens[next][0].token; t1 = tokens[next][1].token; rate0 += mb->token_costs[type][band][pt][t0]; rate1 += mb->token_costs[type][band][pt][t1]; rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0); rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1); if (rd_cost0 == rd_cost1) { rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0); rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1); } best = rd_cost1 < rd_cost0; final_eob = i0 - 1; for (i = next; i < eob; i = next) { x = tokens[i][best].qc; if (x) final_eob = i; rc = vp8_default_zig_zag1d[i]; qcoeff_ptr[rc] = x; dqcoeff_ptr[rc] = x * dequant_ptr[rc]; next = tokens[i][best].next; best = (best_mask[best] >> i) & 1; } final_eob++; d->eob = final_eob; *a = *l = (d->eob != !type); } void vp8_optimize_mb(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd) { int b; TEMP_CONTEXT t, t2; int type; int has_2nd_order; vp8_setup_temp_context(&t, x->e_mbd.above_context[Y1CONTEXT], x->e_mbd.left_context[Y1CONTEXT], 4); has_2nd_order = (x->e_mbd.mbmi.mode != B_PRED && x->e_mbd.mbmi.mode != SPLITMV); type = has_2nd_order ? 0 : 3; for (b = 0; b < 16; b++) { vp8_optimize_b(x, b, type, t.a + vp8_block2above[b], t.l + vp8_block2left[b], rtcd); } vp8_setup_temp_context(&t, x->e_mbd.above_context[UCONTEXT], x->e_mbd.left_context[UCONTEXT], 2); vp8_setup_temp_context(&t2, x->e_mbd.above_context[VCONTEXT], x->e_mbd.left_context[VCONTEXT], 2); for (b = 16; b < 20; b++) { vp8_optimize_b(x, b, vp8_block2type[b], t.a + vp8_block2above[b], t.l + vp8_block2left[b], rtcd); } for (b = 20; b < 24; b++) { vp8_optimize_b(x, b, vp8_block2type[b], t2.a + vp8_block2above[b], t2.l + vp8_block2left[b], rtcd); } /* if (has_2nd_order) { vp8_setup_temp_context(&t, x->e_mbd.above_context[Y2CONTEXT], x->e_mbd.left_context[Y2CONTEXT], 1); vp8_optimize_b(x, 24, 1, t.a, t.l, rtcd); } */ } static void vp8_find_mb_skip_coef(MACROBLOCK *x) { int i; x->e_mbd.mbmi.mb_skip_coeff = 1; if (x->e_mbd.mbmi.mode != B_PRED && x->e_mbd.mbmi.mode != SPLITMV) { for (i = 0; i < 16; i++) { x->e_mbd.mbmi.mb_skip_coeff &= (x->e_mbd.block[i].eob < 2); } for (i = 16; i < 25; i++) { x->e_mbd.mbmi.mb_skip_coeff &= (!x->e_mbd.block[i].eob); } } else { for (i = 0; i < 24; i++) { x->e_mbd.mbmi.mb_skip_coeff &= (!x->e_mbd.block[i].eob); } } } void vp8_optimize_mby(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd) { int b; TEMP_CONTEXT t; int type; int has_2nd_order; if (!x->e_mbd.above_context[Y1CONTEXT]) return; if (!x->e_mbd.left_context[Y1CONTEXT]) return; vp8_setup_temp_context(&t, x->e_mbd.above_context[Y1CONTEXT], x->e_mbd.left_context[Y1CONTEXT], 4); has_2nd_order = (x->e_mbd.mbmi.mode != B_PRED && x->e_mbd.mbmi.mode != SPLITMV); type = has_2nd_order ? 0 : 3; for (b = 0; b < 16; b++) { vp8_optimize_b(x, b, type, t.a + vp8_block2above[b], t.l + vp8_block2left[b], rtcd); } /* if (has_2nd_order) { vp8_setup_temp_context(&t, x->e_mbd.above_context[Y2CONTEXT], x->e_mbd.left_context[Y2CONTEXT], 1); vp8_optimize_b(x, 24, 1, t.a, t.l, rtcd); } */ } void vp8_optimize_mbuv(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd) { int b; TEMP_CONTEXT t, t2; if (!x->e_mbd.above_context[UCONTEXT]) return; if (!x->e_mbd.left_context[UCONTEXT]) return; if (!x->e_mbd.above_context[VCONTEXT]) return; if (!x->e_mbd.left_context[VCONTEXT]) return; vp8_setup_temp_context(&t, x->e_mbd.above_context[UCONTEXT], x->e_mbd.left_context[UCONTEXT], 2); vp8_setup_temp_context(&t2, x->e_mbd.above_context[VCONTEXT], x->e_mbd.left_context[VCONTEXT], 2); for (b = 16; b < 20; b++) { vp8_optimize_b(x, b, vp8_block2type[b], t.a + vp8_block2above[b], t.l + vp8_block2left[b], rtcd); } for (b = 20; b < 24; b++) { vp8_optimize_b(x, b, vp8_block2type[b], t2.a + vp8_block2above[b], t2.l + vp8_block2left[b], rtcd); } } #endif void vp8_encode_inter16x16(const VP8_ENCODER_RTCD *rtcd, MACROBLOCK *x) { vp8_build_inter_predictors_mb(&x->e_mbd); vp8_subtract_mb(rtcd, x); vp8_transform_mb(x); vp8_quantize_mb(x); #if !(CONFIG_REALTIME_ONLY) if (x->optimize && x->rddiv > 1) { vp8_optimize_mb(x, rtcd); vp8_find_mb_skip_coef(x); } #endif vp8_inverse_transform_mb(IF_RTCD(&rtcd->common->idct), &x->e_mbd); vp8_recon16x16mb(IF_RTCD(&rtcd->common->recon), &x->e_mbd); } /* this funciton is used by first pass only */ void vp8_encode_inter16x16y(const VP8_ENCODER_RTCD *rtcd, MACROBLOCK *x) { vp8_build_inter_predictors_mby(&x->e_mbd); ENCODEMB_INVOKE(&rtcd->encodemb, submby)(x->src_diff, x->src.y_buffer, x->e_mbd.predictor, x->src.y_stride); vp8_transform_mby(x); vp8_quantize_mby(x); vp8_inverse_transform_mby(IF_RTCD(&rtcd->common->idct), &x->e_mbd); vp8_recon16x16mby(IF_RTCD(&rtcd->common->recon), &x->e_mbd); } void vp8_encode_inter16x16uv(const VP8_ENCODER_RTCD *rtcd, MACROBLOCK *x) { vp8_build_inter_predictors_mbuv(&x->e_mbd); ENCODEMB_INVOKE(&rtcd->encodemb, submbuv)(x->src_diff, x->src.u_buffer, x->src.v_buffer, x->e_mbd.predictor, x->src.uv_stride); vp8_transform_mbuv(x); vp8_quantize_mbuv(x); vp8_inverse_transform_mbuv(IF_RTCD(&rtcd->common->idct), &x->e_mbd); vp8_recon_intra_mbuv(IF_RTCD(&rtcd->common->recon), &x->e_mbd); } void vp8_encode_inter16x16uvrd(const VP8_ENCODER_RTCD *rtcd, MACROBLOCK *x) { vp8_build_inter_predictors_mbuv(&x->e_mbd); ENCODEMB_INVOKE(&rtcd->encodemb, submbuv)(x->src_diff, x->src.u_buffer, x->src.v_buffer, x->e_mbd.predictor, x->src.uv_stride); vp8_transform_mbuv(x); vp8_quantize_mbuv(x); }