aom/av1/common/mv.h

307 строки
10 KiB
C

/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AV1_COMMON_MV_H_
#define AV1_COMMON_MV_H_
#include "av1/common/common.h"
#include "av1/common/common_data.h"
#include "aom_dsp/aom_filter.h"
#ifdef __cplusplus
extern "C" {
#endif
typedef struct mv {
int16_t row;
int16_t col;
} MV;
typedef union int_mv {
uint32_t as_int;
MV as_mv;
} int_mv; /* facilitates faster equality tests and copies */
typedef struct mv32 {
int32_t row;
int32_t col;
} MV32;
#if (CONFIG_WARPED_MOTION || CONFIG_MOTION_VAR) && CONFIG_GLOBAL_MOTION
#define SEPARATE_GLOBAL_MOTION 1
#endif // (CONFIG_WARPED_MOTION || CONFIG_MOTION_VAR) && CONFIG_GLOBAL_MOTION
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
// Bits of precision used for the model
#define WARPEDMODEL_PREC_BITS 16
#define WARPEDMODEL_ROW3HOMO_PREC_BITS 16
#define WARPEDMODEL_TRANS_CLAMP (128 << WARPEDMODEL_PREC_BITS)
#define WARPEDMODEL_NONDIAGAFFINE_CLAMP (1 << (WARPEDMODEL_PREC_BITS - 3))
#define WARPEDMODEL_ROW3HOMO_CLAMP (1 << (WARPEDMODEL_PREC_BITS - 2))
// Bits of subpel precision for warped interpolation
#define WARPEDPIXEL_PREC_BITS 6
#define WARPEDPIXEL_PREC_SHIFTS (1 << WARPEDPIXEL_PREC_BITS)
// Taps for ntap filter
#define WARPEDPIXEL_FILTER_TAPS 6
// Precision of filter taps
#define WARPEDPIXEL_FILTER_BITS 7
#define WARP_PARAM_REDUCE_BITS 6
// Precision bits reduction after horizontal shear
#define HORSHEAR_REDUCE_PREC_BITS 5
#define VERSHEAR_REDUCE_PREC_BITS \
(2 * WARPEDPIXEL_FILTER_BITS - HORSHEAR_REDUCE_PREC_BITS)
#define WARPEDDIFF_PREC_BITS (WARPEDMODEL_PREC_BITS - WARPEDPIXEL_PREC_BITS)
/* clang-format off */
typedef enum {
IDENTITY = 0, // identity transformation, 0-parameter
TRANSLATION = 1, // translational motion 2-parameter
ROTZOOM = 2, // simplified affine with rotation + zoom only, 4-parameter
AFFINE = 3, // affine, 6-parameter
HORTRAPEZOID = 4, // constrained homography, hor trapezoid, 6-parameter
VERTRAPEZOID = 5, // constrained homography, ver trapezoid, 6-parameter
HOMOGRAPHY = 6, // homography, 8-parameter
TRANS_TYPES = 7,
} TransformationType;
/* clang-format on */
// Number of types used for global motion (must be >= 3 and <= TRANS_TYPES)
// The following can be useful:
// GLOBAL_TRANS_TYPES 3 - up to rotation-zoom
// GLOBAL_TRANS_TYPES 4 - up to affine
// GLOBAL_TRANS_TYPES 6 - up to hor/ver trapezoids
// GLOBAL_TRANS_TYPES 7 - up to full homography
#define GLOBAL_TRANS_TYPES 4
// First bit indicates whether using identity or not
// GLOBAL_TYPE_BITS=ceiling(log2(GLOBAL_TRANS_TYPES-1)) is the
// number of bits needed to cover the remaining possibilities
#define GLOBAL_TYPE_BITS (get_msb(2 * GLOBAL_TRANS_TYPES - 3))
typedef struct {
#if CONFIG_GLOBAL_MOTION
int global_warp_allowed;
#endif // CONFIG_GLOBAL_MOTION
#if CONFIG_WARPED_MOTION
int local_warp_allowed;
#endif // CONFIG_WARPED_MOTION
} WarpTypesAllowed;
// number of parameters used by each transformation in TransformationTypes
static const int trans_model_params[TRANS_TYPES] = { 0, 2, 4, 6, 6, 6, 8 };
// The order of values in the wmmat matrix below is best described
// by the homography:
// [x' (m2 m3 m0 [x
// z . y' = m4 m5 m1 * y
// 1] m6 m7 1) 1]
typedef struct {
TransformationType wmtype;
int32_t wmmat[8];
int16_t alpha, beta, gamma, delta;
} WarpedMotionParams;
static INLINE void set_default_warp_params(WarpedMotionParams *wm) {
static const int32_t default_wm_mat[8] = {
0, 0, (1 << WARPEDMODEL_PREC_BITS), 0, 0, (1 << WARPEDMODEL_PREC_BITS), 0, 0
};
memset(wm, 0, sizeof(*wm));
memcpy(wm->wmmat, default_wm_mat, sizeof(wm->wmmat));
wm->wmtype = IDENTITY;
}
#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
#if CONFIG_GLOBAL_MOTION
// The following constants describe the various precisions
// of different parameters in the global motion experiment.
//
// Given the general homography:
// [x' (a b c [x
// z . y' = d e f * y
// 1] g h i) 1]
//
// Constants using the name ALPHA here are related to parameters
// a, b, d, e. Constants using the name TRANS are related
// to parameters c and f.
//
// Anything ending in PREC_BITS is the number of bits of precision
// to maintain when converting from double to integer.
//
// The ABS parameters are used to create an upper and lower bound
// for each parameter. In other words, after a parameter is integerized
// it is clamped between -(1 << ABS_XXX_BITS) and (1 << ABS_XXX_BITS).
//
// XXX_PREC_DIFF and XXX_DECODE_FACTOR
// are computed once here to prevent repetitive
// computation on the decoder side. These are
// to allow the global motion parameters to be encoded in a lower
// precision than the warped model precision. This means that they
// need to be changed to warped precision when they are decoded.
//
// XX_MIN, XX_MAX are also computed to avoid repeated computation
#define SUBEXPFIN_K 3
#define GM_TRANS_PREC_BITS 6
#define GM_ABS_TRANS_BITS 12
#define GM_ABS_TRANS_ONLY_BITS (GM_ABS_TRANS_BITS - GM_TRANS_PREC_BITS + 3)
#define GM_TRANS_PREC_DIFF (WARPEDMODEL_PREC_BITS - GM_TRANS_PREC_BITS)
#define GM_TRANS_ONLY_PREC_DIFF (WARPEDMODEL_PREC_BITS - 3)
#define GM_TRANS_DECODE_FACTOR (1 << GM_TRANS_PREC_DIFF)
#define GM_TRANS_ONLY_DECODE_FACTOR (1 << GM_TRANS_ONLY_PREC_DIFF)
#define GM_ALPHA_PREC_BITS 15
#define GM_ABS_ALPHA_BITS 12
#define GM_ALPHA_PREC_DIFF (WARPEDMODEL_PREC_BITS - GM_ALPHA_PREC_BITS)
#define GM_ALPHA_DECODE_FACTOR (1 << GM_ALPHA_PREC_DIFF)
#define GM_ROW3HOMO_PREC_BITS 16
#define GM_ABS_ROW3HOMO_BITS 11
#define GM_ROW3HOMO_PREC_DIFF \
(WARPEDMODEL_ROW3HOMO_PREC_BITS - GM_ROW3HOMO_PREC_BITS)
#define GM_ROW3HOMO_DECODE_FACTOR (1 << GM_ROW3HOMO_PREC_DIFF)
#define GM_TRANS_MAX (1 << GM_ABS_TRANS_BITS)
#define GM_ALPHA_MAX (1 << GM_ABS_ALPHA_BITS)
#define GM_ROW3HOMO_MAX (1 << GM_ABS_ROW3HOMO_BITS)
#define GM_TRANS_MIN -GM_TRANS_MAX
#define GM_ALPHA_MIN -GM_ALPHA_MAX
#define GM_ROW3HOMO_MIN -GM_ROW3HOMO_MAX
// Use global motion parameters for sub8x8 blocks
#define GLOBAL_SUB8X8_USED 0
static INLINE int block_center_x(int mi_col, BLOCK_SIZE bs) {
const int bw = block_size_wide[bs];
return mi_col * MI_SIZE + bw / 2 - 1;
}
static INLINE int block_center_y(int mi_row, BLOCK_SIZE bs) {
const int bh = block_size_high[bs];
return mi_row * MI_SIZE + bh / 2 - 1;
}
static INLINE int convert_to_trans_prec(int allow_hp, int coor) {
if (allow_hp)
return ROUND_POWER_OF_TWO_SIGNED(coor, WARPEDMODEL_PREC_BITS - 3);
else
return ROUND_POWER_OF_TWO_SIGNED(coor, WARPEDMODEL_PREC_BITS - 2) * 2;
}
// Convert a global motion translation vector (which may have more bits than a
// regular motion vector) into a motion vector
static INLINE int_mv gm_get_motion_vector(const WarpedMotionParams *gm,
int allow_hp, BLOCK_SIZE bsize,
int mi_col, int mi_row,
int block_idx) {
const int unify_bsize = CONFIG_CB4X4;
int_mv res;
const int32_t *mat = gm->wmmat;
int x, y, tx, ty;
if (gm->wmtype == TRANSLATION) {
res.as_mv.row = gm->wmmat[0] >> GM_TRANS_ONLY_PREC_DIFF;
res.as_mv.col = gm->wmmat[1] >> GM_TRANS_ONLY_PREC_DIFF;
return res;
}
if (bsize >= BLOCK_8X8 || unify_bsize) {
x = block_center_x(mi_col, bsize);
y = block_center_y(mi_row, bsize);
} else {
x = block_center_x(mi_col, bsize);
y = block_center_y(mi_row, bsize);
x += (block_idx & 1) * MI_SIZE / 2;
y += (block_idx & 2) * MI_SIZE / 4;
}
if (gm->wmtype == ROTZOOM) {
assert(gm->wmmat[5] == gm->wmmat[2]);
assert(gm->wmmat[4] == -gm->wmmat[3]);
}
if (gm->wmtype > AFFINE) {
int xc = (int)((int64_t)mat[2] * x + (int64_t)mat[3] * y + mat[0]);
int yc = (int)((int64_t)mat[4] * x + (int64_t)mat[5] * y + mat[1]);
const int Z = (int)((int64_t)mat[6] * x + (int64_t)mat[7] * y +
(1 << WARPEDMODEL_ROW3HOMO_PREC_BITS));
xc *= 1 << (WARPEDMODEL_ROW3HOMO_PREC_BITS - WARPEDMODEL_PREC_BITS);
yc *= 1 << (WARPEDMODEL_ROW3HOMO_PREC_BITS - WARPEDMODEL_PREC_BITS);
xc = (int)(xc > 0 ? ((int64_t)xc + Z / 2) / Z : ((int64_t)xc - Z / 2) / Z);
yc = (int)(yc > 0 ? ((int64_t)yc + Z / 2) / Z : ((int64_t)yc - Z / 2) / Z);
tx = convert_to_trans_prec(allow_hp, xc) - (x << 3);
ty = convert_to_trans_prec(allow_hp, yc) - (y << 3);
} else {
const int xc =
(mat[2] - (1 << WARPEDMODEL_PREC_BITS)) * x + mat[3] * y + mat[0];
const int yc =
mat[4] * x + (mat[5] - (1 << WARPEDMODEL_PREC_BITS)) * y + mat[1];
tx = convert_to_trans_prec(allow_hp, xc);
ty = convert_to_trans_prec(allow_hp, yc);
}
res.as_mv.row = ty;
res.as_mv.col = tx;
return res;
}
static INLINE TransformationType get_gmtype(const WarpedMotionParams *gm) {
if (gm->wmmat[6] != 0 || gm->wmmat[7] != 0) {
if (!gm->wmmat[6] && !gm->wmmat[4]) return HORTRAPEZOID;
if (!gm->wmmat[7] && !gm->wmmat[3]) return VERTRAPEZOID;
return HOMOGRAPHY;
}
if (gm->wmmat[5] == (1 << WARPEDMODEL_PREC_BITS) && !gm->wmmat[4] &&
gm->wmmat[2] == (1 << WARPEDMODEL_PREC_BITS) && !gm->wmmat[3]) {
return ((!gm->wmmat[1] && !gm->wmmat[0]) ? IDENTITY : TRANSLATION);
}
if (gm->wmmat[2] == gm->wmmat[5] && gm->wmmat[3] == -gm->wmmat[4])
return ROTZOOM;
else
return AFFINE;
}
#endif // CONFIG_GLOBAL_MOTION
typedef struct candidate_mv {
int_mv this_mv;
int_mv comp_mv;
uint8_t pred_diff[2];
int weight;
} CANDIDATE_MV;
static INLINE int is_zero_mv(const MV *mv) {
return *((const uint32_t *)mv) == 0;
}
static INLINE int is_equal_mv(const MV *a, const MV *b) {
return *((const uint32_t *)a) == *((const uint32_t *)b);
}
static INLINE void clamp_mv(MV *mv, int min_col, int max_col, int min_row,
int max_row) {
mv->col = clamp(mv->col, min_col, max_col);
mv->row = clamp(mv->row, min_row, max_row);
}
static INLINE int mv_has_subpel(const MV *mv) {
return (mv->row & SUBPEL_MASK) || (mv->col & SUBPEL_MASK);
}
#ifdef __cplusplus
} // extern "C"
#endif
#endif // AV1_COMMON_MV_H_