5471 строка
193 KiB
C
5471 строка
193 KiB
C
/*
|
|
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
|
|
*
|
|
* This source code is subject to the terms of the BSD 2 Clause License and
|
|
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
|
|
* was not distributed with this source code in the LICENSE file, you can
|
|
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
|
|
* Media Patent License 1.0 was not distributed with this source code in the
|
|
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <limits.h>
|
|
#include <stdio.h>
|
|
|
|
#include "aom/aom_encoder.h"
|
|
#include "aom_dsp/bitwriter_buffer.h"
|
|
#include "aom_dsp/aom_dsp_common.h"
|
|
#include "aom_dsp/binary_codes_writer.h"
|
|
#include "aom_mem/aom_mem.h"
|
|
#include "aom_ports/mem_ops.h"
|
|
#include "aom_ports/system_state.h"
|
|
#if CONFIG_BITSTREAM_DEBUG
|
|
#include "aom_util/debug_util.h"
|
|
#endif // CONFIG_BITSTREAM_DEBUG
|
|
|
|
#if CONFIG_CDEF
|
|
#include "av1/common/cdef.h"
|
|
#include "av1/common/clpf.h"
|
|
#endif // CONFIG_CDEF
|
|
#include "av1/common/entropy.h"
|
|
#include "av1/common/entropymode.h"
|
|
#include "av1/common/entropymv.h"
|
|
#include "av1/common/mvref_common.h"
|
|
#include "av1/common/odintrin.h"
|
|
#include "av1/common/pred_common.h"
|
|
#include "av1/common/reconinter.h"
|
|
#if CONFIG_EXT_INTRA
|
|
#include "av1/common/reconintra.h"
|
|
#endif // CONFIG_EXT_INTRA
|
|
#include "av1/common/seg_common.h"
|
|
#include "av1/common/tile_common.h"
|
|
|
|
#if CONFIG_ANS
|
|
#include "aom_dsp/buf_ans.h"
|
|
#endif // CONFIG_ANS
|
|
#if CONFIG_LV_MAP
|
|
#include "av1/encoder/encodetxb.h"
|
|
#endif // CONFIG_LV_MAP
|
|
#include "av1/encoder/bitstream.h"
|
|
#include "av1/encoder/cost.h"
|
|
#include "av1/encoder/encodemv.h"
|
|
#include "av1/encoder/mcomp.h"
|
|
#if CONFIG_PALETTE && CONFIG_PALETTE_DELTA_ENCODING
|
|
#include "av1/encoder/palette.h"
|
|
#endif // CONFIG_PALETTE && CONFIG_PALETTE_DELTA_ENCODING
|
|
#include "av1/encoder/segmentation.h"
|
|
#include "av1/encoder/subexp.h"
|
|
#include "av1/encoder/tokenize.h"
|
|
#if CONFIG_PVQ
|
|
#include "av1/encoder/pvq_encoder.h"
|
|
#endif
|
|
|
|
#define ENC_MISMATCH_DEBUG 0
|
|
|
|
static struct av1_token intra_mode_encodings[INTRA_MODES];
|
|
static struct av1_token switchable_interp_encodings[SWITCHABLE_FILTERS];
|
|
static struct av1_token partition_encodings[PARTITION_TYPES];
|
|
#if CONFIG_EXT_INTER
|
|
static const struct av1_token
|
|
inter_compound_mode_encodings[INTER_COMPOUND_MODES] = {
|
|
{ 2, 2 }, { 12, 4 }, { 52, 6 }, { 53, 6 },
|
|
{ 54, 6 }, { 55, 6 }, { 0, 1 }, { 7, 3 }
|
|
};
|
|
#if CONFIG_COMPOUND_SINGLEREF
|
|
static struct av1_token
|
|
inter_singleref_comp_mode_encodings[INTER_SINGLEREF_COMP_MODES];
|
|
#endif // CONFIG_COMPOUND_SINGLEREF
|
|
#endif // CONFIG_EXT_INTER
|
|
#if CONFIG_PALETTE
|
|
static struct av1_token palette_size_encodings[PALETTE_SIZES];
|
|
static struct av1_token palette_color_index_encodings[PALETTE_SIZES]
|
|
[PALETTE_COLORS];
|
|
#endif // CONFIG_PALETTE
|
|
|
|
#if CONFIG_EXT_INTRA || CONFIG_FILTER_INTRA || CONFIG_PALETTE
|
|
static INLINE void write_uniform(aom_writer *w, int n, int v) {
|
|
const int l = get_unsigned_bits(n);
|
|
const int m = (1 << l) - n;
|
|
if (l == 0) return;
|
|
if (v < m) {
|
|
aom_write_literal(w, v, l - 1);
|
|
} else {
|
|
aom_write_literal(w, m + ((v - m) >> 1), l - 1);
|
|
aom_write_literal(w, (v - m) & 1, 1);
|
|
}
|
|
}
|
|
#endif // CONFIG_EXT_INTRA || CONFIG_FILTER_INTRA || CONFIG_PALETTE
|
|
|
|
#if CONFIG_EXT_TX
|
|
static struct av1_token ext_tx_inter_encodings[EXT_TX_SETS_INTER][TX_TYPES];
|
|
static struct av1_token ext_tx_intra_encodings[EXT_TX_SETS_INTRA][TX_TYPES];
|
|
#else
|
|
static struct av1_token ext_tx_encodings[TX_TYPES];
|
|
#endif // CONFIG_EXT_TX
|
|
#if CONFIG_EXT_INTRA
|
|
#if CONFIG_INTRA_INTERP
|
|
static struct av1_token intra_filter_encodings[INTRA_FILTERS];
|
|
#endif // CONFIG_INTRA_INTERP
|
|
#endif // CONFIG_EXT_INTRA
|
|
#if CONFIG_EXT_INTER
|
|
#if CONFIG_INTERINTRA
|
|
static struct av1_token interintra_mode_encodings[INTERINTRA_MODES];
|
|
#endif
|
|
#if CONFIG_COMPOUND_SEGMENT || CONFIG_WEDGE
|
|
static struct av1_token compound_type_encodings[COMPOUND_TYPES];
|
|
#endif // CONFIG_COMPOUND_SEGMENT || CONFIG_WEDGE
|
|
#endif // CONFIG_EXT_INTER
|
|
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
static struct av1_token motion_mode_encodings[MOTION_MODES];
|
|
#if CONFIG_NCOBMC_ADAPT_WEIGHT
|
|
static struct av1_token ncobmc_mode_encodings[MAX_NCOBMC_MODES];
|
|
#endif
|
|
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
#if CONFIG_LOOP_RESTORATION
|
|
static struct av1_token switchable_restore_encodings[RESTORE_SWITCHABLE_TYPES];
|
|
#endif // CONFIG_LOOP_RESTORATION
|
|
static void write_uncompressed_header(AV1_COMP *cpi,
|
|
struct aom_write_bit_buffer *wb);
|
|
static uint32_t write_compressed_header(AV1_COMP *cpi, uint8_t *data);
|
|
static int remux_tiles(const AV1_COMMON *const cm, uint8_t *dst,
|
|
const uint32_t data_size, const uint32_t max_tile_size,
|
|
const uint32_t max_tile_col_size,
|
|
int *const tile_size_bytes,
|
|
int *const tile_col_size_bytes);
|
|
|
|
void av1_encode_token_init(void) {
|
|
#if CONFIG_EXT_TX || CONFIG_PALETTE
|
|
int s;
|
|
#endif // CONFIG_EXT_TX || CONFIG_PALETTE
|
|
#if CONFIG_EXT_TX
|
|
for (s = 1; s < EXT_TX_SETS_INTER; ++s) {
|
|
av1_tokens_from_tree(ext_tx_inter_encodings[s], av1_ext_tx_inter_tree[s]);
|
|
}
|
|
for (s = 1; s < EXT_TX_SETS_INTRA; ++s) {
|
|
av1_tokens_from_tree(ext_tx_intra_encodings[s], av1_ext_tx_intra_tree[s]);
|
|
}
|
|
#else
|
|
av1_tokens_from_tree(ext_tx_encodings, av1_ext_tx_tree);
|
|
#endif // CONFIG_EXT_TX
|
|
av1_tokens_from_tree(intra_mode_encodings, av1_intra_mode_tree);
|
|
av1_tokens_from_tree(switchable_interp_encodings, av1_switchable_interp_tree);
|
|
av1_tokens_from_tree(partition_encodings, av1_partition_tree);
|
|
|
|
#if CONFIG_PALETTE
|
|
av1_tokens_from_tree(palette_size_encodings, av1_palette_size_tree);
|
|
for (s = 0; s < PALETTE_SIZES; ++s) {
|
|
av1_tokens_from_tree(palette_color_index_encodings[s],
|
|
av1_palette_color_index_tree[s]);
|
|
}
|
|
#endif // CONFIG_PALETTE
|
|
|
|
#if CONFIG_EXT_INTRA && CONFIG_INTRA_INTERP
|
|
av1_tokens_from_tree(intra_filter_encodings, av1_intra_filter_tree);
|
|
#endif // CONFIG_EXT_INTRA && CONFIG_INTRA_INTERP
|
|
#if CONFIG_EXT_INTER
|
|
#if CONFIG_INTERINTRA
|
|
av1_tokens_from_tree(interintra_mode_encodings, av1_interintra_mode_tree);
|
|
#endif // CONFIG_INTERINTRA
|
|
#if CONFIG_COMPOUND_SINGLEREF
|
|
av1_tokens_from_tree(inter_singleref_comp_mode_encodings,
|
|
av1_inter_singleref_comp_mode_tree);
|
|
#endif // CONFIG_COMPOUND_SINGLEREF
|
|
#if CONFIG_COMPOUND_SEGMENT || CONFIG_WEDGE
|
|
av1_tokens_from_tree(compound_type_encodings, av1_compound_type_tree);
|
|
#endif // CONFIG_COMPOUND_SEGMENT || CONFIG_WEDGE
|
|
#endif // CONFIG_EXT_INTER
|
|
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
av1_tokens_from_tree(motion_mode_encodings, av1_motion_mode_tree);
|
|
#if CONFIG_NCOBMC_ADAPT_WEIGHT
|
|
av1_tokens_from_tree(ncobmc_mode_encodings, av1_ncobmc_mode_tree);
|
|
#endif
|
|
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
#if CONFIG_LOOP_RESTORATION
|
|
av1_tokens_from_tree(switchable_restore_encodings,
|
|
av1_switchable_restore_tree);
|
|
#endif // CONFIG_LOOP_RESTORATION
|
|
|
|
/* This hack is necessary when CONFIG_DUAL_FILTER is enabled because the five
|
|
SWITCHABLE_FILTERS are not consecutive, e.g., 0, 1, 2, 3, 4, when doing
|
|
an in-order traversal of the av1_switchable_interp_tree structure. */
|
|
av1_indices_from_tree(av1_switchable_interp_ind, av1_switchable_interp_inv,
|
|
av1_switchable_interp_tree);
|
|
/* This hack is necessary because the four TX_TYPES are not consecutive,
|
|
e.g., 0, 1, 2, 3, when doing an in-order traversal of the av1_ext_tx_tree
|
|
structure. */
|
|
#if CONFIG_EXT_TX
|
|
for (s = 1; s < EXT_TX_SETS_INTRA; ++s)
|
|
av1_indices_from_tree(av1_ext_tx_intra_ind[s], av1_ext_tx_intra_inv[s],
|
|
av1_ext_tx_intra_tree[s]);
|
|
for (s = 1; s < EXT_TX_SETS_INTER; ++s)
|
|
av1_indices_from_tree(av1_ext_tx_inter_ind[s], av1_ext_tx_inter_inv[s],
|
|
av1_ext_tx_inter_tree[s]);
|
|
#else
|
|
av1_indices_from_tree(av1_ext_tx_ind, av1_ext_tx_inv, av1_ext_tx_tree);
|
|
#endif
|
|
av1_indices_from_tree(av1_intra_mode_ind, av1_intra_mode_inv,
|
|
av1_intra_mode_tree);
|
|
}
|
|
|
|
static void write_intra_mode_kf(const AV1_COMMON *cm, FRAME_CONTEXT *frame_ctx,
|
|
const MODE_INFO *mi, const MODE_INFO *above_mi,
|
|
const MODE_INFO *left_mi, int block,
|
|
PREDICTION_MODE mode, aom_writer *w) {
|
|
#if CONFIG_INTRABC
|
|
assert(!is_intrabc_block(&mi->mbmi));
|
|
#endif // CONFIG_INTRABC
|
|
aom_write_symbol(w, av1_intra_mode_ind[mode],
|
|
get_y_mode_cdf(frame_ctx, mi, above_mi, left_mi, block),
|
|
INTRA_MODES);
|
|
(void)cm;
|
|
}
|
|
|
|
#if CONFIG_EXT_INTER && CONFIG_INTERINTRA
|
|
static void write_interintra_mode(aom_writer *w, INTERINTRA_MODE mode,
|
|
const aom_prob *probs) {
|
|
av1_write_token(w, av1_interintra_mode_tree, probs,
|
|
&interintra_mode_encodings[mode]);
|
|
}
|
|
#endif // CONFIG_EXT_INTER && CONFIG_INTERINTRA
|
|
|
|
static void write_inter_mode(aom_writer *w, PREDICTION_MODE mode,
|
|
FRAME_CONTEXT *ec_ctx, const int16_t mode_ctx) {
|
|
const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
|
|
|
|
#if CONFIG_NEW_MULTISYMBOL
|
|
aom_write_symbol(w, mode != NEWMV, ec_ctx->newmv_cdf[newmv_ctx], 2);
|
|
#else
|
|
aom_write(w, mode != NEWMV, ec_ctx->newmv_prob[newmv_ctx]);
|
|
#endif
|
|
|
|
if (mode != NEWMV) {
|
|
if (mode_ctx & (1 << ALL_ZERO_FLAG_OFFSET)) {
|
|
assert(mode == ZEROMV);
|
|
return;
|
|
}
|
|
|
|
const int16_t zeromv_ctx = (mode_ctx >> ZEROMV_OFFSET) & ZEROMV_CTX_MASK;
|
|
#if CONFIG_NEW_MULTISYMBOL
|
|
aom_write_symbol(w, mode != ZEROMV, ec_ctx->zeromv_cdf[zeromv_ctx], 2);
|
|
#else
|
|
aom_write(w, mode != ZEROMV, ec_ctx->zeromv_prob[zeromv_ctx]);
|
|
#endif
|
|
|
|
if (mode != ZEROMV) {
|
|
int16_t refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
|
|
|
|
if (mode_ctx & (1 << SKIP_NEARESTMV_OFFSET)) refmv_ctx = 6;
|
|
if (mode_ctx & (1 << SKIP_NEARMV_OFFSET)) refmv_ctx = 7;
|
|
if (mode_ctx & (1 << SKIP_NEARESTMV_SUB8X8_OFFSET)) refmv_ctx = 8;
|
|
#if CONFIG_NEW_MULTISYMBOL
|
|
aom_write_symbol(w, mode != NEARESTMV, ec_ctx->refmv_cdf[refmv_ctx], 2);
|
|
#else
|
|
aom_write(w, mode != NEARESTMV, ec_ctx->refmv_prob[refmv_ctx]);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
static void write_drl_idx(FRAME_CONTEXT *ec_ctx, const MB_MODE_INFO *mbmi,
|
|
const MB_MODE_INFO_EXT *mbmi_ext, aom_writer *w) {
|
|
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
|
|
|
|
assert(mbmi->ref_mv_idx < 3);
|
|
|
|
#if CONFIG_EXT_INTER
|
|
#if CONFIG_COMPOUND_SINGLEREF
|
|
if (mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV ||
|
|
mbmi->mode == SR_NEW_NEWMV) {
|
|
#else // !CONFIG_COMPOUND_SINGLEREF
|
|
if (mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV) {
|
|
#endif // CONFIG_COMPOUND_SINGLEREF
|
|
#else // !CONFIG_EXT_INTER
|
|
if (mbmi->mode == NEWMV) {
|
|
#endif // CONFIG_EXT_INTER
|
|
int idx;
|
|
for (idx = 0; idx < 2; ++idx) {
|
|
if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
|
|
uint8_t drl_ctx =
|
|
av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx);
|
|
|
|
#if CONFIG_NEW_MULTISYMBOL
|
|
aom_write_symbol(w, mbmi->ref_mv_idx != idx, ec_ctx->drl_cdf[drl_ctx],
|
|
2);
|
|
#else
|
|
aom_write(w, mbmi->ref_mv_idx != idx, ec_ctx->drl_prob[drl_ctx]);
|
|
#endif
|
|
if (mbmi->ref_mv_idx == idx) return;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (have_nearmv_in_inter_mode(mbmi->mode)) {
|
|
int idx;
|
|
// TODO(jingning): Temporary solution to compensate the NEARESTMV offset.
|
|
for (idx = 1; idx < 3; ++idx) {
|
|
if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
|
|
uint8_t drl_ctx =
|
|
av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx);
|
|
#if CONFIG_NEW_MULTISYMBOL
|
|
aom_write_symbol(w, mbmi->ref_mv_idx != (idx - 1),
|
|
ec_ctx->drl_cdf[drl_ctx], 2);
|
|
#else
|
|
aom_write(w, mbmi->ref_mv_idx != (idx - 1), ec_ctx->drl_prob[drl_ctx]);
|
|
#endif
|
|
if (mbmi->ref_mv_idx == (idx - 1)) return;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
#if CONFIG_EXT_INTER
|
|
static void write_inter_compound_mode(AV1_COMMON *cm, aom_writer *w,
|
|
PREDICTION_MODE mode,
|
|
const int16_t mode_ctx) {
|
|
const aom_prob *const inter_compound_probs =
|
|
cm->fc->inter_compound_mode_probs[mode_ctx];
|
|
|
|
assert(is_inter_compound_mode(mode));
|
|
av1_write_token(w, av1_inter_compound_mode_tree, inter_compound_probs,
|
|
&inter_compound_mode_encodings[INTER_COMPOUND_OFFSET(mode)]);
|
|
}
|
|
|
|
#if CONFIG_COMPOUND_SINGLEREF
|
|
static void write_inter_singleref_comp_mode(AV1_COMMON *cm, aom_writer *w,
|
|
PREDICTION_MODE mode,
|
|
const int16_t mode_ctx) {
|
|
assert(is_inter_singleref_comp_mode(mode));
|
|
const aom_prob *const inter_singleref_comp_probs =
|
|
cm->fc->inter_singleref_comp_mode_probs[mode_ctx];
|
|
|
|
av1_write_token(
|
|
w, av1_inter_singleref_comp_mode_tree, inter_singleref_comp_probs,
|
|
&inter_singleref_comp_mode_encodings[INTER_SINGLEREF_COMP_OFFSET(mode)]);
|
|
}
|
|
#endif // CONFIG_COMPOUND_SINGLEREF
|
|
#endif // CONFIG_EXT_INTER
|
|
|
|
static void encode_unsigned_max(struct aom_write_bit_buffer *wb, int data,
|
|
int max) {
|
|
aom_wb_write_literal(wb, data, get_unsigned_bits(max));
|
|
}
|
|
|
|
#if !CONFIG_EC_ADAPT || \
|
|
(CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION || CONFIG_EXT_INTER)
|
|
static void prob_diff_update(const aom_tree_index *tree,
|
|
aom_prob probs[/*n - 1*/],
|
|
const unsigned int counts[/* n */], int n,
|
|
int probwt, aom_writer *w) {
|
|
int i;
|
|
unsigned int branch_ct[32][2];
|
|
|
|
// Assuming max number of probabilities <= 32
|
|
assert(n <= 32);
|
|
|
|
av1_tree_probs_from_distribution(tree, branch_ct, counts);
|
|
for (i = 0; i < n - 1; ++i)
|
|
av1_cond_prob_diff_update(w, &probs[i], branch_ct[i], probwt);
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_EXT_INTER || !CONFIG_EC_ADAPT
|
|
static int prob_diff_update_savings(const aom_tree_index *tree,
|
|
aom_prob probs[/*n - 1*/],
|
|
const unsigned int counts[/*n - 1*/], int n,
|
|
int probwt) {
|
|
int i;
|
|
unsigned int branch_ct[32][2];
|
|
int savings = 0;
|
|
|
|
// Assuming max number of probabilities <= 32
|
|
assert(n <= 32);
|
|
av1_tree_probs_from_distribution(tree, branch_ct, counts);
|
|
for (i = 0; i < n - 1; ++i) {
|
|
savings +=
|
|
av1_cond_prob_diff_update_savings(&probs[i], branch_ct[i], probwt);
|
|
}
|
|
return savings;
|
|
}
|
|
#endif // CONFIG_EXT_INTER || !CONFIG_EC_ADAPT
|
|
|
|
#if CONFIG_VAR_TX
|
|
static void write_tx_size_vartx(const AV1_COMMON *cm, const MACROBLOCKD *xd,
|
|
const MB_MODE_INFO *mbmi, TX_SIZE tx_size,
|
|
int depth, int blk_row, int blk_col,
|
|
aom_writer *w) {
|
|
const int tx_row = blk_row >> 1;
|
|
const int tx_col = blk_col >> 1;
|
|
const int max_blocks_high = max_block_high(xd, mbmi->sb_type, 0);
|
|
const int max_blocks_wide = max_block_wide(xd, mbmi->sb_type, 0);
|
|
|
|
int ctx = txfm_partition_context(xd->above_txfm_context + blk_col,
|
|
xd->left_txfm_context + blk_row,
|
|
mbmi->sb_type, tx_size);
|
|
|
|
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
|
|
|
|
if (depth == MAX_VARTX_DEPTH) {
|
|
txfm_partition_update(xd->above_txfm_context + blk_col,
|
|
xd->left_txfm_context + blk_row, tx_size, tx_size);
|
|
return;
|
|
}
|
|
|
|
if (tx_size == mbmi->inter_tx_size[tx_row][tx_col]) {
|
|
aom_write(w, 0, cm->fc->txfm_partition_prob[ctx]);
|
|
txfm_partition_update(xd->above_txfm_context + blk_col,
|
|
xd->left_txfm_context + blk_row, tx_size, tx_size);
|
|
} else {
|
|
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
|
|
const int bsl = tx_size_wide_unit[sub_txs];
|
|
int i;
|
|
|
|
aom_write(w, 1, cm->fc->txfm_partition_prob[ctx]);
|
|
|
|
if (tx_size == TX_8X8) {
|
|
txfm_partition_update(xd->above_txfm_context + blk_col,
|
|
xd->left_txfm_context + blk_row, sub_txs, tx_size);
|
|
return;
|
|
}
|
|
|
|
assert(bsl > 0);
|
|
for (i = 0; i < 4; ++i) {
|
|
int offsetr = blk_row + (i >> 1) * bsl;
|
|
int offsetc = blk_col + (i & 0x01) * bsl;
|
|
write_tx_size_vartx(cm, xd, mbmi, sub_txs, depth + 1, offsetr, offsetc,
|
|
w);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void update_txfm_partition_probs(AV1_COMMON *cm, aom_writer *w,
|
|
FRAME_COUNTS *counts, int probwt) {
|
|
int k;
|
|
for (k = 0; k < TXFM_PARTITION_CONTEXTS; ++k)
|
|
av1_cond_prob_diff_update(w, &cm->fc->txfm_partition_prob[k],
|
|
counts->txfm_partition[k], probwt);
|
|
}
|
|
#endif
|
|
|
|
static void write_selected_tx_size(const AV1_COMMON *cm, const MACROBLOCKD *xd,
|
|
aom_writer *w) {
|
|
const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
|
|
const BLOCK_SIZE bsize = mbmi->sb_type;
|
|
#if CONFIG_EC_ADAPT
|
|
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
|
|
(void)cm;
|
|
#else
|
|
FRAME_CONTEXT *ec_ctx = cm->fc;
|
|
#endif
|
|
// For sub8x8 blocks the tx_size symbol does not need to be sent
|
|
#if CONFIG_CB4X4 && (CONFIG_VAR_TX || CONFIG_EXT_TX) && CONFIG_RECT_TX
|
|
if (bsize > BLOCK_4X4) {
|
|
#else
|
|
if (bsize >= BLOCK_8X8) {
|
|
#endif
|
|
const TX_SIZE tx_size = mbmi->tx_size;
|
|
const int is_inter = is_inter_block(mbmi);
|
|
const int tx_size_ctx = get_tx_size_context(xd);
|
|
const int tx_size_cat = is_inter ? inter_tx_size_cat_lookup[bsize]
|
|
: intra_tx_size_cat_lookup[bsize];
|
|
const TX_SIZE coded_tx_size = txsize_sqr_up_map[tx_size];
|
|
const int depth = tx_size_to_depth(coded_tx_size);
|
|
#if CONFIG_EXT_TX && CONFIG_RECT_TX
|
|
assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed(xd, mbmi)));
|
|
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX
|
|
|
|
aom_write_symbol(w, depth, ec_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx],
|
|
tx_size_cat + 2);
|
|
#if CONFIG_EXT_TX && CONFIG_RECT_TX && CONFIG_RECT_TX_EXT
|
|
if (is_quarter_tx_allowed(xd, mbmi, is_inter) && tx_size != coded_tx_size)
|
|
aom_write(w, tx_size == quarter_txsize_lookup[bsize],
|
|
cm->fc->quarter_tx_size_prob);
|
|
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX && CONFIG_RECT_TX_EXT
|
|
}
|
|
}
|
|
|
|
#if !CONFIG_NEW_MULTISYMBOL
|
|
static void update_inter_mode_probs(AV1_COMMON *cm, aom_writer *w,
|
|
FRAME_COUNTS *counts) {
|
|
int i;
|
|
#if CONFIG_TILE_GROUPS
|
|
const int probwt = cm->num_tg;
|
|
#else
|
|
const int probwt = 1;
|
|
#endif
|
|
for (i = 0; i < NEWMV_MODE_CONTEXTS; ++i)
|
|
av1_cond_prob_diff_update(w, &cm->fc->newmv_prob[i], counts->newmv_mode[i],
|
|
probwt);
|
|
for (i = 0; i < ZEROMV_MODE_CONTEXTS; ++i)
|
|
av1_cond_prob_diff_update(w, &cm->fc->zeromv_prob[i],
|
|
counts->zeromv_mode[i], probwt);
|
|
for (i = 0; i < REFMV_MODE_CONTEXTS; ++i)
|
|
av1_cond_prob_diff_update(w, &cm->fc->refmv_prob[i], counts->refmv_mode[i],
|
|
probwt);
|
|
for (i = 0; i < DRL_MODE_CONTEXTS; ++i)
|
|
av1_cond_prob_diff_update(w, &cm->fc->drl_prob[i], counts->drl_mode[i],
|
|
probwt);
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_EXT_INTER
|
|
static void update_inter_compound_mode_probs(AV1_COMMON *cm, int probwt,
|
|
aom_writer *w) {
|
|
const int savings_thresh = av1_cost_one(GROUP_DIFF_UPDATE_PROB) -
|
|
av1_cost_zero(GROUP_DIFF_UPDATE_PROB);
|
|
int i;
|
|
int savings = 0;
|
|
int do_update = 0;
|
|
for (i = 0; i < INTER_MODE_CONTEXTS; ++i) {
|
|
savings += prob_diff_update_savings(
|
|
av1_inter_compound_mode_tree, cm->fc->inter_compound_mode_probs[i],
|
|
cm->counts.inter_compound_mode[i], INTER_COMPOUND_MODES, probwt);
|
|
}
|
|
do_update = savings > savings_thresh;
|
|
aom_write(w, do_update, GROUP_DIFF_UPDATE_PROB);
|
|
if (do_update) {
|
|
for (i = 0; i < INTER_MODE_CONTEXTS; ++i) {
|
|
prob_diff_update(
|
|
av1_inter_compound_mode_tree, cm->fc->inter_compound_mode_probs[i],
|
|
cm->counts.inter_compound_mode[i], INTER_COMPOUND_MODES, probwt, w);
|
|
}
|
|
}
|
|
}
|
|
|
|
#if CONFIG_COMPOUND_SINGLEREF
|
|
static void update_inter_singleref_comp_mode_probs(AV1_COMMON *cm, int probwt,
|
|
aom_writer *w) {
|
|
const int savings_thresh = av1_cost_one(GROUP_DIFF_UPDATE_PROB) -
|
|
av1_cost_zero(GROUP_DIFF_UPDATE_PROB);
|
|
int i;
|
|
int savings = 0;
|
|
int do_update = 0;
|
|
for (i = 0; i < INTER_MODE_CONTEXTS; ++i) {
|
|
savings +=
|
|
prob_diff_update_savings(av1_inter_singleref_comp_mode_tree,
|
|
cm->fc->inter_singleref_comp_mode_probs[i],
|
|
cm->counts.inter_singleref_comp_mode[i],
|
|
INTER_SINGLEREF_COMP_MODES, probwt);
|
|
}
|
|
do_update = savings > savings_thresh;
|
|
aom_write(w, do_update, GROUP_DIFF_UPDATE_PROB);
|
|
if (do_update) {
|
|
for (i = 0; i < INTER_MODE_CONTEXTS; ++i) {
|
|
prob_diff_update(av1_inter_singleref_comp_mode_tree,
|
|
cm->fc->inter_singleref_comp_mode_probs[i],
|
|
cm->counts.inter_singleref_comp_mode[i],
|
|
INTER_SINGLEREF_COMP_MODES, probwt, w);
|
|
}
|
|
}
|
|
}
|
|
#endif // CONFIG_COMPOUND_SINGLEREF
|
|
#endif // CONFIG_EXT_INTER
|
|
|
|
static int write_skip(const AV1_COMMON *cm, const MACROBLOCKD *xd,
|
|
int segment_id, const MODE_INFO *mi, aom_writer *w) {
|
|
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
|
|
return 1;
|
|
} else {
|
|
const int skip = mi->mbmi.skip;
|
|
#if CONFIG_NEW_MULTISYMBOL
|
|
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
|
|
const int ctx = av1_get_skip_context(xd);
|
|
aom_write_symbol(w, skip, ec_ctx->skip_cdfs[ctx], 2);
|
|
#else
|
|
aom_write(w, skip, av1_get_skip_prob(cm, xd));
|
|
#endif
|
|
return skip;
|
|
}
|
|
}
|
|
|
|
static void write_is_inter(const AV1_COMMON *cm, const MACROBLOCKD *xd,
|
|
int segment_id, aom_writer *w, const int is_inter) {
|
|
if (!segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
|
|
#if CONFIG_NEW_MULTISYMBOL
|
|
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
|
|
const int ctx = av1_get_intra_inter_context(xd);
|
|
aom_write_symbol(w, is_inter, ec_ctx->intra_inter_cdf[ctx], 2);
|
|
#else
|
|
aom_write(w, is_inter, av1_get_intra_inter_prob(cm, xd));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
static void write_motion_mode(const AV1_COMMON *cm, const MODE_INFO *mi,
|
|
aom_writer *w) {
|
|
const MB_MODE_INFO *mbmi = &mi->mbmi;
|
|
MOTION_MODE last_motion_mode_allowed = motion_mode_allowed(
|
|
#if CONFIG_GLOBAL_MOTION && SEPARATE_GLOBAL_MOTION
|
|
0, cm->global_motion,
|
|
#endif // CONFIG_GLOBAL_MOTION && SEPARATE_GLOBAL_MOTION
|
|
mi);
|
|
|
|
if (last_motion_mode_allowed == SIMPLE_TRANSLATION) return;
|
|
#if CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION
|
|
if (last_motion_mode_allowed == OBMC_CAUSAL) {
|
|
aom_write(w, mbmi->motion_mode == OBMC_CAUSAL,
|
|
cm->fc->obmc_prob[mbmi->sb_type]);
|
|
} else {
|
|
#endif // CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION
|
|
av1_write_token(w, av1_motion_mode_tree,
|
|
cm->fc->motion_mode_prob[mbmi->sb_type],
|
|
&motion_mode_encodings[mbmi->motion_mode]);
|
|
#if CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION
|
|
}
|
|
#endif // CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION
|
|
}
|
|
|
|
#if CONFIG_NCOBMC_ADAPT_WEIGHT
|
|
static void write_ncobmc_mode(const AV1_COMMON *cm, const MODE_INFO *mi,
|
|
aom_writer *w) {
|
|
const MB_MODE_INFO *mbmi = &mi->mbmi;
|
|
ADAPT_OVERLAP_BLOCK ao_block = adapt_overlap_block_lookup[mbmi->sb_type];
|
|
if (ncobmc_mode_allowed(mbmi->sb_type) == NO_OVERLAP ||
|
|
ao_block == ADAPT_OVERLAP_BLOCK_INVALID)
|
|
return;
|
|
|
|
av1_write_token(w, av1_ncobmc_mode_tree, cm->fc->ncobmc_mode_prob[ao_block],
|
|
&ncobmc_mode_encodings[mbmi->ncobmc_mode[0]]);
|
|
|
|
if (mi_size_wide[mbmi->sb_type] != mi_size_high[mbmi->sb_type]) {
|
|
av1_write_token(w, av1_ncobmc_mode_tree, cm->fc->ncobmc_mode_prob[ao_block],
|
|
&ncobmc_mode_encodings[mbmi->ncobmc_mode[1]]);
|
|
}
|
|
}
|
|
#endif
|
|
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
|
|
#if CONFIG_DELTA_Q
|
|
static void write_delta_qindex(const AV1_COMMON *cm, const MACROBLOCKD *xd,
|
|
int delta_qindex, aom_writer *w) {
|
|
int sign = delta_qindex < 0;
|
|
int abs = sign ? -delta_qindex : delta_qindex;
|
|
int rem_bits, thr;
|
|
int smallval = abs < DELTA_Q_SMALL ? 1 : 0;
|
|
#if CONFIG_EC_ADAPT
|
|
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
|
|
(void)cm;
|
|
#else
|
|
FRAME_CONTEXT *ec_ctx = cm->fc;
|
|
(void)xd;
|
|
#endif
|
|
|
|
aom_write_symbol(w, AOMMIN(abs, DELTA_Q_SMALL), ec_ctx->delta_q_cdf,
|
|
DELTA_Q_PROBS + 1);
|
|
|
|
if (!smallval) {
|
|
rem_bits = OD_ILOG_NZ(abs - 1) - 1;
|
|
thr = (1 << rem_bits) + 1;
|
|
aom_write_literal(w, rem_bits, 3);
|
|
aom_write_literal(w, abs - thr, rem_bits);
|
|
}
|
|
if (abs > 0) {
|
|
aom_write_bit(w, sign);
|
|
}
|
|
}
|
|
|
|
#if !CONFIG_EC_ADAPT
|
|
static void update_delta_q_probs(AV1_COMMON *cm, aom_writer *w,
|
|
FRAME_COUNTS *counts) {
|
|
int k;
|
|
#if CONFIG_TILE_GROUPS
|
|
const int probwt = cm->num_tg;
|
|
#else
|
|
const int probwt = 1;
|
|
#endif
|
|
#if CONFIG_EXT_DELTA_Q
|
|
if (!cm->delta_q_present_flag) return;
|
|
#endif // CONFIG_EXT_DELTA_Q
|
|
for (k = 0; k < DELTA_Q_PROBS; ++k) {
|
|
av1_cond_prob_diff_update(w, &cm->fc->delta_q_prob[k], counts->delta_q[k],
|
|
probwt);
|
|
}
|
|
}
|
|
#endif // CONFIG_EC_ADAPT
|
|
|
|
#if CONFIG_EXT_DELTA_Q
|
|
static void write_delta_lflevel(const AV1_COMMON *cm, const MACROBLOCKD *xd,
|
|
int delta_lflevel, aom_writer *w) {
|
|
int sign = delta_lflevel < 0;
|
|
int abs = sign ? -delta_lflevel : delta_lflevel;
|
|
int rem_bits, thr;
|
|
int smallval = abs < DELTA_LF_SMALL ? 1 : 0;
|
|
#if CONFIG_EC_ADAPT
|
|
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
|
|
(void)cm;
|
|
#else
|
|
FRAME_CONTEXT *ec_ctx = cm->fc;
|
|
(void)xd;
|
|
#endif
|
|
|
|
aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), ec_ctx->delta_lf_cdf,
|
|
DELTA_LF_PROBS + 1);
|
|
|
|
if (!smallval) {
|
|
rem_bits = OD_ILOG_NZ(abs - 1) - 1;
|
|
thr = (1 << rem_bits) + 1;
|
|
aom_write_literal(w, rem_bits, 3);
|
|
aom_write_literal(w, abs - thr, rem_bits);
|
|
}
|
|
if (abs > 0) {
|
|
aom_write_bit(w, sign);
|
|
}
|
|
}
|
|
|
|
#if !CONFIG_EC_ADAPT
|
|
static void update_delta_lf_probs(AV1_COMMON *cm, aom_writer *w,
|
|
FRAME_COUNTS *counts) {
|
|
int k;
|
|
#if CONFIG_TILE_GROUPS
|
|
const int probwt = cm->num_tg;
|
|
#else
|
|
const int probwt = 1;
|
|
#endif
|
|
if (!cm->delta_lf_present_flag) return;
|
|
for (k = 0; k < DELTA_LF_PROBS; ++k) {
|
|
av1_cond_prob_diff_update(w, &cm->fc->delta_lf_prob[k], counts->delta_lf[k],
|
|
probwt);
|
|
}
|
|
}
|
|
#endif // CONFIG_EC_ADAPT
|
|
#endif // CONFIG_EXT_DELTA_Q
|
|
#endif // CONFIG_DELTA_Q
|
|
|
|
#if !CONFIG_NEW_MULTISYMBOL
|
|
static void update_skip_probs(AV1_COMMON *cm, aom_writer *w,
|
|
FRAME_COUNTS *counts) {
|
|
int k;
|
|
#if CONFIG_TILE_GROUPS
|
|
const int probwt = cm->num_tg;
|
|
#else
|
|
const int probwt = 1;
|
|
#endif
|
|
for (k = 0; k < SKIP_CONTEXTS; ++k) {
|
|
av1_cond_prob_diff_update(w, &cm->fc->skip_probs[k], counts->skip[k],
|
|
probwt);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if !CONFIG_EC_ADAPT
|
|
static void update_switchable_interp_probs(AV1_COMMON *cm, aom_writer *w,
|
|
FRAME_COUNTS *counts) {
|
|
int j;
|
|
for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) {
|
|
#if CONFIG_TILE_GROUPS
|
|
const int probwt = cm->num_tg;
|
|
#else
|
|
const int probwt = 1;
|
|
#endif
|
|
prob_diff_update(
|
|
av1_switchable_interp_tree, cm->fc->switchable_interp_prob[j],
|
|
counts->switchable_interp[j], SWITCHABLE_FILTERS, probwt, w);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if !CONFIG_EC_ADAPT
|
|
#if CONFIG_EXT_TX
|
|
static void update_ext_tx_probs(AV1_COMMON *cm, aom_writer *w) {
|
|
const int savings_thresh = av1_cost_one(GROUP_DIFF_UPDATE_PROB) -
|
|
av1_cost_zero(GROUP_DIFF_UPDATE_PROB);
|
|
int i, j;
|
|
int s;
|
|
#if CONFIG_TILE_GROUPS
|
|
const int probwt = cm->num_tg;
|
|
#else
|
|
const int probwt = 1;
|
|
#endif
|
|
for (s = 1; s < EXT_TX_SETS_INTER; ++s) {
|
|
int savings = 0;
|
|
int do_update = 0;
|
|
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
|
|
if (!use_inter_ext_tx_for_txsize[s][i]) continue;
|
|
savings += prob_diff_update_savings(
|
|
av1_ext_tx_inter_tree[s], cm->fc->inter_ext_tx_prob[s][i],
|
|
cm->counts.inter_ext_tx[s][i],
|
|
num_ext_tx_set[ext_tx_set_type_inter[s]], probwt);
|
|
}
|
|
do_update = savings > savings_thresh;
|
|
aom_write(w, do_update, GROUP_DIFF_UPDATE_PROB);
|
|
if (do_update) {
|
|
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
|
|
if (!use_inter_ext_tx_for_txsize[s][i]) continue;
|
|
prob_diff_update(av1_ext_tx_inter_tree[s],
|
|
cm->fc->inter_ext_tx_prob[s][i],
|
|
cm->counts.inter_ext_tx[s][i],
|
|
num_ext_tx_set[ext_tx_set_type_inter[s]], probwt, w);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (s = 1; s < EXT_TX_SETS_INTRA; ++s) {
|
|
int savings = 0;
|
|
int do_update = 0;
|
|
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
|
|
if (!use_intra_ext_tx_for_txsize[s][i]) continue;
|
|
for (j = 0; j < INTRA_MODES; ++j)
|
|
savings += prob_diff_update_savings(
|
|
av1_ext_tx_intra_tree[s], cm->fc->intra_ext_tx_prob[s][i][j],
|
|
cm->counts.intra_ext_tx[s][i][j],
|
|
num_ext_tx_set[ext_tx_set_type_intra[s]], probwt);
|
|
}
|
|
do_update = savings > savings_thresh;
|
|
aom_write(w, do_update, GROUP_DIFF_UPDATE_PROB);
|
|
if (do_update) {
|
|
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
|
|
if (!use_intra_ext_tx_for_txsize[s][i]) continue;
|
|
for (j = 0; j < INTRA_MODES; ++j)
|
|
prob_diff_update(av1_ext_tx_intra_tree[s],
|
|
cm->fc->intra_ext_tx_prob[s][i][j],
|
|
cm->counts.intra_ext_tx[s][i][j],
|
|
num_ext_tx_set[ext_tx_set_type_intra[s]], probwt, w);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#else
|
|
static void update_ext_tx_probs(AV1_COMMON *cm, aom_writer *w) {
|
|
const int savings_thresh = av1_cost_one(GROUP_DIFF_UPDATE_PROB) -
|
|
av1_cost_zero(GROUP_DIFF_UPDATE_PROB);
|
|
int i, j;
|
|
|
|
int savings = 0;
|
|
int do_update = 0;
|
|
#if CONFIG_TILE_GROUPS
|
|
const int probwt = cm->num_tg;
|
|
#else
|
|
const int probwt = 1;
|
|
#endif
|
|
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
|
|
for (j = 0; j < TX_TYPES; ++j)
|
|
savings += prob_diff_update_savings(
|
|
av1_ext_tx_tree, cm->fc->intra_ext_tx_prob[i][j],
|
|
cm->counts.intra_ext_tx[i][j], TX_TYPES, probwt);
|
|
}
|
|
do_update = savings > savings_thresh;
|
|
aom_write(w, do_update, GROUP_DIFF_UPDATE_PROB);
|
|
if (do_update) {
|
|
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
|
|
for (j = 0; j < TX_TYPES; ++j) {
|
|
prob_diff_update(av1_ext_tx_tree, cm->fc->intra_ext_tx_prob[i][j],
|
|
cm->counts.intra_ext_tx[i][j], TX_TYPES, probwt, w);
|
|
}
|
|
}
|
|
}
|
|
|
|
savings = 0;
|
|
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
|
|
savings +=
|
|
prob_diff_update_savings(av1_ext_tx_tree, cm->fc->inter_ext_tx_prob[i],
|
|
cm->counts.inter_ext_tx[i], TX_TYPES, probwt);
|
|
}
|
|
do_update = savings > savings_thresh;
|
|
aom_write(w, do_update, GROUP_DIFF_UPDATE_PROB);
|
|
if (do_update) {
|
|
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
|
|
prob_diff_update(av1_ext_tx_tree, cm->fc->inter_ext_tx_prob[i],
|
|
cm->counts.inter_ext_tx[i], TX_TYPES, probwt, w);
|
|
}
|
|
}
|
|
}
|
|
#endif // CONFIG_EXT_TX
|
|
#endif // !CONFIG_EC_ADAPT
|
|
#if CONFIG_PALETTE
|
|
static void pack_palette_tokens(aom_writer *w, const TOKENEXTRA **tp, int n,
|
|
int num) {
|
|
int i;
|
|
const TOKENEXTRA *p = *tp;
|
|
|
|
for (i = 0; i < num; ++i) {
|
|
av1_write_token(
|
|
w, av1_palette_color_index_tree[n - PALETTE_MIN_SIZE], p->context_tree,
|
|
&palette_color_index_encodings[n - PALETTE_MIN_SIZE][p->token]);
|
|
++p;
|
|
}
|
|
|
|
*tp = p;
|
|
}
|
|
#endif // CONFIG_PALETTE
|
|
|
|
#if !CONFIG_PVQ
|
|
#if CONFIG_SUPERTX
|
|
static void update_supertx_probs(AV1_COMMON *cm, int probwt, aom_writer *w) {
|
|
const int savings_thresh = av1_cost_one(GROUP_DIFF_UPDATE_PROB) -
|
|
av1_cost_zero(GROUP_DIFF_UPDATE_PROB);
|
|
int i, j;
|
|
int savings = 0;
|
|
int do_update = 0;
|
|
for (i = 0; i < PARTITION_SUPERTX_CONTEXTS; ++i) {
|
|
for (j = TX_8X8; j < TX_SIZES; ++j) {
|
|
savings += av1_cond_prob_diff_update_savings(
|
|
&cm->fc->supertx_prob[i][j], cm->counts.supertx[i][j], probwt);
|
|
}
|
|
}
|
|
do_update = savings > savings_thresh;
|
|
aom_write(w, do_update, GROUP_DIFF_UPDATE_PROB);
|
|
if (do_update) {
|
|
for (i = 0; i < PARTITION_SUPERTX_CONTEXTS; ++i) {
|
|
for (j = TX_8X8; j < TX_SIZES; ++j) {
|
|
av1_cond_prob_diff_update(w, &cm->fc->supertx_prob[i][j],
|
|
cm->counts.supertx[i][j], probwt);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif // CONFIG_SUPERTX
|
|
|
|
#if CONFIG_NEW_MULTISYMBOL
|
|
static INLINE void write_coeff_extra(const aom_cdf_prob *const *cdf, int val,
|
|
int n, aom_writer *w) {
|
|
// Code the extra bits from LSB to MSB in groups of 4
|
|
int i = 0;
|
|
int count = 0;
|
|
while (count < n) {
|
|
const int size = AOMMIN(n - count, 4);
|
|
const int mask = (1 << size) - 1;
|
|
aom_write_cdf(w, val & mask, cdf[i++], 1 << size);
|
|
val >>= size;
|
|
count += size;
|
|
}
|
|
}
|
|
#else
|
|
static INLINE void write_coeff_extra(const aom_prob *pb, int value,
|
|
int num_bits, int skip_bits, aom_writer *w,
|
|
TOKEN_STATS *token_stats) {
|
|
// Code the extra bits from MSB to LSB 1 bit at a time
|
|
int index;
|
|
for (index = skip_bits; index < num_bits; ++index) {
|
|
const int shift = num_bits - index - 1;
|
|
const int bb = (value >> shift) & 1;
|
|
aom_write_record(w, bb, pb[index], token_stats);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if !CONFIG_LV_MAP
|
|
static void pack_mb_tokens(aom_writer *w, const TOKENEXTRA **tp,
|
|
const TOKENEXTRA *const stop,
|
|
aom_bit_depth_t bit_depth, const TX_SIZE tx_size,
|
|
TOKEN_STATS *token_stats) {
|
|
const TOKENEXTRA *p = *tp;
|
|
#if CONFIG_VAR_TX
|
|
int count = 0;
|
|
const int seg_eob = tx_size_2d[tx_size];
|
|
#endif
|
|
|
|
while (p < stop && p->token != EOSB_TOKEN) {
|
|
const int token = p->token;
|
|
const int eob_val = p->eob_val;
|
|
if (token == BLOCK_Z_TOKEN) {
|
|
aom_write_symbol(w, 0, *p->head_cdf, HEAD_TOKENS + 1);
|
|
p++;
|
|
#if CONFIG_VAR_TX
|
|
break;
|
|
#endif
|
|
continue;
|
|
}
|
|
|
|
const av1_extra_bit *const extra_bits = &av1_extra_bits[token];
|
|
if (eob_val == LAST_EOB) {
|
|
// Just code a flag indicating whether the value is >1 or 1.
|
|
aom_write_bit(w, token != ONE_TOKEN);
|
|
} else {
|
|
int comb_symb = 2 * AOMMIN(token, TWO_TOKEN) - eob_val + p->first_val;
|
|
aom_write_symbol(w, comb_symb, *p->head_cdf, HEAD_TOKENS + p->first_val);
|
|
}
|
|
if (token > ONE_TOKEN) {
|
|
aom_write_symbol(w, token - TWO_TOKEN, *p->tail_cdf, TAIL_TOKENS);
|
|
}
|
|
|
|
if (extra_bits->base_val) {
|
|
const int bit_string = p->extra;
|
|
const int bit_string_length = extra_bits->len; // Length of extra bits to
|
|
const int is_cat6 = (extra_bits->base_val == CAT6_MIN_VAL);
|
|
// be written excluding
|
|
// the sign bit.
|
|
int skip_bits = is_cat6
|
|
? (int)sizeof(av1_cat6_prob) -
|
|
av1_get_cat6_extrabits_size(tx_size, bit_depth)
|
|
: 0;
|
|
|
|
assert(!(bit_string >> (bit_string_length - skip_bits + 1)));
|
|
if (bit_string_length > 0)
|
|
#if CONFIG_NEW_MULTISYMBOL
|
|
write_coeff_extra(extra_bits->cdf, bit_string >> 1,
|
|
bit_string_length - skip_bits, w);
|
|
#else
|
|
write_coeff_extra(extra_bits->prob, bit_string >> 1, bit_string_length,
|
|
skip_bits, w, token_stats);
|
|
#endif
|
|
|
|
aom_write_bit_record(w, bit_string & 1, token_stats);
|
|
}
|
|
++p;
|
|
|
|
#if CONFIG_VAR_TX
|
|
++count;
|
|
if (eob_val == EARLY_EOB || count == seg_eob) break;
|
|
#endif
|
|
}
|
|
|
|
*tp = p;
|
|
}
|
|
#endif // !CONFIG_LV_MAP
|
|
#else // !CONFIG_PVQ
|
|
static PVQ_INFO *get_pvq_block(PVQ_QUEUE *pvq_q) {
|
|
PVQ_INFO *pvq;
|
|
|
|
assert(pvq_q->curr_pos <= pvq_q->last_pos);
|
|
assert(pvq_q->curr_pos < pvq_q->buf_len);
|
|
|
|
pvq = pvq_q->buf + pvq_q->curr_pos;
|
|
++pvq_q->curr_pos;
|
|
|
|
return pvq;
|
|
}
|
|
|
|
static void pack_pvq_tokens(aom_writer *w, MACROBLOCK *const x,
|
|
MACROBLOCKD *const xd, int plane, BLOCK_SIZE bsize,
|
|
const TX_SIZE tx_size) {
|
|
PVQ_INFO *pvq;
|
|
int idx, idy;
|
|
const struct macroblockd_plane *const pd = &xd->plane[plane];
|
|
od_adapt_ctx *adapt;
|
|
int max_blocks_wide;
|
|
int max_blocks_high;
|
|
int step = (1 << tx_size);
|
|
const BLOCK_SIZE plane_bsize =
|
|
get_plane_block_size(AOMMAX(bsize, BLOCK_8X8), pd);
|
|
|
|
adapt = x->daala_enc.state.adapt;
|
|
|
|
max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
|
|
max_blocks_high = max_block_high(xd, plane_bsize, plane);
|
|
|
|
for (idy = 0; idy < max_blocks_high; idy += step) {
|
|
for (idx = 0; idx < max_blocks_wide; idx += step) {
|
|
const int is_keyframe = 0;
|
|
const int encode_flip = 0;
|
|
const int flip = 0;
|
|
int i;
|
|
const int has_dc_skip = 1;
|
|
int *exg = &adapt->pvq.pvq_exg[plane][tx_size][0];
|
|
int *ext = adapt->pvq.pvq_ext + tx_size * PVQ_MAX_PARTITIONS;
|
|
generic_encoder *model = adapt->pvq.pvq_param_model;
|
|
|
|
pvq = get_pvq_block(x->pvq_q);
|
|
|
|
// encode block skip info
|
|
aom_write_symbol(w, pvq->ac_dc_coded,
|
|
adapt->skip_cdf[2 * tx_size + (plane != 0)], 4);
|
|
|
|
// AC coeffs coded?
|
|
if (pvq->ac_dc_coded & AC_CODED) {
|
|
assert(pvq->bs == tx_size);
|
|
for (i = 0; i < pvq->nb_bands; i++) {
|
|
if (i == 0 ||
|
|
(!pvq->skip_rest && !(pvq->skip_dir & (1 << ((i - 1) % 3))))) {
|
|
pvq_encode_partition(
|
|
w, pvq->qg[i], pvq->theta[i], pvq->y + pvq->off[i],
|
|
pvq->size[i], pvq->k[i], model, adapt, exg + i, ext + i,
|
|
(plane != 0) * OD_TXSIZES * PVQ_MAX_PARTITIONS +
|
|
pvq->bs * PVQ_MAX_PARTITIONS + i,
|
|
is_keyframe, i == 0 && (i < pvq->nb_bands - 1), pvq->skip_rest,
|
|
encode_flip, flip);
|
|
}
|
|
if (i == 0 && !pvq->skip_rest && pvq->bs > 0) {
|
|
aom_write_symbol(
|
|
w, pvq->skip_dir,
|
|
&adapt->pvq
|
|
.pvq_skip_dir_cdf[(plane != 0) + 2 * (pvq->bs - 1)][0],
|
|
7);
|
|
}
|
|
}
|
|
}
|
|
// Encode residue of DC coeff, if exist.
|
|
if (!has_dc_skip || (pvq->ac_dc_coded & DC_CODED)) {
|
|
generic_encode(w, &adapt->model_dc[plane],
|
|
abs(pvq->dq_dc_residue) - has_dc_skip,
|
|
&adapt->ex_dc[plane][pvq->bs][0], 2);
|
|
}
|
|
if ((pvq->ac_dc_coded & DC_CODED)) {
|
|
aom_write_bit(w, pvq->dq_dc_residue < 0);
|
|
}
|
|
}
|
|
} // for (idy = 0;
|
|
}
|
|
#endif // !CONFIG_PVG
|
|
|
|
#if CONFIG_VAR_TX && !CONFIG_COEF_INTERLEAVE
|
|
#if CONFIG_LV_MAP
|
|
static void pack_txb_tokens(aom_writer *w,
|
|
#if CONFIG_LV_MAP
|
|
AV1_COMMON *cm,
|
|
#endif // CONFIG_LV_MAP
|
|
const TOKENEXTRA **tp,
|
|
const TOKENEXTRA *const tok_end,
|
|
#if CONFIG_PVQ || CONFIG_LV_MAP
|
|
MACROBLOCK *const x,
|
|
#endif
|
|
MACROBLOCKD *xd, MB_MODE_INFO *mbmi, int plane,
|
|
BLOCK_SIZE plane_bsize, aom_bit_depth_t bit_depth,
|
|
int block, int blk_row, int blk_col,
|
|
TX_SIZE tx_size, TOKEN_STATS *token_stats) {
|
|
const struct macroblockd_plane *const pd = &xd->plane[plane];
|
|
const BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
|
|
const int tx_row = blk_row >> (1 - pd->subsampling_y);
|
|
const int tx_col = blk_col >> (1 - pd->subsampling_x);
|
|
TX_SIZE plane_tx_size;
|
|
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
|
|
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
|
|
|
|
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
|
|
|
|
plane_tx_size =
|
|
plane ? uv_txsize_lookup[bsize][mbmi->inter_tx_size[tx_row][tx_col]][0][0]
|
|
: mbmi->inter_tx_size[tx_row][tx_col];
|
|
|
|
if (tx_size == plane_tx_size) {
|
|
TOKEN_STATS tmp_token_stats;
|
|
init_token_stats(&tmp_token_stats);
|
|
|
|
#if !CONFIG_PVQ
|
|
tran_low_t *tcoeff = BLOCK_OFFSET(x->mbmi_ext->tcoeff[plane], block);
|
|
uint16_t eob = x->mbmi_ext->eobs[plane][block];
|
|
TXB_CTX txb_ctx = { x->mbmi_ext->txb_skip_ctx[plane][block],
|
|
x->mbmi_ext->dc_sign_ctx[plane][block] };
|
|
av1_write_coeffs_txb(cm, xd, w, block, plane, tx_size, tcoeff, eob,
|
|
&txb_ctx);
|
|
#else
|
|
pack_pvq_tokens(w, x, xd, plane, bsize, tx_size);
|
|
#endif
|
|
#if CONFIG_RD_DEBUG
|
|
token_stats->txb_coeff_cost_map[blk_row][blk_col] = tmp_token_stats.cost;
|
|
token_stats->cost += tmp_token_stats.cost;
|
|
#endif
|
|
} else {
|
|
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
|
|
const int bsl = tx_size_wide_unit[sub_txs];
|
|
int i;
|
|
|
|
assert(bsl > 0);
|
|
|
|
for (i = 0; i < 4; ++i) {
|
|
const int offsetr = blk_row + (i >> 1) * bsl;
|
|
const int offsetc = blk_col + (i & 0x01) * bsl;
|
|
const int step = tx_size_wide_unit[sub_txs] * tx_size_high_unit[sub_txs];
|
|
|
|
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
|
|
|
|
pack_txb_tokens(w,
|
|
#if CONFIG_LV_MAP
|
|
cm,
|
|
#endif
|
|
tp, tok_end,
|
|
#if CONFIG_PVQ || CONFIG_LV_MAP
|
|
x,
|
|
#endif
|
|
xd, mbmi, plane, plane_bsize, bit_depth, block, offsetr,
|
|
offsetc, sub_txs, token_stats);
|
|
block += step;
|
|
}
|
|
}
|
|
}
|
|
#else // CONFIG_LV_MAP
|
|
static void pack_txb_tokens(aom_writer *w, const TOKENEXTRA **tp,
|
|
const TOKENEXTRA *const tok_end,
|
|
#if CONFIG_PVQ
|
|
MACROBLOCK *const x,
|
|
#endif
|
|
MACROBLOCKD *xd, MB_MODE_INFO *mbmi, int plane,
|
|
BLOCK_SIZE plane_bsize, aom_bit_depth_t bit_depth,
|
|
int block, int blk_row, int blk_col,
|
|
TX_SIZE tx_size, TOKEN_STATS *token_stats) {
|
|
const struct macroblockd_plane *const pd = &xd->plane[plane];
|
|
const BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
|
|
const int tx_row = blk_row >> (1 - pd->subsampling_y);
|
|
const int tx_col = blk_col >> (1 - pd->subsampling_x);
|
|
TX_SIZE plane_tx_size;
|
|
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
|
|
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
|
|
|
|
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
|
|
|
|
plane_tx_size =
|
|
plane ? uv_txsize_lookup[bsize][mbmi->inter_tx_size[tx_row][tx_col]][0][0]
|
|
: mbmi->inter_tx_size[tx_row][tx_col];
|
|
|
|
if (tx_size == plane_tx_size) {
|
|
TOKEN_STATS tmp_token_stats;
|
|
init_token_stats(&tmp_token_stats);
|
|
#if !CONFIG_PVQ
|
|
pack_mb_tokens(w, tp, tok_end, bit_depth, tx_size, &tmp_token_stats);
|
|
#else
|
|
pack_pvq_tokens(w, x, xd, plane, bsize, tx_size);
|
|
#endif
|
|
#if CONFIG_RD_DEBUG
|
|
token_stats->txb_coeff_cost_map[blk_row][blk_col] = tmp_token_stats.cost;
|
|
token_stats->cost += tmp_token_stats.cost;
|
|
#endif
|
|
} else {
|
|
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
|
|
const int bsl = tx_size_wide_unit[sub_txs];
|
|
int i;
|
|
|
|
assert(bsl > 0);
|
|
|
|
for (i = 0; i < 4; ++i) {
|
|
const int offsetr = blk_row + (i >> 1) * bsl;
|
|
const int offsetc = blk_col + (i & 0x01) * bsl;
|
|
const int step = tx_size_wide_unit[sub_txs] * tx_size_high_unit[sub_txs];
|
|
|
|
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
|
|
|
|
pack_txb_tokens(w, tp, tok_end,
|
|
#if CONFIG_PVQ
|
|
x,
|
|
#endif
|
|
xd, mbmi, plane, plane_bsize, bit_depth, block, offsetr,
|
|
offsetc, sub_txs, token_stats);
|
|
block += step;
|
|
}
|
|
}
|
|
}
|
|
#endif // CONFIG_LV_MAP
|
|
#endif // CONFIG_VAR_TX
|
|
|
|
static void write_segment_id(aom_writer *w, const struct segmentation *seg,
|
|
struct segmentation_probs *segp, int segment_id) {
|
|
if (seg->enabled && seg->update_map) {
|
|
aom_write_symbol(w, segment_id, segp->tree_cdf, MAX_SEGMENTS);
|
|
}
|
|
}
|
|
|
|
#if CONFIG_NEW_MULTISYMBOL
|
|
#define WRITE_REF_BIT(bname, pname) \
|
|
aom_write_symbol(w, bname, av1_get_pred_cdf_##pname(cm, xd), 2)
|
|
#else
|
|
#define WRITE_REF_BIT(bname, pname) \
|
|
aom_write(w, bname, av1_get_pred_prob_##pname(cm, xd))
|
|
#endif
|
|
|
|
// This function encodes the reference frame
|
|
static void write_ref_frames(const AV1_COMMON *cm, const MACROBLOCKD *xd,
|
|
aom_writer *w) {
|
|
const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
|
|
const int is_compound = has_second_ref(mbmi);
|
|
const int segment_id = mbmi->segment_id;
|
|
|
|
// If segment level coding of this signal is disabled...
|
|
// or the segment allows multiple reference frame options
|
|
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
|
|
assert(!is_compound);
|
|
assert(mbmi->ref_frame[0] ==
|
|
get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
|
|
} else {
|
|
// does the feature use compound prediction or not
|
|
// (if not specified at the frame/segment level)
|
|
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
|
|
#if !SUB8X8_COMP_REF
|
|
if (mbmi->sb_type != BLOCK_4X4)
|
|
#endif
|
|
#if CONFIG_NEW_MULTISYMBOL
|
|
aom_write_symbol(w, is_compound, av1_get_reference_mode_cdf(cm, xd), 2);
|
|
#else
|
|
aom_write(w, is_compound, av1_get_reference_mode_prob(cm, xd));
|
|
#endif
|
|
} else {
|
|
assert((!is_compound) == (cm->reference_mode == SINGLE_REFERENCE));
|
|
}
|
|
|
|
if (is_compound) {
|
|
#if CONFIG_EXT_COMP_REFS
|
|
const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi)
|
|
? UNIDIR_COMP_REFERENCE
|
|
: BIDIR_COMP_REFERENCE;
|
|
|
|
#if USE_UNI_COMP_REFS
|
|
aom_write(w, comp_ref_type, av1_get_comp_reference_type_prob(cm, xd));
|
|
#else // !USE_UNI_COMP_REFS
|
|
// NOTE: uni-directional comp refs disabled
|
|
assert(comp_ref_type == BIDIR_COMP_REFERENCE);
|
|
#endif // USE_UNI_COMP_REFS
|
|
|
|
if (comp_ref_type == UNIDIR_COMP_REFERENCE) {
|
|
const int bit = mbmi->ref_frame[0] == BWDREF_FRAME;
|
|
aom_write(w, bit, av1_get_pred_prob_uni_comp_ref_p(cm, xd));
|
|
if (!bit) {
|
|
const int bit1 = mbmi->ref_frame[1] == GOLDEN_FRAME;
|
|
aom_write(w, bit1, av1_get_pred_prob_uni_comp_ref_p1(cm, xd));
|
|
}
|
|
|
|
return;
|
|
}
|
|
#endif // CONFIG_EXT_COMP_REFS
|
|
|
|
#if CONFIG_EXT_REFS
|
|
const int bit = (mbmi->ref_frame[0] == GOLDEN_FRAME ||
|
|
mbmi->ref_frame[0] == LAST3_FRAME);
|
|
#if CONFIG_VAR_REFS
|
|
// Test need to explicitly code (L,L2) vs (L3,G) branch node in tree
|
|
if (L_OR_L2(cm) && L3_OR_G(cm))
|
|
#endif // CONFIG_VAR_REFS
|
|
WRITE_REF_BIT(bit, comp_ref_p);
|
|
|
|
if (!bit) {
|
|
#if CONFIG_VAR_REFS
|
|
// Test need to explicitly code (L) vs (L2) branch node in tree
|
|
if (L_AND_L2(cm)) {
|
|
#endif // CONFIG_VAR_REFS
|
|
const int bit1 = mbmi->ref_frame[0] == LAST_FRAME;
|
|
WRITE_REF_BIT(bit1, comp_ref_p1);
|
|
#if CONFIG_VAR_REFS
|
|
}
|
|
#endif // CONFIG_VAR_REFS
|
|
} else {
|
|
#if CONFIG_VAR_REFS
|
|
// Test need to explicitly code (L3) vs (G) branch node in tree
|
|
if (L3_AND_G(cm)) {
|
|
#endif // CONFIG_VAR_REFS
|
|
const int bit2 = mbmi->ref_frame[0] == GOLDEN_FRAME;
|
|
WRITE_REF_BIT(bit2, comp_ref_p2);
|
|
#if CONFIG_VAR_REFS
|
|
}
|
|
#endif // CONFIG_VAR_REFS
|
|
}
|
|
|
|
#if CONFIG_VAR_REFS
|
|
// Test need to explicitly code (BWD) vs (ALT) branch node in tree
|
|
if (BWD_AND_ALT(cm)) {
|
|
#endif // CONFIG_VAR_REFS
|
|
const int bit_bwd = mbmi->ref_frame[1] == ALTREF_FRAME;
|
|
WRITE_REF_BIT(bit_bwd, comp_bwdref_p);
|
|
#if CONFIG_VAR_REFS
|
|
}
|
|
#endif // CONFIG_VAR_REFS
|
|
|
|
#else // !CONFIG_EXT_REFS
|
|
const int bit = mbmi->ref_frame[0] == GOLDEN_FRAME;
|
|
WRITE_REF_BIT(bit, comp_ref_p);
|
|
#endif // CONFIG_EXT_REFS
|
|
} else {
|
|
#if CONFIG_EXT_REFS
|
|
const int bit0 = (mbmi->ref_frame[0] == ALTREF_FRAME ||
|
|
mbmi->ref_frame[0] == BWDREF_FRAME);
|
|
#if CONFIG_VAR_REFS
|
|
// Test need to explicitly code (L,L2,L3,G) vs (BWD,ALT) branch node in
|
|
// tree
|
|
if ((L_OR_L2(cm) || L3_OR_G(cm)) && BWD_OR_ALT(cm))
|
|
#endif // CONFIG_VAR_REFS
|
|
WRITE_REF_BIT(bit0, single_ref_p1);
|
|
|
|
if (bit0) {
|
|
#if CONFIG_VAR_REFS
|
|
// Test need to explicitly code (BWD) vs (ALT) branch node in tree
|
|
if (BWD_AND_ALT(cm)) {
|
|
#endif // CONFIG_VAR_REFS
|
|
const int bit1 = mbmi->ref_frame[0] == ALTREF_FRAME;
|
|
WRITE_REF_BIT(bit1, single_ref_p2);
|
|
#if CONFIG_VAR_REFS
|
|
}
|
|
#endif // CONFIG_VAR_REFS
|
|
} else {
|
|
const int bit2 = (mbmi->ref_frame[0] == LAST3_FRAME ||
|
|
mbmi->ref_frame[0] == GOLDEN_FRAME);
|
|
#if CONFIG_VAR_REFS
|
|
// Test need to explicitly code (L,L2) vs (L3,G) branch node in tree
|
|
if (L_OR_L2(cm) && L3_OR_G(cm))
|
|
#endif // CONFIG_VAR_REFS
|
|
WRITE_REF_BIT(bit2, single_ref_p3);
|
|
|
|
if (!bit2) {
|
|
#if CONFIG_VAR_REFS
|
|
// Test need to explicitly code (L) vs (L2) branch node in tree
|
|
if (L_AND_L2(cm)) {
|
|
#endif // CONFIG_VAR_REFS
|
|
const int bit3 = mbmi->ref_frame[0] != LAST_FRAME;
|
|
WRITE_REF_BIT(bit3, single_ref_p4);
|
|
#if CONFIG_VAR_REFS
|
|
}
|
|
#endif // CONFIG_VAR_REFS
|
|
} else {
|
|
#if CONFIG_VAR_REFS
|
|
// Test need to explicitly code (L3) vs (G) branch node in tree
|
|
if (L3_AND_G(cm)) {
|
|
#endif // CONFIG_VAR_REFS
|
|
const int bit4 = mbmi->ref_frame[0] != LAST3_FRAME;
|
|
WRITE_REF_BIT(bit4, single_ref_p5);
|
|
#if CONFIG_VAR_REFS
|
|
}
|
|
#endif // CONFIG_VAR_REFS
|
|
}
|
|
}
|
|
#else // !CONFIG_EXT_REFS
|
|
const int bit0 = mbmi->ref_frame[0] != LAST_FRAME;
|
|
WRITE_REF_BIT(bit0, single_ref_p1);
|
|
|
|
if (bit0) {
|
|
const int bit1 = mbmi->ref_frame[0] != GOLDEN_FRAME;
|
|
WRITE_REF_BIT(bit1, single_ref_p2);
|
|
}
|
|
#endif // CONFIG_EXT_REFS
|
|
}
|
|
}
|
|
}
|
|
|
|
#if CONFIG_FILTER_INTRA
|
|
static void write_filter_intra_mode_info(const AV1_COMMON *const cm,
|
|
const MACROBLOCKD *xd,
|
|
const MB_MODE_INFO *const mbmi,
|
|
int mi_row, int mi_col,
|
|
aom_writer *w) {
|
|
if (mbmi->mode == DC_PRED
|
|
#if CONFIG_PALETTE
|
|
&& mbmi->palette_mode_info.palette_size[0] == 0
|
|
#endif // CONFIG_PALETTE
|
|
) {
|
|
aom_write(w, mbmi->filter_intra_mode_info.use_filter_intra_mode[0],
|
|
cm->fc->filter_intra_probs[0]);
|
|
if (mbmi->filter_intra_mode_info.use_filter_intra_mode[0]) {
|
|
const FILTER_INTRA_MODE mode =
|
|
mbmi->filter_intra_mode_info.filter_intra_mode[0];
|
|
write_uniform(w, FILTER_INTRA_MODES, mode);
|
|
}
|
|
}
|
|
|
|
#if CONFIG_CB4X4
|
|
if (!is_chroma_reference(mi_row, mi_col, mbmi->sb_type,
|
|
xd->plane[1].subsampling_x,
|
|
xd->plane[1].subsampling_y))
|
|
return;
|
|
#else
|
|
(void)xd;
|
|
(void)mi_row;
|
|
(void)mi_col;
|
|
#endif // CONFIG_CB4X4
|
|
|
|
if (mbmi->uv_mode == DC_PRED
|
|
#if CONFIG_PALETTE
|
|
&& mbmi->palette_mode_info.palette_size[1] == 0
|
|
#endif // CONFIG_PALETTE
|
|
) {
|
|
aom_write(w, mbmi->filter_intra_mode_info.use_filter_intra_mode[1],
|
|
cm->fc->filter_intra_probs[1]);
|
|
if (mbmi->filter_intra_mode_info.use_filter_intra_mode[1]) {
|
|
const FILTER_INTRA_MODE mode =
|
|
mbmi->filter_intra_mode_info.filter_intra_mode[1];
|
|
write_uniform(w, FILTER_INTRA_MODES, mode);
|
|
}
|
|
}
|
|
}
|
|
#endif // CONFIG_FILTER_INTRA
|
|
|
|
#if CONFIG_EXT_INTRA
|
|
static void write_intra_angle_info(const MACROBLOCKD *xd,
|
|
FRAME_CONTEXT *const ec_ctx, aom_writer *w) {
|
|
const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
|
|
const BLOCK_SIZE bsize = mbmi->sb_type;
|
|
#if CONFIG_INTRA_INTERP
|
|
const int intra_filter_ctx = av1_get_pred_context_intra_interp(xd);
|
|
int p_angle;
|
|
#endif // CONFIG_INTRA_INTERP
|
|
|
|
(void)ec_ctx;
|
|
if (!av1_use_angle_delta(bsize)) return;
|
|
|
|
if (av1_is_directional_mode(mbmi->mode, bsize)) {
|
|
write_uniform(w, 2 * MAX_ANGLE_DELTA + 1,
|
|
MAX_ANGLE_DELTA + mbmi->angle_delta[0]);
|
|
#if CONFIG_INTRA_INTERP
|
|
p_angle = mode_to_angle_map[mbmi->mode] + mbmi->angle_delta[0] * ANGLE_STEP;
|
|
if (av1_is_intra_filter_switchable(p_angle)) {
|
|
aom_write_symbol(w, mbmi->intra_filter,
|
|
ec_ctx->intra_filter_cdf[intra_filter_ctx],
|
|
INTRA_FILTERS);
|
|
}
|
|
#endif // CONFIG_INTRA_INTERP
|
|
}
|
|
|
|
if (av1_is_directional_mode(mbmi->uv_mode, bsize)) {
|
|
write_uniform(w, 2 * MAX_ANGLE_DELTA + 1,
|
|
MAX_ANGLE_DELTA + mbmi->angle_delta[1]);
|
|
}
|
|
}
|
|
#endif // CONFIG_EXT_INTRA
|
|
|
|
static void write_mb_interp_filter(AV1_COMP *cpi, const MACROBLOCKD *xd,
|
|
aom_writer *w) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
|
|
#if CONFIG_EC_ADAPT
|
|
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
|
|
#else
|
|
FRAME_CONTEXT *ec_ctx = cm->fc;
|
|
#endif
|
|
|
|
if (!av1_is_interp_needed(xd)) {
|
|
#if CONFIG_DUAL_FILTER
|
|
for (int i = 0; i < 4; ++i)
|
|
assert(mbmi->interp_filter[i] == (cm->interp_filter == SWITCHABLE
|
|
? EIGHTTAP_REGULAR
|
|
: cm->interp_filter));
|
|
#else
|
|
assert(mbmi->interp_filter == (cm->interp_filter == SWITCHABLE
|
|
? EIGHTTAP_REGULAR
|
|
: cm->interp_filter));
|
|
#endif // CONFIG_DUAL_FILTER
|
|
return;
|
|
}
|
|
if (cm->interp_filter == SWITCHABLE) {
|
|
#if CONFIG_DUAL_FILTER
|
|
int dir;
|
|
for (dir = 0; dir < 2; ++dir) {
|
|
if (has_subpel_mv_component(xd->mi[0], xd, dir) ||
|
|
(mbmi->ref_frame[1] > INTRA_FRAME &&
|
|
has_subpel_mv_component(xd->mi[0], xd, dir + 2))) {
|
|
const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
|
|
aom_write_symbol(w, av1_switchable_interp_ind[mbmi->interp_filter[dir]],
|
|
ec_ctx->switchable_interp_cdf[ctx],
|
|
SWITCHABLE_FILTERS);
|
|
++cpi->interp_filter_selected[0][mbmi->interp_filter[dir]];
|
|
} else {
|
|
assert(mbmi->interp_filter[dir] == EIGHTTAP_REGULAR);
|
|
}
|
|
}
|
|
#else
|
|
{
|
|
const int ctx = av1_get_pred_context_switchable_interp(xd);
|
|
aom_write_symbol(w, av1_switchable_interp_ind[mbmi->interp_filter],
|
|
ec_ctx->switchable_interp_cdf[ctx], SWITCHABLE_FILTERS);
|
|
++cpi->interp_filter_selected[0][mbmi->interp_filter];
|
|
}
|
|
#endif // CONFIG_DUAL_FILTER
|
|
}
|
|
}
|
|
|
|
#if CONFIG_PALETTE
|
|
#if CONFIG_PALETTE_DELTA_ENCODING
|
|
// Transmit color values with delta encoding. Write the first value as
|
|
// literal, and the deltas between each value and the previous one. "min_val" is
|
|
// the smallest possible value of the deltas.
|
|
static void delta_encode_palette_colors(const int *colors, int num,
|
|
int bit_depth, int min_val,
|
|
aom_writer *w) {
|
|
if (num <= 0) return;
|
|
assert(colors[0] < (1 << bit_depth));
|
|
aom_write_literal(w, colors[0], bit_depth);
|
|
if (num == 1) return;
|
|
int max_delta = 0;
|
|
int deltas[PALETTE_MAX_SIZE];
|
|
memset(deltas, 0, sizeof(deltas));
|
|
for (int i = 1; i < num; ++i) {
|
|
assert(colors[i] < (1 << bit_depth));
|
|
const int delta = colors[i] - colors[i - 1];
|
|
deltas[i - 1] = delta;
|
|
assert(delta >= min_val);
|
|
if (delta > max_delta) max_delta = delta;
|
|
}
|
|
const int min_bits = bit_depth - 3;
|
|
int bits = AOMMAX(av1_ceil_log2(max_delta + 1 - min_val), min_bits);
|
|
assert(bits <= bit_depth);
|
|
int range = (1 << bit_depth) - colors[0] - min_val;
|
|
aom_write_literal(w, bits - min_bits, 2);
|
|
for (int i = 0; i < num - 1; ++i) {
|
|
aom_write_literal(w, deltas[i] - min_val, bits);
|
|
range -= deltas[i];
|
|
bits = AOMMIN(bits, av1_ceil_log2(range));
|
|
}
|
|
}
|
|
|
|
// Transmit luma palette color values. First signal if each color in the color
|
|
// cache is used. Those colors that are not in the cache are transmitted with
|
|
// delta encoding.
|
|
static void write_palette_colors_y(const MACROBLOCKD *const xd,
|
|
const PALETTE_MODE_INFO *const pmi,
|
|
int bit_depth, aom_writer *w) {
|
|
const int n = pmi->palette_size[0];
|
|
const MODE_INFO *const above_mi = xd->above_mi;
|
|
const MODE_INFO *const left_mi = xd->left_mi;
|
|
uint16_t color_cache[2 * PALETTE_MAX_SIZE];
|
|
const int n_cache = av1_get_palette_cache(above_mi, left_mi, 0, color_cache);
|
|
int out_cache_colors[PALETTE_MAX_SIZE];
|
|
uint8_t cache_color_found[2 * PALETTE_MAX_SIZE];
|
|
const int n_out_cache =
|
|
av1_index_color_cache(color_cache, n_cache, pmi->palette_colors, n,
|
|
cache_color_found, out_cache_colors);
|
|
int n_in_cache = 0;
|
|
for (int i = 0; i < n_cache && n_in_cache < n; ++i) {
|
|
const int found = cache_color_found[i];
|
|
aom_write_bit(w, found);
|
|
n_in_cache += found;
|
|
}
|
|
assert(n_in_cache + n_out_cache == n);
|
|
delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 1, w);
|
|
}
|
|
|
|
// Write chroma palette color values. U channel is handled similarly to the luma
|
|
// channel. For v channel, either use delta encoding or transmit raw values
|
|
// directly, whichever costs less.
|
|
static void write_palette_colors_uv(const MACROBLOCKD *const xd,
|
|
const PALETTE_MODE_INFO *const pmi,
|
|
int bit_depth, aom_writer *w) {
|
|
const int n = pmi->palette_size[1];
|
|
const uint16_t *colors_u = pmi->palette_colors + PALETTE_MAX_SIZE;
|
|
const uint16_t *colors_v = pmi->palette_colors + 2 * PALETTE_MAX_SIZE;
|
|
// U channel colors.
|
|
const MODE_INFO *const above_mi = xd->above_mi;
|
|
const MODE_INFO *const left_mi = xd->left_mi;
|
|
uint16_t color_cache[2 * PALETTE_MAX_SIZE];
|
|
const int n_cache = av1_get_palette_cache(above_mi, left_mi, 1, color_cache);
|
|
int out_cache_colors[PALETTE_MAX_SIZE];
|
|
uint8_t cache_color_found[2 * PALETTE_MAX_SIZE];
|
|
const int n_out_cache = av1_index_color_cache(
|
|
color_cache, n_cache, colors_u, n, cache_color_found, out_cache_colors);
|
|
int n_in_cache = 0;
|
|
for (int i = 0; i < n_cache && n_in_cache < n; ++i) {
|
|
const int found = cache_color_found[i];
|
|
aom_write_bit(w, found);
|
|
n_in_cache += found;
|
|
}
|
|
delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 0, w);
|
|
|
|
// V channel colors. Don't use color cache as the colors are not sorted.
|
|
const int max_val = 1 << bit_depth;
|
|
int zero_count = 0, min_bits_v = 0;
|
|
int bits_v =
|
|
av1_get_palette_delta_bits_v(pmi, bit_depth, &zero_count, &min_bits_v);
|
|
const int rate_using_delta =
|
|
2 + bit_depth + (bits_v + 1) * (n - 1) - zero_count;
|
|
const int rate_using_raw = bit_depth * n;
|
|
if (rate_using_delta < rate_using_raw) { // delta encoding
|
|
assert(colors_v[0] < (1 << bit_depth));
|
|
aom_write_bit(w, 1);
|
|
aom_write_literal(w, bits_v - min_bits_v, 2);
|
|
aom_write_literal(w, colors_v[0], bit_depth);
|
|
for (int i = 1; i < n; ++i) {
|
|
assert(colors_v[i] < (1 << bit_depth));
|
|
if (colors_v[i] == colors_v[i - 1]) { // No need to signal sign bit.
|
|
aom_write_literal(w, 0, bits_v);
|
|
continue;
|
|
}
|
|
const int delta = abs((int)colors_v[i] - colors_v[i - 1]);
|
|
const int sign_bit = colors_v[i] < colors_v[i - 1];
|
|
if (delta <= max_val - delta) {
|
|
aom_write_literal(w, delta, bits_v);
|
|
aom_write_bit(w, sign_bit);
|
|
} else {
|
|
aom_write_literal(w, max_val - delta, bits_v);
|
|
aom_write_bit(w, !sign_bit);
|
|
}
|
|
}
|
|
} else { // Transmit raw values.
|
|
aom_write_bit(w, 0);
|
|
for (int i = 0; i < n; ++i) {
|
|
assert(colors_v[i] < (1 << bit_depth));
|
|
aom_write_literal(w, colors_v[i], bit_depth);
|
|
}
|
|
}
|
|
}
|
|
#endif // CONFIG_PALETTE_DELTA_ENCODING
|
|
|
|
static void write_palette_mode_info(const AV1_COMMON *cm, const MACROBLOCKD *xd,
|
|
const MODE_INFO *const mi, aom_writer *w) {
|
|
const MB_MODE_INFO *const mbmi = &mi->mbmi;
|
|
const MODE_INFO *const above_mi = xd->above_mi;
|
|
const MODE_INFO *const left_mi = xd->left_mi;
|
|
const BLOCK_SIZE bsize = mbmi->sb_type;
|
|
const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
|
|
|
|
if (mbmi->mode == DC_PRED) {
|
|
const int n = pmi->palette_size[0];
|
|
int palette_y_mode_ctx = 0;
|
|
if (above_mi)
|
|
palette_y_mode_ctx +=
|
|
(above_mi->mbmi.palette_mode_info.palette_size[0] > 0);
|
|
if (left_mi)
|
|
palette_y_mode_ctx +=
|
|
(left_mi->mbmi.palette_mode_info.palette_size[0] > 0);
|
|
aom_write(
|
|
w, n > 0,
|
|
av1_default_palette_y_mode_prob[bsize - BLOCK_8X8][palette_y_mode_ctx]);
|
|
if (n > 0) {
|
|
av1_write_token(w, av1_palette_size_tree,
|
|
av1_default_palette_y_size_prob[bsize - BLOCK_8X8],
|
|
&palette_size_encodings[n - PALETTE_MIN_SIZE]);
|
|
#if CONFIG_PALETTE_DELTA_ENCODING
|
|
write_palette_colors_y(xd, pmi, cm->bit_depth, w);
|
|
#else
|
|
for (int i = 0; i < n; ++i) {
|
|
assert(pmi->palette_colors[i] < (1 << cm->bit_depth));
|
|
aom_write_literal(w, pmi->palette_colors[i], cm->bit_depth);
|
|
}
|
|
#endif // CONFIG_PALETTE_DELTA_ENCODING
|
|
write_uniform(w, n, pmi->palette_first_color_idx[0]);
|
|
}
|
|
}
|
|
|
|
if (mbmi->uv_mode == DC_PRED) {
|
|
const int n = pmi->palette_size[1];
|
|
const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);
|
|
aom_write(w, n > 0, av1_default_palette_uv_mode_prob[palette_uv_mode_ctx]);
|
|
if (n > 0) {
|
|
av1_write_token(w, av1_palette_size_tree,
|
|
av1_default_palette_uv_size_prob[bsize - BLOCK_8X8],
|
|
&palette_size_encodings[n - PALETTE_MIN_SIZE]);
|
|
#if CONFIG_PALETTE_DELTA_ENCODING
|
|
write_palette_colors_uv(xd, pmi, cm->bit_depth, w);
|
|
#else
|
|
for (int i = 0; i < n; ++i) {
|
|
assert(pmi->palette_colors[PALETTE_MAX_SIZE + i] <
|
|
(1 << cm->bit_depth));
|
|
assert(pmi->palette_colors[2 * PALETTE_MAX_SIZE + i] <
|
|
(1 << cm->bit_depth));
|
|
aom_write_literal(w, pmi->palette_colors[PALETTE_MAX_SIZE + i],
|
|
cm->bit_depth);
|
|
aom_write_literal(w, pmi->palette_colors[2 * PALETTE_MAX_SIZE + i],
|
|
cm->bit_depth);
|
|
}
|
|
#endif // CONFIG_PALETTE_DELTA_ENCODING
|
|
write_uniform(w, n, pmi->palette_first_color_idx[1]);
|
|
}
|
|
}
|
|
}
|
|
#endif // CONFIG_PALETTE
|
|
|
|
void av1_write_tx_type(const AV1_COMMON *const cm, const MACROBLOCKD *xd,
|
|
#if CONFIG_SUPERTX
|
|
const int supertx_enabled,
|
|
#endif
|
|
#if CONFIG_TXK_SEL
|
|
int block, int plane, TX_SIZE tx_size,
|
|
#endif
|
|
aom_writer *w) {
|
|
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
|
|
const int is_inter = is_inter_block(mbmi);
|
|
#if !CONFIG_TXK_SEL
|
|
#if CONFIG_VAR_TX
|
|
const TX_SIZE tx_size = is_inter ? mbmi->min_tx_size : mbmi->tx_size;
|
|
#else
|
|
const TX_SIZE tx_size = mbmi->tx_size;
|
|
#endif // CONFIG_VAR_TX
|
|
#endif // !CONFIG_TXK_SEL
|
|
#if CONFIG_EC_ADAPT
|
|
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
|
|
#else
|
|
FRAME_CONTEXT *ec_ctx = cm->fc;
|
|
#endif
|
|
|
|
#if !CONFIG_TXK_SEL
|
|
TX_TYPE tx_type = mbmi->tx_type;
|
|
#else
|
|
// Only y plane's tx_type is transmitted
|
|
if (plane > 0) return;
|
|
PLANE_TYPE plane_type = get_plane_type(plane);
|
|
TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
|
|
#endif
|
|
|
|
if (!FIXED_TX_TYPE) {
|
|
#if CONFIG_EXT_TX
|
|
const TX_SIZE square_tx_size = txsize_sqr_map[tx_size];
|
|
const BLOCK_SIZE bsize = mbmi->sb_type;
|
|
if (get_ext_tx_types(tx_size, bsize, is_inter, cm->reduced_tx_set_used) >
|
|
1 &&
|
|
((!cm->seg.enabled && cm->base_qindex > 0) ||
|
|
(cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) &&
|
|
!mbmi->skip &&
|
|
#if CONFIG_SUPERTX
|
|
!supertx_enabled &&
|
|
#endif // CONFIG_SUPERTX
|
|
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
|
|
const int eset =
|
|
get_ext_tx_set(tx_size, bsize, is_inter, cm->reduced_tx_set_used);
|
|
// eset == 0 should correspond to a set with only DCT_DCT and there
|
|
// is no need to send the tx_type
|
|
assert(eset > 0);
|
|
if (is_inter) {
|
|
assert(ext_tx_used_inter[eset][tx_type]);
|
|
aom_write_symbol(w, av1_ext_tx_inter_ind[eset][tx_type],
|
|
ec_ctx->inter_ext_tx_cdf[eset][square_tx_size],
|
|
ext_tx_cnt_inter[eset]);
|
|
} else if (ALLOW_INTRA_EXT_TX) {
|
|
assert(ext_tx_used_intra[eset][tx_type]);
|
|
aom_write_symbol(
|
|
w, av1_ext_tx_intra_ind[eset][tx_type],
|
|
ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][mbmi->mode],
|
|
ext_tx_cnt_intra[eset]);
|
|
}
|
|
}
|
|
#else
|
|
if (tx_size < TX_32X32 &&
|
|
((!cm->seg.enabled && cm->base_qindex > 0) ||
|
|
(cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) &&
|
|
!mbmi->skip &&
|
|
#if CONFIG_SUPERTX
|
|
!supertx_enabled &&
|
|
#endif // CONFIG_SUPERTX
|
|
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
|
|
if (is_inter) {
|
|
aom_write_symbol(w, av1_ext_tx_ind[tx_type],
|
|
ec_ctx->inter_ext_tx_cdf[tx_size], TX_TYPES);
|
|
} else {
|
|
aom_write_symbol(
|
|
w, av1_ext_tx_ind[tx_type],
|
|
ec_ctx->intra_ext_tx_cdf[tx_size]
|
|
[intra_mode_to_tx_type_context[mbmi->mode]],
|
|
TX_TYPES);
|
|
}
|
|
}
|
|
#endif // CONFIG_EXT_TX
|
|
}
|
|
}
|
|
|
|
static void write_intra_mode(FRAME_CONTEXT *frame_ctx, BLOCK_SIZE bsize,
|
|
PREDICTION_MODE mode, aom_writer *w) {
|
|
aom_write_symbol(w, av1_intra_mode_ind[mode],
|
|
frame_ctx->y_mode_cdf[size_group_lookup[bsize]],
|
|
INTRA_MODES);
|
|
}
|
|
|
|
static void write_intra_uv_mode(FRAME_CONTEXT *frame_ctx,
|
|
PREDICTION_MODE uv_mode, PREDICTION_MODE y_mode,
|
|
aom_writer *w) {
|
|
aom_write_symbol(w, av1_intra_mode_ind[uv_mode],
|
|
frame_ctx->uv_mode_cdf[y_mode], INTRA_MODES);
|
|
}
|
|
|
|
#if CONFIG_CFL
|
|
static void write_cfl_alphas(FRAME_CONTEXT *const frame_ctx, int ind,
|
|
const CFL_SIGN_TYPE signs[CFL_SIGNS],
|
|
aom_writer *w) {
|
|
// Check for uninitialized signs
|
|
if (cfl_alpha_codes[ind][CFL_PRED_U] == 0)
|
|
assert(signs[CFL_PRED_U] == CFL_SIGN_POS);
|
|
if (cfl_alpha_codes[ind][CFL_PRED_V] == 0)
|
|
assert(signs[CFL_PRED_V] == CFL_SIGN_POS);
|
|
|
|
// Write a symbol representing a combination of alpha Cb and alpha Cr.
|
|
aom_write_symbol(w, ind, frame_ctx->cfl_alpha_cdf, CFL_ALPHABET_SIZE);
|
|
|
|
// Signs are only signaled for nonzero codes.
|
|
if (cfl_alpha_codes[ind][CFL_PRED_U] != 0)
|
|
aom_write_bit(w, signs[CFL_PRED_U]);
|
|
if (cfl_alpha_codes[ind][CFL_PRED_V] != 0)
|
|
aom_write_bit(w, signs[CFL_PRED_V]);
|
|
}
|
|
#endif
|
|
|
|
static void pack_inter_mode_mvs(AV1_COMP *cpi, const int mi_row,
|
|
const int mi_col,
|
|
#if CONFIG_SUPERTX
|
|
int supertx_enabled,
|
|
#endif
|
|
aom_writer *w) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
#if CONFIG_DELTA_Q || CONFIG_EC_ADAPT
|
|
MACROBLOCK *const x = &cpi->td.mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
#else
|
|
const MACROBLOCK *x = &cpi->td.mb;
|
|
const MACROBLOCKD *xd = &x->e_mbd;
|
|
#endif
|
|
#if CONFIG_EC_ADAPT
|
|
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
|
|
#else
|
|
FRAME_CONTEXT *ec_ctx = cm->fc;
|
|
#endif
|
|
const MODE_INFO *mi = xd->mi[0];
|
|
|
|
const struct segmentation *const seg = &cm->seg;
|
|
struct segmentation_probs *const segp = &cm->fc->seg;
|
|
const MB_MODE_INFO *const mbmi = &mi->mbmi;
|
|
const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
|
|
const PREDICTION_MODE mode = mbmi->mode;
|
|
const int segment_id = mbmi->segment_id;
|
|
const BLOCK_SIZE bsize = mbmi->sb_type;
|
|
const int allow_hp = cm->allow_high_precision_mv;
|
|
const int is_inter = is_inter_block(mbmi);
|
|
const int is_compound = has_second_ref(mbmi);
|
|
int skip, ref;
|
|
#if CONFIG_CB4X4
|
|
const int unify_bsize = 1;
|
|
#else
|
|
const int unify_bsize = 0;
|
|
#endif
|
|
(void)mi_row;
|
|
(void)mi_col;
|
|
|
|
if (seg->update_map) {
|
|
if (seg->temporal_update) {
|
|
const int pred_flag = mbmi->seg_id_predicted;
|
|
aom_prob pred_prob = av1_get_pred_prob_seg_id(segp, xd);
|
|
aom_write(w, pred_flag, pred_prob);
|
|
if (!pred_flag) write_segment_id(w, seg, segp, segment_id);
|
|
} else {
|
|
write_segment_id(w, seg, segp, segment_id);
|
|
}
|
|
}
|
|
|
|
#if CONFIG_SUPERTX
|
|
if (supertx_enabled)
|
|
skip = mbmi->skip;
|
|
else
|
|
skip = write_skip(cm, xd, segment_id, mi, w);
|
|
#else
|
|
skip = write_skip(cm, xd, segment_id, mi, w);
|
|
#endif // CONFIG_SUPERTX
|
|
#if CONFIG_DELTA_Q
|
|
if (cm->delta_q_present_flag) {
|
|
int super_block_upper_left =
|
|
((mi_row & MAX_MIB_MASK) == 0) && ((mi_col & MAX_MIB_MASK) == 0);
|
|
if ((bsize != BLOCK_LARGEST || skip == 0) && super_block_upper_left) {
|
|
assert(mbmi->current_q_index > 0);
|
|
int reduced_delta_qindex =
|
|
(mbmi->current_q_index - xd->prev_qindex) / cm->delta_q_res;
|
|
write_delta_qindex(cm, xd, reduced_delta_qindex, w);
|
|
xd->prev_qindex = mbmi->current_q_index;
|
|
#if CONFIG_EXT_DELTA_Q
|
|
if (cm->delta_lf_present_flag) {
|
|
int reduced_delta_lflevel =
|
|
(mbmi->current_delta_lf_from_base - xd->prev_delta_lf_from_base) /
|
|
cm->delta_lf_res;
|
|
write_delta_lflevel(cm, xd, reduced_delta_lflevel, w);
|
|
xd->prev_delta_lf_from_base = mbmi->current_delta_lf_from_base;
|
|
}
|
|
#endif // CONFIG_EXT_DELTA_Q
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_SUPERTX
|
|
if (!supertx_enabled)
|
|
#endif // CONFIG_SUPERTX
|
|
write_is_inter(cm, xd, mbmi->segment_id, w, is_inter);
|
|
|
|
if (cm->tx_mode == TX_MODE_SELECT &&
|
|
#if CONFIG_CB4X4 && (CONFIG_VAR_TX || CONFIG_RECT_TX)
|
|
#if CONFIG_RECT_TX
|
|
bsize > BLOCK_4X4 &&
|
|
#else
|
|
(bsize >= BLOCK_8X8 || (bsize > BLOCK_4X4 && is_inter)) &&
|
|
#endif // CONFIG_RECT_TX
|
|
#else
|
|
bsize >= BLOCK_8X8 &&
|
|
#endif
|
|
#if CONFIG_SUPERTX
|
|
!supertx_enabled &&
|
|
#endif // CONFIG_SUPERTX
|
|
!(is_inter && skip) && !xd->lossless[segment_id]) {
|
|
#if CONFIG_VAR_TX
|
|
if (is_inter) { // This implies skip flag is 0.
|
|
const TX_SIZE max_tx_size = get_vartx_max_txsize(mbmi, bsize);
|
|
const int bh = tx_size_high_unit[max_tx_size];
|
|
const int bw = tx_size_wide_unit[max_tx_size];
|
|
const int width = block_size_wide[bsize] >> tx_size_wide_log2[0];
|
|
const int height = block_size_high[bsize] >> tx_size_wide_log2[0];
|
|
int idx, idy;
|
|
for (idy = 0; idy < height; idy += bh)
|
|
for (idx = 0; idx < width; idx += bw)
|
|
write_tx_size_vartx(cm, xd, mbmi, max_tx_size, height != width, idy,
|
|
idx, w);
|
|
} else {
|
|
set_txfm_ctxs(mbmi->tx_size, xd->n8_w, xd->n8_h, skip, xd);
|
|
write_selected_tx_size(cm, xd, w);
|
|
}
|
|
} else {
|
|
set_txfm_ctxs(mbmi->tx_size, xd->n8_w, xd->n8_h, skip, xd);
|
|
#else
|
|
write_selected_tx_size(cm, xd, w);
|
|
#endif
|
|
}
|
|
|
|
if (!is_inter) {
|
|
if (bsize >= BLOCK_8X8 || unify_bsize) {
|
|
write_intra_mode(ec_ctx, bsize, mode, w);
|
|
} else {
|
|
int idx, idy;
|
|
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
|
|
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
|
|
for (idy = 0; idy < 2; idy += num_4x4_h) {
|
|
for (idx = 0; idx < 2; idx += num_4x4_w) {
|
|
const PREDICTION_MODE b_mode = mi->bmi[idy * 2 + idx].as_mode;
|
|
write_intra_mode(ec_ctx, bsize, b_mode, w);
|
|
}
|
|
}
|
|
}
|
|
#if CONFIG_CB4X4
|
|
if (is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x,
|
|
xd->plane[1].subsampling_y)) {
|
|
write_intra_uv_mode(ec_ctx, mbmi->uv_mode, mode, w);
|
|
#else // !CONFIG_CB4X4
|
|
write_intra_uv_mode(ec_ctx, mbmi->uv_mode, mode, w);
|
|
#endif // CONFIG_CB4X4
|
|
|
|
#if CONFIG_CFL
|
|
if (mbmi->uv_mode == DC_PRED) {
|
|
write_cfl_alphas(ec_ctx, mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, w);
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_CB4X4
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_EXT_INTRA
|
|
write_intra_angle_info(xd, ec_ctx, w);
|
|
#endif // CONFIG_EXT_INTRA
|
|
#if CONFIG_PALETTE
|
|
if (bsize >= BLOCK_8X8 && cm->allow_screen_content_tools)
|
|
write_palette_mode_info(cm, xd, mi, w);
|
|
#endif // CONFIG_PALETTE
|
|
#if CONFIG_FILTER_INTRA
|
|
if (bsize >= BLOCK_8X8 || unify_bsize)
|
|
write_filter_intra_mode_info(cm, xd, mbmi, mi_row, mi_col, w);
|
|
#endif // CONFIG_FILTER_INTRA
|
|
} else {
|
|
int16_t mode_ctx;
|
|
write_ref_frames(cm, xd, w);
|
|
|
|
#if CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF
|
|
if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
|
|
// NOTE: Handle single ref comp mode
|
|
if (!is_compound)
|
|
aom_write(w, is_inter_singleref_comp_mode(mode),
|
|
av1_get_inter_mode_prob(cm, xd));
|
|
}
|
|
#endif // CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF
|
|
|
|
#if CONFIG_EXT_INTER
|
|
#if CONFIG_COMPOUND_SINGLEREF
|
|
if (is_compound || is_inter_singleref_comp_mode(mode))
|
|
#else // !CONFIG_COMPOUND_SINGLEREF
|
|
if (is_compound)
|
|
#endif // CONFIG_COMPOUND_SINGLEREF
|
|
mode_ctx = mbmi_ext->compound_mode_context[mbmi->ref_frame[0]];
|
|
else
|
|
#endif // CONFIG_EXT_INTER
|
|
|
|
mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context,
|
|
mbmi->ref_frame, bsize, -1);
|
|
|
|
// If segment skip is not enabled code the mode.
|
|
if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
|
|
if (bsize >= BLOCK_8X8 || unify_bsize) {
|
|
#if CONFIG_EXT_INTER
|
|
if (is_inter_compound_mode(mode))
|
|
write_inter_compound_mode(cm, w, mode, mode_ctx);
|
|
#if CONFIG_COMPOUND_SINGLEREF
|
|
else if (is_inter_singleref_comp_mode(mode))
|
|
write_inter_singleref_comp_mode(cm, w, mode, mode_ctx);
|
|
#endif // CONFIG_COMPOUND_SINGLEREF
|
|
else if (is_inter_singleref_mode(mode))
|
|
#endif // CONFIG_EXT_INTER
|
|
write_inter_mode(w, mode, ec_ctx, mode_ctx);
|
|
|
|
#if CONFIG_EXT_INTER
|
|
if (mode == NEWMV || mode == NEW_NEWMV ||
|
|
#if CONFIG_COMPOUND_SINGLEREF
|
|
mbmi->mode == SR_NEW_NEWMV ||
|
|
#endif // CONFIG_COMPOUND_SINGLEREF
|
|
have_nearmv_in_inter_mode(mode))
|
|
#else // !CONFIG_EXT_INTER
|
|
if (mode == NEARMV || mode == NEWMV)
|
|
#endif // CONFIG_EXT_INTER
|
|
write_drl_idx(ec_ctx, mbmi, mbmi_ext, w);
|
|
else
|
|
assert(mbmi->ref_mv_idx == 0);
|
|
}
|
|
}
|
|
|
|
#if !CONFIG_DUAL_FILTER && !CONFIG_WARPED_MOTION && !CONFIG_GLOBAL_MOTION
|
|
write_mb_interp_filter(cpi, xd, w);
|
|
#endif // !CONFIG_DUAL_FILTER && !CONFIG_WARPED_MOTION
|
|
|
|
if (bsize < BLOCK_8X8 && !unify_bsize) {
|
|
#if CONFIG_COMPOUND_SINGLEREF
|
|
/// NOTE: Single ref comp mode does not support sub8x8.
|
|
assert(is_compound || !is_inter_singleref_comp_mode(mbmi->mode));
|
|
#endif // CONFIG_COMPOUND_SINGLEREF
|
|
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
|
|
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
|
|
int idx, idy;
|
|
for (idy = 0; idy < 2; idy += num_4x4_h) {
|
|
for (idx = 0; idx < 2; idx += num_4x4_w) {
|
|
const int j = idy * 2 + idx;
|
|
const PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
|
|
#if CONFIG_EXT_INTER
|
|
if (!is_compound)
|
|
#endif // CONFIG_EXT_INTER
|
|
mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context,
|
|
mbmi->ref_frame, bsize, j);
|
|
#if CONFIG_EXT_INTER
|
|
if (is_inter_compound_mode(b_mode))
|
|
write_inter_compound_mode(cm, w, b_mode, mode_ctx);
|
|
else if (is_inter_singleref_mode(b_mode))
|
|
#endif // CONFIG_EXT_INTER
|
|
write_inter_mode(w, b_mode, ec_ctx, mode_ctx);
|
|
|
|
#if CONFIG_EXT_INTER
|
|
if (b_mode == NEWMV || b_mode == NEW_NEWMV) {
|
|
#else
|
|
if (b_mode == NEWMV) {
|
|
#endif // CONFIG_EXT_INTER
|
|
for (ref = 0; ref < 1 + is_compound; ++ref) {
|
|
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
|
|
int nmv_ctx = av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type],
|
|
mbmi_ext->ref_mv_stack[rf_type], ref,
|
|
mbmi->ref_mv_idx);
|
|
nmv_context *nmvc = &ec_ctx->nmvc[nmv_ctx];
|
|
av1_encode_mv(cpi, w, &mi->bmi[j].as_mv[ref].as_mv,
|
|
#if CONFIG_EXT_INTER
|
|
&mi->bmi[j].ref_mv[ref].as_mv,
|
|
#else
|
|
&mi->bmi[j].pred_mv[ref].as_mv,
|
|
#endif // CONFIG_EXT_INTER
|
|
nmvc, allow_hp);
|
|
}
|
|
}
|
|
#if CONFIG_EXT_INTER
|
|
else if (b_mode == NEAREST_NEWMV || b_mode == NEAR_NEWMV) {
|
|
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
|
|
int nmv_ctx = av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type],
|
|
mbmi_ext->ref_mv_stack[rf_type], 1,
|
|
mbmi->ref_mv_idx);
|
|
nmv_context *nmvc = &ec_ctx->nmvc[nmv_ctx];
|
|
av1_encode_mv(cpi, w, &mi->bmi[j].as_mv[1].as_mv,
|
|
&mi->bmi[j].ref_mv[1].as_mv, nmvc, allow_hp);
|
|
} else if (b_mode == NEW_NEARESTMV || b_mode == NEW_NEARMV) {
|
|
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
|
|
int nmv_ctx = av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type],
|
|
mbmi_ext->ref_mv_stack[rf_type], 0,
|
|
mbmi->ref_mv_idx);
|
|
nmv_context *nmvc = &ec_ctx->nmvc[nmv_ctx];
|
|
av1_encode_mv(cpi, w, &mi->bmi[j].as_mv[0].as_mv,
|
|
&mi->bmi[j].ref_mv[0].as_mv, nmvc, allow_hp);
|
|
}
|
|
#endif // CONFIG_EXT_INTER
|
|
}
|
|
}
|
|
} else {
|
|
#if CONFIG_EXT_INTER
|
|
if (mode == NEWMV || mode == NEW_NEWMV) {
|
|
#else
|
|
if (mode == NEWMV) {
|
|
#endif // CONFIG_EXT_INTER
|
|
int_mv ref_mv;
|
|
for (ref = 0; ref < 1 + is_compound; ++ref) {
|
|
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
|
|
int nmv_ctx = av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type],
|
|
mbmi_ext->ref_mv_stack[rf_type], ref,
|
|
mbmi->ref_mv_idx);
|
|
nmv_context *nmvc = &ec_ctx->nmvc[nmv_ctx];
|
|
ref_mv = mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0];
|
|
av1_encode_mv(cpi, w, &mbmi->mv[ref].as_mv, &ref_mv.as_mv, nmvc,
|
|
allow_hp);
|
|
}
|
|
#if CONFIG_EXT_INTER
|
|
} else if (mode == NEAREST_NEWMV || mode == NEAR_NEWMV) {
|
|
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
|
|
int nmv_ctx =
|
|
av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type],
|
|
mbmi_ext->ref_mv_stack[rf_type], 1, mbmi->ref_mv_idx);
|
|
nmv_context *nmvc = &ec_ctx->nmvc[nmv_ctx];
|
|
av1_encode_mv(cpi, w, &mbmi->mv[1].as_mv,
|
|
&mbmi_ext->ref_mvs[mbmi->ref_frame[1]][0].as_mv, nmvc,
|
|
allow_hp);
|
|
} else if (mode == NEW_NEARESTMV || mode == NEW_NEARMV) {
|
|
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
|
|
int nmv_ctx =
|
|
av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type],
|
|
mbmi_ext->ref_mv_stack[rf_type], 0, mbmi->ref_mv_idx);
|
|
nmv_context *nmvc = &ec_ctx->nmvc[nmv_ctx];
|
|
av1_encode_mv(cpi, w, &mbmi->mv[0].as_mv,
|
|
&mbmi_ext->ref_mvs[mbmi->ref_frame[0]][0].as_mv, nmvc,
|
|
allow_hp);
|
|
#if CONFIG_COMPOUND_SINGLEREF
|
|
} else if ( // mode == SR_NEAREST_NEWMV ||
|
|
mode == SR_NEAR_NEWMV || mode == SR_ZERO_NEWMV ||
|
|
mode == SR_NEW_NEWMV) {
|
|
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
|
|
int nmv_ctx =
|
|
av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type],
|
|
mbmi_ext->ref_mv_stack[rf_type], 0, mbmi->ref_mv_idx);
|
|
nmv_context *nmvc = &ec_ctx->nmvc[nmv_ctx];
|
|
int_mv ref_mv = mbmi_ext->ref_mvs[mbmi->ref_frame[0]][0];
|
|
if (mode == SR_NEW_NEWMV)
|
|
av1_encode_mv(cpi, w, &mbmi->mv[0].as_mv, &ref_mv.as_mv, nmvc,
|
|
allow_hp);
|
|
av1_encode_mv(cpi, w, &mbmi->mv[1].as_mv, &ref_mv.as_mv, nmvc,
|
|
allow_hp);
|
|
#endif // CONFIG_COMPOUND_SINGLEREF
|
|
#endif // CONFIG_EXT_INTER
|
|
}
|
|
}
|
|
|
|
#if CONFIG_EXT_INTER && CONFIG_INTERINTRA
|
|
if (cpi->common.reference_mode != COMPOUND_REFERENCE &&
|
|
#if CONFIG_SUPERTX
|
|
!supertx_enabled &&
|
|
#endif // CONFIG_SUPERTX
|
|
cpi->common.allow_interintra_compound && is_interintra_allowed(mbmi)) {
|
|
const int interintra = mbmi->ref_frame[1] == INTRA_FRAME;
|
|
const int bsize_group = size_group_lookup[bsize];
|
|
aom_write(w, interintra, cm->fc->interintra_prob[bsize_group]);
|
|
if (interintra) {
|
|
write_interintra_mode(w, mbmi->interintra_mode,
|
|
cm->fc->interintra_mode_prob[bsize_group]);
|
|
if (is_interintra_wedge_used(bsize)) {
|
|
aom_write(w, mbmi->use_wedge_interintra,
|
|
cm->fc->wedge_interintra_prob[bsize]);
|
|
if (mbmi->use_wedge_interintra) {
|
|
aom_write_literal(w, mbmi->interintra_wedge_index,
|
|
get_wedge_bits_lookup(bsize));
|
|
assert(mbmi->interintra_wedge_sign == 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif // CONFIG_EXT_INTER && CONFIG_INTERINTRA
|
|
|
|
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
#if CONFIG_SUPERTX
|
|
if (!supertx_enabled)
|
|
#endif // CONFIG_SUPERTX
|
|
#if CONFIG_EXT_INTER
|
|
if (mbmi->ref_frame[1] != INTRA_FRAME)
|
|
#endif // CONFIG_EXT_INTER
|
|
write_motion_mode(cm, mi, w);
|
|
#if CONFIG_NCOBMC_ADAPT_WEIGHT
|
|
write_ncobmc_mode(cm, mi, w);
|
|
#endif
|
|
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
|
|
#if CONFIG_EXT_INTER
|
|
if (
|
|
#if CONFIG_COMPOUND_SINGLEREF
|
|
is_inter_anyref_comp_mode(mbmi->mode) &&
|
|
#else // !CONFIG_COMPOUND_SINGLEREF
|
|
cpi->common.reference_mode != SINGLE_REFERENCE &&
|
|
is_inter_compound_mode(mbmi->mode) &&
|
|
#endif // CONFIG_COMPOUND_SINGLEREF
|
|
#if CONFIG_MOTION_VAR
|
|
mbmi->motion_mode == SIMPLE_TRANSLATION &&
|
|
#endif // CONFIG_MOTION_VAR
|
|
is_any_masked_compound_used(bsize)) {
|
|
#if CONFIG_COMPOUND_SEGMENT || CONFIG_WEDGE
|
|
if (cm->allow_masked_compound) {
|
|
av1_write_token(
|
|
w, av1_compound_type_tree, cm->fc->compound_type_prob[bsize],
|
|
&compound_type_encodings[mbmi->interinter_compound_type]);
|
|
#if CONFIG_WEDGE
|
|
if (mbmi->interinter_compound_type == COMPOUND_WEDGE) {
|
|
aom_write_literal(w, mbmi->wedge_index, get_wedge_bits_lookup(bsize));
|
|
aom_write_bit(w, mbmi->wedge_sign);
|
|
}
|
|
#endif // CONFIG_WEDGE
|
|
#if CONFIG_COMPOUND_SEGMENT
|
|
if (mbmi->interinter_compound_type == COMPOUND_SEG) {
|
|
aom_write_literal(w, mbmi->mask_type, MAX_SEG_MASK_BITS);
|
|
}
|
|
#endif // CONFIG_COMPOUND_SEGMENT
|
|
}
|
|
#endif // CONFIG_COMPOUND_SEGMENT || CONFIG_WEDGE
|
|
}
|
|
#endif // CONFIG_EXT_INTER
|
|
|
|
#if CONFIG_DUAL_FILTER || CONFIG_WARPED_MOTION || CONFIG_GLOBAL_MOTION
|
|
write_mb_interp_filter(cpi, xd, w);
|
|
#endif // CONFIG_DUAL_FILTE || CONFIG_WARPED_MOTION
|
|
}
|
|
|
|
#if !CONFIG_TXK_SEL
|
|
av1_write_tx_type(cm, xd,
|
|
#if CONFIG_SUPERTX
|
|
supertx_enabled,
|
|
#endif
|
|
w);
|
|
#endif // !CONFIG_TXK_SEL
|
|
}
|
|
|
|
static void write_mb_modes_kf(AV1_COMMON *cm,
|
|
#if CONFIG_DELTA_Q
|
|
MACROBLOCKD *xd,
|
|
#else
|
|
const MACROBLOCKD *xd,
|
|
#endif // CONFIG_DELTA_Q
|
|
#if CONFIG_INTRABC
|
|
const MB_MODE_INFO_EXT *mbmi_ext,
|
|
#endif // CONFIG_INTRABC
|
|
const int mi_row, const int mi_col,
|
|
aom_writer *w) {
|
|
const struct segmentation *const seg = &cm->seg;
|
|
struct segmentation_probs *const segp = &cm->fc->seg;
|
|
const MODE_INFO *const mi = xd->mi[0];
|
|
const MODE_INFO *const above_mi = xd->above_mi;
|
|
const MODE_INFO *const left_mi = xd->left_mi;
|
|
const MB_MODE_INFO *const mbmi = &mi->mbmi;
|
|
const BLOCK_SIZE bsize = mbmi->sb_type;
|
|
#if CONFIG_CB4X4
|
|
const int unify_bsize = 1;
|
|
#else
|
|
const int unify_bsize = 0;
|
|
#endif
|
|
(void)mi_row;
|
|
(void)mi_col;
|
|
|
|
#if CONFIG_EC_ADAPT
|
|
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
|
|
#else
|
|
FRAME_CONTEXT *ec_ctx = cm->fc;
|
|
#endif
|
|
|
|
if (seg->update_map) write_segment_id(w, seg, segp, mbmi->segment_id);
|
|
|
|
#if CONFIG_DELTA_Q
|
|
const int skip = write_skip(cm, xd, mbmi->segment_id, mi, w);
|
|
if (cm->delta_q_present_flag) {
|
|
int super_block_upper_left =
|
|
((mi_row & MAX_MIB_MASK) == 0) && ((mi_col & MAX_MIB_MASK) == 0);
|
|
if ((bsize != BLOCK_LARGEST || skip == 0) && super_block_upper_left) {
|
|
assert(mbmi->current_q_index > 0);
|
|
int reduced_delta_qindex =
|
|
(mbmi->current_q_index - xd->prev_qindex) / cm->delta_q_res;
|
|
write_delta_qindex(cm, xd, reduced_delta_qindex, w);
|
|
xd->prev_qindex = mbmi->current_q_index;
|
|
#if CONFIG_EXT_DELTA_Q
|
|
if (cm->delta_lf_present_flag) {
|
|
int reduced_delta_lflevel =
|
|
(mbmi->current_delta_lf_from_base - xd->prev_delta_lf_from_base) /
|
|
cm->delta_lf_res;
|
|
write_delta_lflevel(cm, xd, reduced_delta_lflevel, w);
|
|
xd->prev_delta_lf_from_base = mbmi->current_delta_lf_from_base;
|
|
}
|
|
#endif // CONFIG_EXT_DELTA_Q
|
|
}
|
|
}
|
|
#else
|
|
write_skip(cm, xd, mbmi->segment_id, mi, w);
|
|
#endif
|
|
|
|
int enable_tx_size = cm->tx_mode == TX_MODE_SELECT &&
|
|
#if CONFIG_CB4X4 && (CONFIG_VAR_TX || CONFIG_RECT_TX)
|
|
#if CONFIG_RECT_TX
|
|
bsize > BLOCK_4X4 &&
|
|
#else
|
|
bsize >= BLOCK_8X8 &&
|
|
#endif // CONFIG_RECT_TX
|
|
#else
|
|
bsize >= BLOCK_8X8 &&
|
|
#endif
|
|
!xd->lossless[mbmi->segment_id];
|
|
|
|
#if CONFIG_INTRABC
|
|
if (bsize >= BLOCK_8X8 && cm->allow_screen_content_tools) {
|
|
int use_intrabc = is_intrabc_block(mbmi);
|
|
aom_write(w, use_intrabc, ec_ctx->intrabc_prob);
|
|
if (use_intrabc) {
|
|
assert(mbmi->mode == DC_PRED);
|
|
assert(mbmi->uv_mode == DC_PRED);
|
|
if (enable_tx_size && !mbmi->skip) write_selected_tx_size(cm, xd, w);
|
|
int_mv dv_ref = mbmi_ext->ref_mvs[INTRA_FRAME][0];
|
|
av1_encode_dv(w, &mbmi->mv[0].as_mv, &dv_ref.as_mv, &ec_ctx->ndvc);
|
|
#if CONFIG_EXT_TX && !CONFIG_TXK_SEL
|
|
av1_write_tx_type(cm, xd,
|
|
#if CONFIG_SUPERTX
|
|
0,
|
|
#endif
|
|
w);
|
|
#endif // CONFIG_EXT_TX && !CONFIG_TXK_SEL
|
|
return;
|
|
}
|
|
}
|
|
#endif // CONFIG_INTRABC
|
|
if (enable_tx_size) write_selected_tx_size(cm, xd, w);
|
|
|
|
if (bsize >= BLOCK_8X8 || unify_bsize) {
|
|
write_intra_mode_kf(cm, ec_ctx, mi, above_mi, left_mi, 0, mbmi->mode, w);
|
|
} else {
|
|
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
|
|
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
|
|
int idx, idy;
|
|
|
|
for (idy = 0; idy < 2; idy += num_4x4_h) {
|
|
for (idx = 0; idx < 2; idx += num_4x4_w) {
|
|
const int block = idy * 2 + idx;
|
|
write_intra_mode_kf(cm, ec_ctx, mi, above_mi, left_mi, block,
|
|
mi->bmi[block].as_mode, w);
|
|
}
|
|
}
|
|
}
|
|
|
|
#if CONFIG_CB4X4
|
|
if (is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x,
|
|
xd->plane[1].subsampling_y)) {
|
|
write_intra_uv_mode(ec_ctx, mbmi->uv_mode, mbmi->mode, w);
|
|
#else // !CONFIG_CB4X4
|
|
write_intra_uv_mode(ec_ctx, mbmi->uv_mode, mbmi->mode, w);
|
|
#endif // CONFIG_CB4X4
|
|
|
|
#if CONFIG_CFL
|
|
if (mbmi->uv_mode == DC_PRED) {
|
|
write_cfl_alphas(ec_ctx, mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, w);
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_CB4X4
|
|
}
|
|
#endif
|
|
#if CONFIG_EXT_INTRA
|
|
write_intra_angle_info(xd, ec_ctx, w);
|
|
#endif // CONFIG_EXT_INTRA
|
|
#if CONFIG_PALETTE
|
|
if (bsize >= BLOCK_8X8 && cm->allow_screen_content_tools)
|
|
write_palette_mode_info(cm, xd, mi, w);
|
|
#endif // CONFIG_PALETTE
|
|
#if CONFIG_FILTER_INTRA
|
|
if (bsize >= BLOCK_8X8 || unify_bsize)
|
|
write_filter_intra_mode_info(cm, xd, mbmi, mi_row, mi_col, w);
|
|
#endif // CONFIG_FILTER_INTRA
|
|
|
|
#if !CONFIG_TXK_SEL
|
|
av1_write_tx_type(cm, xd,
|
|
#if CONFIG_SUPERTX
|
|
0,
|
|
#endif
|
|
w);
|
|
#endif // !CONFIG_TXK_SEL
|
|
}
|
|
|
|
#if CONFIG_SUPERTX
|
|
#define write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, \
|
|
mi_row, mi_col) \
|
|
write_modes_b(cpi, tile, w, tok, tok_end, supertx_enabled, mi_row, mi_col)
|
|
#else
|
|
#define write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, \
|
|
mi_row, mi_col) \
|
|
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col)
|
|
#endif // CONFIG_SUPERTX
|
|
|
|
#if CONFIG_RD_DEBUG
|
|
static void dump_mode_info(MODE_INFO *mi) {
|
|
printf("\nmi->mbmi.mi_row == %d\n", mi->mbmi.mi_row);
|
|
printf("&& mi->mbmi.mi_col == %d\n", mi->mbmi.mi_col);
|
|
printf("&& mi->mbmi.sb_type == %d\n", mi->mbmi.sb_type);
|
|
printf("&& mi->mbmi.tx_size == %d\n", mi->mbmi.tx_size);
|
|
if (mi->mbmi.sb_type >= BLOCK_8X8) {
|
|
printf("&& mi->mbmi.mode == %d\n", mi->mbmi.mode);
|
|
} else {
|
|
printf("&& mi->bmi[0].as_mode == %d\n", mi->bmi[0].as_mode);
|
|
}
|
|
}
|
|
static int rd_token_stats_mismatch(RD_STATS *rd_stats, TOKEN_STATS *token_stats,
|
|
int plane) {
|
|
if (rd_stats->txb_coeff_cost[plane] != token_stats->cost) {
|
|
#if CONFIG_VAR_TX
|
|
int r, c;
|
|
#endif
|
|
printf("\nplane %d rd_stats->txb_coeff_cost %d token_stats->cost %d\n",
|
|
plane, rd_stats->txb_coeff_cost[plane], token_stats->cost);
|
|
#if CONFIG_VAR_TX
|
|
printf("rd txb_coeff_cost_map\n");
|
|
for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) {
|
|
for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) {
|
|
printf("%d ", rd_stats->txb_coeff_cost_map[plane][r][c]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
printf("pack txb_coeff_cost_map\n");
|
|
for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) {
|
|
for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) {
|
|
printf("%d ", token_stats->txb_coeff_cost_map[r][c]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#if ENC_MISMATCH_DEBUG
|
|
static void enc_dump_logs(AV1_COMP *cpi, int mi_row, int mi_col) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
|
|
MODE_INFO *m;
|
|
xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col);
|
|
m = xd->mi[0];
|
|
if (is_inter_block(&m->mbmi)) {
|
|
#define FRAME_TO_CHECK 1
|
|
if (cm->current_video_frame == FRAME_TO_CHECK && cm->show_frame == 0) {
|
|
const MB_MODE_INFO *const mbmi = &m->mbmi;
|
|
const BLOCK_SIZE bsize = mbmi->sb_type;
|
|
|
|
int_mv mv[2];
|
|
int is_comp_ref = has_second_ref(&m->mbmi);
|
|
int ref;
|
|
|
|
for (ref = 0; ref < 1 + is_comp_ref; ++ref)
|
|
mv[ref].as_mv = m->mbmi.mv[ref].as_mv;
|
|
|
|
if (!is_comp_ref) {
|
|
#if CONFIG_COMPOUND_SINGLEREF
|
|
if (is_inter_singleref_comp_mode(m->mbmi.mode))
|
|
mv[1].as_mv = m->mbmi.mv[1].as_mv;
|
|
else
|
|
#endif // CONFIG_COMPOUND_SINGLEREF
|
|
mv[1].as_int = 0;
|
|
}
|
|
int interp_ctx[2] = { -1 };
|
|
int interp_filter[2] = { cm->interp_filter };
|
|
if (cm->interp_filter == SWITCHABLE) {
|
|
int dir;
|
|
for (dir = 0; dir < 2; ++dir) {
|
|
if (has_subpel_mv_component(xd->mi[0], xd, dir) ||
|
|
(mbmi->ref_frame[1] > INTRA_FRAME &&
|
|
has_subpel_mv_component(xd->mi[0], xd, dir + 2))) {
|
|
interp_ctx[dir] = av1_get_pred_context_switchable_interp(xd, dir);
|
|
interp_filter[dir] = mbmi->interp_filter[dir];
|
|
} else {
|
|
interp_filter[dir] = EIGHTTAP_REGULAR;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if CONFIG_DELTA_Q || CONFIG_EC_ADAPT
|
|
MACROBLOCK *const x = &cpi->td.mb;
|
|
#else
|
|
const MACROBLOCK *x = &cpi->td.mb;
|
|
#endif
|
|
const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
|
|
const int16_t mode_ctx = av1_mode_context_analyzer(
|
|
mbmi_ext->mode_context, mbmi->ref_frame, bsize, -1);
|
|
const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
|
|
int16_t zeromv_ctx = -1;
|
|
int16_t refmv_ctx = -1;
|
|
if (mbmi->mode != NEWMV) {
|
|
zeromv_ctx = (mode_ctx >> ZEROMV_OFFSET) & ZEROMV_CTX_MASK;
|
|
if (mode_ctx & (1 << ALL_ZERO_FLAG_OFFSET)) {
|
|
assert(mbmi->mode == ZEROMV);
|
|
}
|
|
if (mbmi->mode != ZEROMV) {
|
|
refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
|
|
if (mode_ctx & (1 << SKIP_NEARESTMV_OFFSET)) refmv_ctx = 6;
|
|
if (mode_ctx & (1 << SKIP_NEARMV_OFFSET)) refmv_ctx = 7;
|
|
if (mode_ctx & (1 << SKIP_NEARESTMV_SUB8X8_OFFSET)) refmv_ctx = 8;
|
|
}
|
|
}
|
|
|
|
int8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
|
|
printf(
|
|
"=== ENCODER ===: "
|
|
"Frame=%d, (mi_row,mi_col)=(%d,%d), mode=%d, bsize=%d, "
|
|
"show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, "
|
|
"ref[1]=%d, motion_mode=%d, inter_mode_ctx=%d, mode_ctx=%d, "
|
|
"interp_ctx=(%d,%d), interp_filter=(%d,%d), newmv_ctx=%d, "
|
|
"zeromv_ctx=%d, refmv_ctx=%d\n",
|
|
cm->current_video_frame, mi_row, mi_col, mbmi->mode, bsize,
|
|
cm->show_frame, mv[0].as_mv.row, mv[0].as_mv.col, mv[1].as_mv.row,
|
|
mv[1].as_mv.col, mbmi->ref_frame[0], mbmi->ref_frame[1],
|
|
mbmi->motion_mode, mbmi_ext->mode_context[ref_frame_type], mode_ctx,
|
|
interp_ctx[0], interp_ctx[1], interp_filter[0], interp_filter[1],
|
|
newmv_ctx, zeromv_ctx, refmv_ctx);
|
|
}
|
|
}
|
|
}
|
|
#endif // ENC_MISMATCH_DEBUG
|
|
|
|
static void write_mbmi_b(AV1_COMP *cpi, const TileInfo *const tile,
|
|
aom_writer *w,
|
|
#if CONFIG_SUPERTX
|
|
int supertx_enabled,
|
|
#endif
|
|
int mi_row, int mi_col) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
|
|
MODE_INFO *m;
|
|
int bh, bw;
|
|
xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col);
|
|
m = xd->mi[0];
|
|
|
|
assert(m->mbmi.sb_type <= cm->sb_size);
|
|
|
|
bh = mi_size_high[m->mbmi.sb_type];
|
|
bw = mi_size_wide[m->mbmi.sb_type];
|
|
|
|
cpi->td.mb.mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col);
|
|
|
|
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw,
|
|
#if CONFIG_DEPENDENT_HORZTILES
|
|
cm->dependent_horz_tiles,
|
|
#endif // CONFIG_DEPENDENT_HORZTILES
|
|
cm->mi_rows, cm->mi_cols);
|
|
|
|
if (frame_is_intra_only(cm)) {
|
|
write_mb_modes_kf(cm, xd,
|
|
#if CONFIG_INTRABC
|
|
cpi->td.mb.mbmi_ext,
|
|
#endif // CONFIG_INTRABC
|
|
mi_row, mi_col, w);
|
|
} else {
|
|
#if CONFIG_VAR_TX
|
|
xd->above_txfm_context =
|
|
cm->above_txfm_context + (mi_col << TX_UNIT_WIDE_LOG2);
|
|
xd->left_txfm_context = xd->left_txfm_context_buffer +
|
|
((mi_row & MAX_MIB_MASK) << TX_UNIT_HIGH_LOG2);
|
|
#endif
|
|
#if CONFIG_DUAL_FILTER
|
|
// has_subpel_mv_component needs the ref frame buffers set up to look
|
|
// up if they are scaled. has_subpel_mv_component is in turn needed by
|
|
// write_switchable_interp_filter, which is called by pack_inter_mode_mvs.
|
|
set_ref_ptrs(cm, xd, m->mbmi.ref_frame[0], m->mbmi.ref_frame[1]);
|
|
#if CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF
|
|
if (!has_second_ref(&m->mbmi) && is_inter_singleref_comp_mode(m->mbmi.mode))
|
|
xd->block_refs[1] = xd->block_refs[0];
|
|
#endif // CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF
|
|
#endif // CONFIG_DUAL_FILTER
|
|
|
|
#if ENC_MISMATCH_DEBUG
|
|
// NOTE(zoeliu): For debug
|
|
enc_dump_logs(cpi, mi_row, mi_col);
|
|
#endif // ENC_MISMATCH_DEBUG
|
|
|
|
pack_inter_mode_mvs(cpi, mi_row, mi_col,
|
|
#if CONFIG_SUPERTX
|
|
supertx_enabled,
|
|
#endif
|
|
w);
|
|
}
|
|
}
|
|
|
|
static void write_tokens_b(AV1_COMP *cpi, const TileInfo *const tile,
|
|
aom_writer *w, const TOKENEXTRA **tok,
|
|
const TOKENEXTRA *const tok_end, int mi_row,
|
|
int mi_col) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
|
|
const int mi_offset = mi_row * cm->mi_stride + mi_col;
|
|
MODE_INFO *const m = *(cm->mi_grid_visible + mi_offset);
|
|
MB_MODE_INFO *const mbmi = &m->mbmi;
|
|
int plane;
|
|
int bh, bw;
|
|
#if CONFIG_PVQ || CONFIG_LV_MAP
|
|
MACROBLOCK *const x = &cpi->td.mb;
|
|
(void)tok;
|
|
(void)tok_end;
|
|
#endif
|
|
xd->mi = cm->mi_grid_visible + mi_offset;
|
|
|
|
assert(mbmi->sb_type <= cm->sb_size);
|
|
|
|
bh = mi_size_high[mbmi->sb_type];
|
|
bw = mi_size_wide[mbmi->sb_type];
|
|
cpi->td.mb.mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col);
|
|
|
|
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw,
|
|
#if CONFIG_DEPENDENT_HORZTILES
|
|
cm->dependent_horz_tiles,
|
|
#endif // CONFIG_DEPENDENT_HORZTILES
|
|
cm->mi_rows, cm->mi_cols);
|
|
|
|
#if CONFIG_PALETTE
|
|
for (plane = 0; plane <= 1; ++plane) {
|
|
const uint8_t palette_size_plane =
|
|
mbmi->palette_mode_info.palette_size[plane];
|
|
if (palette_size_plane > 0) {
|
|
#if CONFIG_INTRABC
|
|
assert(mbmi->use_intrabc == 0);
|
|
#endif
|
|
int rows, cols;
|
|
assert(mbmi->sb_type >= BLOCK_8X8);
|
|
av1_get_block_dimensions(mbmi->sb_type, plane, xd, NULL, NULL, &rows,
|
|
&cols);
|
|
assert(*tok < tok_end);
|
|
pack_palette_tokens(w, tok, palette_size_plane, rows * cols - 1);
|
|
assert(*tok < tok_end + mbmi->skip);
|
|
}
|
|
}
|
|
#endif // CONFIG_PALETTE
|
|
|
|
#if CONFIG_COEF_INTERLEAVE
|
|
if (!mbmi->skip) {
|
|
const struct macroblockd_plane *const pd_y = &xd->plane[0];
|
|
const struct macroblockd_plane *const pd_c = &xd->plane[1];
|
|
const TX_SIZE tx_log2_y = mbmi->tx_size;
|
|
const TX_SIZE tx_log2_c = get_uv_tx_size(mbmi, pd_c);
|
|
const int tx_sz_y = (1 << tx_log2_y);
|
|
const int tx_sz_c = (1 << tx_log2_c);
|
|
|
|
const BLOCK_SIZE plane_bsize_y =
|
|
get_plane_block_size(AOMMAX(mbmi->sb_type, 3), pd_y);
|
|
const BLOCK_SIZE plane_bsize_c =
|
|
get_plane_block_size(AOMMAX(mbmi->sb_type, 3), pd_c);
|
|
|
|
const int num_4x4_w_y = num_4x4_blocks_wide_lookup[plane_bsize_y];
|
|
const int num_4x4_w_c = num_4x4_blocks_wide_lookup[plane_bsize_c];
|
|
const int num_4x4_h_y = num_4x4_blocks_high_lookup[plane_bsize_y];
|
|
const int num_4x4_h_c = num_4x4_blocks_high_lookup[plane_bsize_c];
|
|
|
|
const int max_4x4_w_y = get_max_4x4_size(num_4x4_w_y, xd->mb_to_right_edge,
|
|
pd_y->subsampling_x);
|
|
const int max_4x4_h_y = get_max_4x4_size(num_4x4_h_y, xd->mb_to_bottom_edge,
|
|
pd_y->subsampling_y);
|
|
const int max_4x4_w_c = get_max_4x4_size(num_4x4_w_c, xd->mb_to_right_edge,
|
|
pd_c->subsampling_x);
|
|
const int max_4x4_h_c = get_max_4x4_size(num_4x4_h_c, xd->mb_to_bottom_edge,
|
|
pd_c->subsampling_y);
|
|
|
|
// The max_4x4_w/h may be smaller than tx_sz under some corner cases,
|
|
// i.e. when the SB is splitted by tile boundaries.
|
|
const int tu_num_w_y = (max_4x4_w_y + tx_sz_y - 1) / tx_sz_y;
|
|
const int tu_num_h_y = (max_4x4_h_y + tx_sz_y - 1) / tx_sz_y;
|
|
const int tu_num_w_c = (max_4x4_w_c + tx_sz_c - 1) / tx_sz_c;
|
|
const int tu_num_h_c = (max_4x4_h_c + tx_sz_c - 1) / tx_sz_c;
|
|
const int tu_num_y = tu_num_w_y * tu_num_h_y;
|
|
const int tu_num_c = tu_num_w_c * tu_num_h_c;
|
|
|
|
int tu_idx_y = 0, tu_idx_c = 0;
|
|
TOKEN_STATS token_stats;
|
|
init_token_stats(&token_stats);
|
|
|
|
assert(*tok < tok_end);
|
|
|
|
while (tu_idx_y < tu_num_y) {
|
|
pack_mb_tokens(w, tok, tok_end, cm->bit_depth, tx_log2_y, &token_stats);
|
|
assert(*tok < tok_end && (*tok)->token == EOSB_TOKEN);
|
|
(*tok)++;
|
|
tu_idx_y++;
|
|
|
|
if (tu_idx_c < tu_num_c) {
|
|
pack_mb_tokens(w, tok, tok_end, cm->bit_depth, tx_log2_c, &token_stats);
|
|
assert(*tok < tok_end && (*tok)->token == EOSB_TOKEN);
|
|
(*tok)++;
|
|
|
|
pack_mb_tokens(w, tok, tok_end, cm->bit_depth, tx_log2_c, &token_stats);
|
|
assert(*tok < tok_end && (*tok)->token == EOSB_TOKEN);
|
|
(*tok)++;
|
|
|
|
tu_idx_c++;
|
|
}
|
|
}
|
|
|
|
// In 422 case, it's possilbe that Chroma has more TUs than Luma
|
|
while (tu_idx_c < tu_num_c) {
|
|
pack_mb_tokens(w, tok, tok_end, cm->bit_depth, tx_log2_c, &token_stats);
|
|
assert(*tok < tok_end && (*tok)->token == EOSB_TOKEN);
|
|
(*tok)++;
|
|
|
|
pack_mb_tokens(w, tok, tok_end, cm->bit_depth, tx_log2_c, &token_stats);
|
|
assert(*tok < tok_end && (*tok)->token == EOSB_TOKEN);
|
|
(*tok)++;
|
|
|
|
tu_idx_c++;
|
|
}
|
|
}
|
|
#else // CONFIG_COEF_INTERLEAVE
|
|
if (!mbmi->skip) {
|
|
#if !CONFIG_PVQ && !CONFIG_LV_MAP
|
|
assert(*tok < tok_end);
|
|
#endif
|
|
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
|
|
#if CONFIG_CB4X4
|
|
if (!is_chroma_reference(mi_row, mi_col, mbmi->sb_type,
|
|
xd->plane[plane].subsampling_x,
|
|
xd->plane[plane].subsampling_y)) {
|
|
(*tok)++;
|
|
continue;
|
|
}
|
|
#endif
|
|
#if CONFIG_VAR_TX
|
|
const struct macroblockd_plane *const pd = &xd->plane[plane];
|
|
BLOCK_SIZE bsize = mbmi->sb_type;
|
|
#if CONFIG_CHROMA_SUB8X8
|
|
const BLOCK_SIZE plane_bsize =
|
|
AOMMAX(BLOCK_4X4, get_plane_block_size(bsize, pd));
|
|
#elif CONFIG_CB4X4
|
|
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
|
|
#else
|
|
const BLOCK_SIZE plane_bsize =
|
|
get_plane_block_size(AOMMAX(bsize, BLOCK_8X8), pd);
|
|
#endif
|
|
|
|
const int num_4x4_w =
|
|
block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
|
|
const int num_4x4_h =
|
|
block_size_high[plane_bsize] >> tx_size_wide_log2[0];
|
|
int row, col;
|
|
TOKEN_STATS token_stats;
|
|
init_token_stats(&token_stats);
|
|
|
|
if (is_inter_block(mbmi)) {
|
|
const TX_SIZE max_tx_size = get_vartx_max_txsize(mbmi, plane_bsize);
|
|
int block = 0;
|
|
const int step =
|
|
tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
|
|
const int bkw = tx_size_wide_unit[max_tx_size];
|
|
const int bkh = tx_size_high_unit[max_tx_size];
|
|
for (row = 0; row < num_4x4_h; row += bkh) {
|
|
for (col = 0; col < num_4x4_w; col += bkw) {
|
|
pack_txb_tokens(w,
|
|
#if CONFIG_LV_MAP
|
|
cm,
|
|
#endif
|
|
tok, tok_end,
|
|
#if CONFIG_PVQ || CONFIG_LV_MAP
|
|
x,
|
|
#endif
|
|
xd, mbmi, plane, plane_bsize, cm->bit_depth, block,
|
|
row, col, max_tx_size, &token_stats);
|
|
block += step;
|
|
}
|
|
}
|
|
#if CONFIG_RD_DEBUG
|
|
if (mbmi->sb_type >= BLOCK_8X8 &&
|
|
rd_token_stats_mismatch(&mbmi->rd_stats, &token_stats, plane)) {
|
|
dump_mode_info(m);
|
|
assert(0);
|
|
}
|
|
#endif // CONFIG_RD_DEBUG
|
|
} else {
|
|
#if CONFIG_LV_MAP
|
|
av1_write_coeffs_mb(cm, x, w, plane);
|
|
#else
|
|
TX_SIZE tx = get_tx_size(plane, xd);
|
|
const int bkw = tx_size_wide_unit[tx];
|
|
const int bkh = tx_size_high_unit[tx];
|
|
for (row = 0; row < num_4x4_h; row += bkh) {
|
|
for (col = 0; col < num_4x4_w; col += bkw) {
|
|
#if !CONFIG_PVQ
|
|
pack_mb_tokens(w, tok, tok_end, cm->bit_depth, tx, &token_stats);
|
|
#else
|
|
pack_pvq_tokens(w, x, xd, plane, bsize, tx);
|
|
#endif
|
|
}
|
|
}
|
|
#endif // CONFIG_LV_MAP
|
|
}
|
|
#else
|
|
TX_SIZE tx = get_tx_size(plane, xd);
|
|
TOKEN_STATS token_stats;
|
|
#if !CONFIG_PVQ
|
|
init_token_stats(&token_stats);
|
|
#if CONFIG_LV_MAP
|
|
(void)tx;
|
|
av1_write_coeffs_mb(cm, x, w, plane);
|
|
#else // CONFIG_LV_MAP
|
|
pack_mb_tokens(w, tok, tok_end, cm->bit_depth, tx, &token_stats);
|
|
#endif // CONFIG_LV_MAP
|
|
|
|
#else
|
|
(void)token_stats;
|
|
pack_pvq_tokens(w, x, xd, plane, mbmi->sb_type, tx);
|
|
#endif
|
|
#if CONFIG_RD_DEBUG
|
|
if (is_inter_block(mbmi) && mbmi->sb_type >= BLOCK_8X8 &&
|
|
rd_token_stats_mismatch(&mbmi->rd_stats, &token_stats, plane)) {
|
|
dump_mode_info(m);
|
|
assert(0);
|
|
}
|
|
#endif // CONFIG_RD_DEBUG
|
|
#endif // CONFIG_VAR_TX
|
|
|
|
#if !CONFIG_PVQ && !CONFIG_LV_MAP
|
|
assert(*tok < tok_end && (*tok)->token == EOSB_TOKEN);
|
|
(*tok)++;
|
|
#endif
|
|
}
|
|
}
|
|
#endif // CONFIG_COEF_INTERLEAVE
|
|
}
|
|
|
|
#if CONFIG_MOTION_VAR && (CONFIG_NCOBMC || CONFIG_NCOBMC_ADAPT_WEIGHT)
|
|
static void write_tokens_sb(AV1_COMP *cpi, const TileInfo *const tile,
|
|
aom_writer *w, const TOKENEXTRA **tok,
|
|
const TOKENEXTRA *const tok_end, int mi_row,
|
|
int mi_col, BLOCK_SIZE bsize) {
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
const int hbs = mi_size_wide[bsize] / 2;
|
|
PARTITION_TYPE partition;
|
|
BLOCK_SIZE subsize;
|
|
#if CONFIG_CB4X4
|
|
const int unify_bsize = 1;
|
|
#else
|
|
const int unify_bsize = 0;
|
|
#endif
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
|
|
|
|
partition = get_partition(cm, mi_row, mi_col, bsize);
|
|
subsize = get_subsize(bsize, partition);
|
|
|
|
if (subsize < BLOCK_8X8 && !unify_bsize) {
|
|
write_tokens_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
|
|
} else {
|
|
switch (partition) {
|
|
case PARTITION_NONE:
|
|
write_tokens_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
|
|
break;
|
|
case PARTITION_HORZ:
|
|
write_tokens_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
|
|
if (mi_row + hbs < cm->mi_rows)
|
|
write_tokens_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col);
|
|
break;
|
|
case PARTITION_VERT:
|
|
write_tokens_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
|
|
if (mi_col + hbs < cm->mi_cols)
|
|
write_tokens_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs);
|
|
break;
|
|
case PARTITION_SPLIT:
|
|
write_tokens_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, subsize);
|
|
write_tokens_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs,
|
|
subsize);
|
|
write_tokens_sb(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col,
|
|
subsize);
|
|
write_tokens_sb(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs,
|
|
subsize);
|
|
break;
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
case PARTITION_HORZ_A:
|
|
write_tokens_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
|
|
write_tokens_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs);
|
|
write_tokens_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col);
|
|
break;
|
|
case PARTITION_HORZ_B:
|
|
write_tokens_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
|
|
write_tokens_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col);
|
|
write_tokens_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs);
|
|
break;
|
|
case PARTITION_VERT_A:
|
|
write_tokens_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
|
|
write_tokens_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col);
|
|
write_tokens_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs);
|
|
break;
|
|
case PARTITION_VERT_B:
|
|
write_tokens_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
|
|
write_tokens_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs);
|
|
write_tokens_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs);
|
|
break;
|
|
#endif // CONFIG_EXT_PARTITION_TYPES
|
|
default: assert(0);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void write_modes_b(AV1_COMP *cpi, const TileInfo *const tile,
|
|
aom_writer *w, const TOKENEXTRA **tok,
|
|
const TOKENEXTRA *const tok_end,
|
|
#if CONFIG_SUPERTX
|
|
int supertx_enabled,
|
|
#endif
|
|
int mi_row, int mi_col) {
|
|
write_mbmi_b(cpi, tile, w,
|
|
#if CONFIG_SUPERTX
|
|
supertx_enabled,
|
|
#endif
|
|
mi_row, mi_col);
|
|
#if CONFIG_MOTION_VAR && (CONFIG_NCOBMC || CONFIG_NCOBMC_ADAPT_WEIGHT)
|
|
(void)tok;
|
|
(void)tok_end;
|
|
#else
|
|
#if !CONFIG_PVQ && CONFIG_SUPERTX
|
|
if (!supertx_enabled)
|
|
#endif
|
|
write_tokens_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
|
|
#endif
|
|
}
|
|
|
|
static void write_partition(const AV1_COMMON *const cm,
|
|
const MACROBLOCKD *const xd, int hbs, int mi_row,
|
|
int mi_col, PARTITION_TYPE p, BLOCK_SIZE bsize,
|
|
aom_writer *w) {
|
|
const int has_rows = (mi_row + hbs) < cm->mi_rows;
|
|
const int has_cols = (mi_col + hbs) < cm->mi_cols;
|
|
const int is_partition_point = bsize >= BLOCK_8X8;
|
|
const int ctx = is_partition_point
|
|
? partition_plane_context(xd, mi_row, mi_col,
|
|
#if CONFIG_UNPOISON_PARTITION_CTX
|
|
has_rows, has_cols,
|
|
#endif
|
|
bsize)
|
|
: 0;
|
|
#if CONFIG_UNPOISON_PARTITION_CTX
|
|
const aom_prob *const probs =
|
|
ctx < PARTITION_CONTEXTS ? cm->fc->partition_prob[ctx] : NULL;
|
|
#else
|
|
const aom_prob *const probs = cm->fc->partition_prob[ctx];
|
|
#endif
|
|
|
|
#if CONFIG_EC_ADAPT
|
|
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
|
|
(void)cm;
|
|
#else
|
|
FRAME_CONTEXT *ec_ctx = cm->fc;
|
|
#endif
|
|
|
|
if (!is_partition_point) return;
|
|
|
|
if (has_rows && has_cols) {
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
if (bsize <= BLOCK_8X8)
|
|
aom_write_symbol(w, p, ec_ctx->partition_cdf[ctx], PARTITION_TYPES);
|
|
else
|
|
aom_write_symbol(w, p, ec_ctx->partition_cdf[ctx], EXT_PARTITION_TYPES);
|
|
#else
|
|
aom_write_symbol(w, p, ec_ctx->partition_cdf[ctx], PARTITION_TYPES);
|
|
#endif // CONFIG_EXT_PARTITION_TYPES
|
|
} else if (!has_rows && has_cols) {
|
|
assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
|
|
aom_write(w, p == PARTITION_SPLIT, probs[1]);
|
|
} else if (has_rows && !has_cols) {
|
|
assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
|
|
aom_write(w, p == PARTITION_SPLIT, probs[2]);
|
|
} else {
|
|
assert(p == PARTITION_SPLIT);
|
|
}
|
|
}
|
|
|
|
#if CONFIG_SUPERTX
|
|
#define write_modes_sb_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, \
|
|
mi_row, mi_col, bsize) \
|
|
write_modes_sb(cpi, tile, w, tok, tok_end, supertx_enabled, mi_row, mi_col, \
|
|
bsize)
|
|
#else
|
|
#define write_modes_sb_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, \
|
|
mi_row, mi_col, bsize) \
|
|
write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, bsize)
|
|
#endif // CONFIG_SUPERTX
|
|
|
|
static void write_modes_sb(AV1_COMP *const cpi, const TileInfo *const tile,
|
|
aom_writer *const w, const TOKENEXTRA **tok,
|
|
const TOKENEXTRA *const tok_end,
|
|
#if CONFIG_SUPERTX
|
|
int supertx_enabled,
|
|
#endif
|
|
int mi_row, int mi_col, BLOCK_SIZE bsize) {
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
|
|
const int hbs = mi_size_wide[bsize] / 2;
|
|
const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize);
|
|
const BLOCK_SIZE subsize = get_subsize(bsize, partition);
|
|
#if CONFIG_CB4X4
|
|
const int unify_bsize = 1;
|
|
#else
|
|
const int unify_bsize = 0;
|
|
#endif
|
|
|
|
#if CONFIG_SUPERTX
|
|
const int mi_offset = mi_row * cm->mi_stride + mi_col;
|
|
MB_MODE_INFO *mbmi;
|
|
const int pack_token = !supertx_enabled;
|
|
TX_SIZE supertx_size;
|
|
int plane;
|
|
#endif
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
|
|
|
|
write_partition(cm, xd, hbs, mi_row, mi_col, partition, bsize, w);
|
|
#if CONFIG_SUPERTX
|
|
mbmi = &cm->mi_grid_visible[mi_offset]->mbmi;
|
|
xd->mi = cm->mi_grid_visible + mi_offset;
|
|
set_mi_row_col(xd, tile, mi_row, mi_size_high[bsize], mi_col,
|
|
mi_size_wide[bsize],
|
|
#if CONFIG_DEPENDENT_HORZTILES
|
|
cm->dependent_horz_tiles,
|
|
#endif // CONFIG_DEPENDENT_HORZTILES
|
|
cm->mi_rows, cm->mi_cols);
|
|
if (!supertx_enabled && !frame_is_intra_only(cm) &&
|
|
partition != PARTITION_NONE && bsize <= MAX_SUPERTX_BLOCK_SIZE &&
|
|
!xd->lossless[0]) {
|
|
aom_prob prob;
|
|
supertx_size = max_txsize_lookup[bsize];
|
|
prob = cm->fc->supertx_prob[partition_supertx_context_lookup[partition]]
|
|
[supertx_size];
|
|
supertx_enabled = (xd->mi[0]->mbmi.tx_size == supertx_size);
|
|
aom_write(w, supertx_enabled, prob);
|
|
}
|
|
#endif // CONFIG_SUPERTX
|
|
if (subsize < BLOCK_8X8 && !unify_bsize) {
|
|
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, mi_row,
|
|
mi_col);
|
|
} else {
|
|
switch (partition) {
|
|
case PARTITION_NONE:
|
|
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
|
|
mi_row, mi_col);
|
|
break;
|
|
case PARTITION_HORZ:
|
|
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
|
|
mi_row, mi_col);
|
|
if (mi_row + hbs < cm->mi_rows)
|
|
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
|
|
mi_row + hbs, mi_col);
|
|
break;
|
|
case PARTITION_VERT:
|
|
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
|
|
mi_row, mi_col);
|
|
if (mi_col + hbs < cm->mi_cols)
|
|
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
|
|
mi_row, mi_col + hbs);
|
|
break;
|
|
case PARTITION_SPLIT:
|
|
write_modes_sb_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
|
|
mi_row, mi_col, subsize);
|
|
write_modes_sb_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
|
|
mi_row, mi_col + hbs, subsize);
|
|
write_modes_sb_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
|
|
mi_row + hbs, mi_col, subsize);
|
|
write_modes_sb_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
|
|
mi_row + hbs, mi_col + hbs, subsize);
|
|
break;
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
case PARTITION_HORZ_A:
|
|
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
|
|
mi_row, mi_col);
|
|
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
|
|
mi_row, mi_col + hbs);
|
|
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
|
|
mi_row + hbs, mi_col);
|
|
break;
|
|
case PARTITION_HORZ_B:
|
|
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
|
|
mi_row, mi_col);
|
|
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
|
|
mi_row + hbs, mi_col);
|
|
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
|
|
mi_row + hbs, mi_col + hbs);
|
|
break;
|
|
case PARTITION_VERT_A:
|
|
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
|
|
mi_row, mi_col);
|
|
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
|
|
mi_row + hbs, mi_col);
|
|
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
|
|
mi_row, mi_col + hbs);
|
|
break;
|
|
case PARTITION_VERT_B:
|
|
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
|
|
mi_row, mi_col);
|
|
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
|
|
mi_row, mi_col + hbs);
|
|
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
|
|
mi_row + hbs, mi_col + hbs);
|
|
break;
|
|
#endif // CONFIG_EXT_PARTITION_TYPES
|
|
default: assert(0);
|
|
}
|
|
}
|
|
#if CONFIG_SUPERTX
|
|
if (partition != PARTITION_NONE && supertx_enabled && pack_token) {
|
|
int skip;
|
|
const int bsw = mi_size_wide[bsize];
|
|
const int bsh = mi_size_high[bsize];
|
|
|
|
xd->mi = cm->mi_grid_visible + mi_offset;
|
|
supertx_size = mbmi->tx_size;
|
|
set_mi_row_col(xd, tile, mi_row, bsh, mi_col, bsw,
|
|
#if CONFIG_DEPENDENT_HORZTILES
|
|
cm->dependent_horz_tiles,
|
|
#endif // CONFIG_DEPENDENT_HORZTILES
|
|
cm->mi_rows, cm->mi_cols);
|
|
|
|
assert(IMPLIES(!cm->seg.enabled, mbmi->segment_id_supertx == 0));
|
|
assert(mbmi->segment_id_supertx < MAX_SEGMENTS);
|
|
|
|
skip = write_skip(cm, xd, mbmi->segment_id_supertx, xd->mi[0], w);
|
|
|
|
#if CONFIG_EC_ADAPT
|
|
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
|
|
#else
|
|
FRAME_CONTEXT *ec_ctx = cm->fc;
|
|
#endif
|
|
|
|
#if CONFIG_EXT_TX
|
|
if (get_ext_tx_types(supertx_size, bsize, 1, cm->reduced_tx_set_used) > 1 &&
|
|
!skip) {
|
|
const int eset =
|
|
get_ext_tx_set(supertx_size, bsize, 1, cm->reduced_tx_set_used);
|
|
if (eset > 0) {
|
|
aom_write_symbol(w, av1_ext_tx_inter_ind[eset][mbmi->tx_type],
|
|
ec_ctx->inter_ext_tx_cdf[eset][supertx_size],
|
|
ext_tx_cnt_inter[eset]);
|
|
}
|
|
}
|
|
#else
|
|
if (supertx_size < TX_32X32 && !skip) {
|
|
aom_write_symbol(w, mbmi->tx_type, ec_ctx->inter_ext_tx_cdf[supertx_size],
|
|
TX_TYPES);
|
|
}
|
|
#endif // CONFIG_EXT_TX
|
|
|
|
if (!skip) {
|
|
assert(*tok < tok_end);
|
|
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
|
|
const struct macroblockd_plane *const pd = &xd->plane[plane];
|
|
const int mbmi_txb_size = txsize_to_bsize[mbmi->tx_size];
|
|
const BLOCK_SIZE plane_bsize = get_plane_block_size(mbmi_txb_size, pd);
|
|
|
|
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
|
|
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
|
|
|
|
int row, col;
|
|
TX_SIZE tx = get_tx_size(plane, xd);
|
|
BLOCK_SIZE txb_size = txsize_to_bsize[tx];
|
|
|
|
const int stepr = tx_size_high_unit[txb_size];
|
|
const int stepc = tx_size_wide_unit[txb_size];
|
|
|
|
TOKEN_STATS token_stats;
|
|
token_stats.cost = 0;
|
|
for (row = 0; row < max_blocks_high; row += stepr)
|
|
for (col = 0; col < max_blocks_wide; col += stepc)
|
|
pack_mb_tokens(w, tok, tok_end, cm->bit_depth, tx, &token_stats);
|
|
assert(*tok < tok_end && (*tok)->token == EOSB_TOKEN);
|
|
(*tok)++;
|
|
}
|
|
}
|
|
#if CONFIG_VAR_TX
|
|
xd->above_txfm_context = cm->above_txfm_context + mi_col;
|
|
xd->left_txfm_context =
|
|
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
|
|
set_txfm_ctxs(xd->mi[0]->mbmi.tx_size, bsw, bsh, skip, xd);
|
|
#endif
|
|
}
|
|
#endif // CONFIG_SUPERTX
|
|
|
|
// update partition context
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
|
|
#else
|
|
if (bsize >= BLOCK_8X8 &&
|
|
(bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
|
|
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
|
|
#endif // CONFIG_EXT_PARTITION_TYPES
|
|
|
|
#if CONFIG_CDEF
|
|
if (bsize == cm->sb_size && !sb_all_skip(cm, mi_row, mi_col) &&
|
|
cm->cdef_bits != 0) {
|
|
aom_write_literal(w, cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]
|
|
->mbmi.cdef_strength,
|
|
cm->cdef_bits);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void write_modes(AV1_COMP *const cpi, const TileInfo *const tile,
|
|
aom_writer *const w, const TOKENEXTRA **tok,
|
|
const TOKENEXTRA *const tok_end) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
|
|
const int mi_row_start = tile->mi_row_start;
|
|
const int mi_row_end = tile->mi_row_end;
|
|
const int mi_col_start = tile->mi_col_start;
|
|
const int mi_col_end = tile->mi_col_end;
|
|
int mi_row, mi_col;
|
|
|
|
#if CONFIG_DEPENDENT_HORZTILES
|
|
#if CONFIG_TILE_GROUPS
|
|
if (!cm->dependent_horz_tiles || mi_row_start == 0 ||
|
|
tile->tg_horz_boundary) {
|
|
#else
|
|
if (!cm->dependent_horz_tiles || mi_row_start == 0) {
|
|
#endif
|
|
av1_zero_above_context(cm, mi_col_start, mi_col_end);
|
|
}
|
|
#else
|
|
av1_zero_above_context(cm, mi_col_start, mi_col_end);
|
|
#endif
|
|
#if CONFIG_PVQ
|
|
assert(cpi->td.mb.pvq_q->curr_pos == 0);
|
|
#endif
|
|
#if CONFIG_DELTA_Q
|
|
if (cpi->common.delta_q_present_flag) {
|
|
xd->prev_qindex = cpi->common.base_qindex;
|
|
#if CONFIG_EXT_DELTA_Q
|
|
if (cpi->common.delta_lf_present_flag) {
|
|
xd->prev_delta_lf_from_base = 0;
|
|
}
|
|
#endif // CONFIG_EXT_DELTA_Q
|
|
}
|
|
#endif
|
|
|
|
for (mi_row = mi_row_start; mi_row < mi_row_end; mi_row += cm->mib_size) {
|
|
av1_zero_left_context(xd);
|
|
|
|
for (mi_col = mi_col_start; mi_col < mi_col_end; mi_col += cm->mib_size) {
|
|
write_modes_sb_wrapper(cpi, tile, w, tok, tok_end, 0, mi_row, mi_col,
|
|
cm->sb_size);
|
|
#if CONFIG_MOTION_VAR && (CONFIG_NCOBMC || CONFIG_NCOBMC_ADAPT_WEIGHT)
|
|
write_tokens_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, cm->sb_size);
|
|
#endif
|
|
}
|
|
}
|
|
#if CONFIG_PVQ
|
|
// Check that the number of PVQ blocks encoded and written to the bitstream
|
|
// are the same
|
|
assert(cpi->td.mb.pvq_q->curr_pos == cpi->td.mb.pvq_q->last_pos);
|
|
// Reset curr_pos in case we repack the bitstream
|
|
cpi->td.mb.pvq_q->curr_pos = 0;
|
|
#endif
|
|
}
|
|
|
|
#if !CONFIG_LV_MAP
|
|
#if !CONFIG_PVQ && !CONFIG_EC_ADAPT
|
|
static void build_tree_distribution(AV1_COMP *cpi, TX_SIZE tx_size,
|
|
av1_coeff_stats *coef_branch_ct,
|
|
av1_coeff_probs_model *coef_probs) {
|
|
av1_coeff_count *coef_counts = cpi->td.rd_counts.coef_counts[tx_size];
|
|
unsigned int(*eob_branch_ct)[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] =
|
|
cpi->common.counts.eob_branch[tx_size];
|
|
int i, j, k, l, m;
|
|
#if CONFIG_RECT_TX
|
|
assert(!is_rect_tx(tx_size));
|
|
#endif // CONFIG_RECT_TX
|
|
|
|
for (i = 0; i < PLANE_TYPES; ++i) {
|
|
for (j = 0; j < REF_TYPES; ++j) {
|
|
for (k = 0; k < COEF_BANDS; ++k) {
|
|
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
|
|
av1_tree_probs_from_distribution(av1_coef_tree,
|
|
coef_branch_ct[i][j][k][l],
|
|
coef_counts[i][j][k][l]);
|
|
coef_branch_ct[i][j][k][l][0][1] =
|
|
eob_branch_ct[i][j][k][l] - coef_branch_ct[i][j][k][l][0][0];
|
|
for (m = 0; m < UNCONSTRAINED_NODES; ++m)
|
|
coef_probs[i][j][k][l][m] =
|
|
get_binary_prob(coef_branch_ct[i][j][k][l][m][0],
|
|
coef_branch_ct[i][j][k][l][m][1]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if !CONFIG_EC_ADAPT
|
|
static void update_coef_probs_common(aom_writer *const bc, AV1_COMP *cpi,
|
|
TX_SIZE tx_size,
|
|
av1_coeff_stats *frame_branch_ct,
|
|
av1_coeff_probs_model *new_coef_probs) {
|
|
av1_coeff_probs_model *old_coef_probs = cpi->common.fc->coef_probs[tx_size];
|
|
const aom_prob upd = DIFF_UPDATE_PROB;
|
|
#if CONFIG_EC_ADAPT
|
|
const int entropy_nodes_update = UNCONSTRAINED_NODES - 1;
|
|
#else
|
|
const int entropy_nodes_update = UNCONSTRAINED_NODES;
|
|
#endif
|
|
int i, j, k, l, t;
|
|
int stepsize = cpi->sf.coeff_prob_appx_step;
|
|
#if CONFIG_TILE_GROUPS
|
|
const int probwt = cpi->common.num_tg;
|
|
#else
|
|
const int probwt = 1;
|
|
#endif
|
|
#if CONFIG_RECT_TX
|
|
assert(!is_rect_tx(tx_size));
|
|
#endif // CONFIG_RECT_TX
|
|
|
|
switch (cpi->sf.use_fast_coef_updates) {
|
|
case TWO_LOOP: {
|
|
/* dry run to see if there is any update at all needed */
|
|
int savings = 0;
|
|
int update[2] = { 0, 0 };
|
|
for (i = 0; i < PLANE_TYPES; ++i) {
|
|
for (j = 0; j < REF_TYPES; ++j) {
|
|
for (k = 0; k < COEF_BANDS; ++k) {
|
|
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
|
|
for (t = 0; t < entropy_nodes_update; ++t) {
|
|
aom_prob newp = new_coef_probs[i][j][k][l][t];
|
|
const aom_prob oldp = old_coef_probs[i][j][k][l][t];
|
|
int s;
|
|
int u = 0;
|
|
if (t == PIVOT_NODE)
|
|
s = av1_prob_diff_update_savings_search_model(
|
|
frame_branch_ct[i][j][k][l][0], oldp, &newp, upd,
|
|
stepsize, probwt);
|
|
else
|
|
s = av1_prob_diff_update_savings_search(
|
|
frame_branch_ct[i][j][k][l][t], oldp, &newp, upd, probwt);
|
|
|
|
if (s > 0 && newp != oldp) u = 1;
|
|
if (u)
|
|
savings += s - (int)(av1_cost_zero(upd));
|
|
else
|
|
savings -= (int)(av1_cost_zero(upd));
|
|
update[u]++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Is coef updated at all */
|
|
if (update[1] == 0 || savings < 0) {
|
|
aom_write_bit(bc, 0);
|
|
return;
|
|
}
|
|
aom_write_bit(bc, 1);
|
|
for (i = 0; i < PLANE_TYPES; ++i) {
|
|
for (j = 0; j < REF_TYPES; ++j) {
|
|
for (k = 0; k < COEF_BANDS; ++k) {
|
|
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
|
|
// calc probs and branch cts for this frame only
|
|
for (t = 0; t < entropy_nodes_update; ++t) {
|
|
aom_prob newp = new_coef_probs[i][j][k][l][t];
|
|
aom_prob *oldp = old_coef_probs[i][j][k][l] + t;
|
|
int s;
|
|
int u = 0;
|
|
if (t == PIVOT_NODE)
|
|
s = av1_prob_diff_update_savings_search_model(
|
|
frame_branch_ct[i][j][k][l][0], *oldp, &newp, upd,
|
|
stepsize, probwt);
|
|
else
|
|
s = av1_prob_diff_update_savings_search(
|
|
frame_branch_ct[i][j][k][l][t], *oldp, &newp, upd,
|
|
probwt);
|
|
if (s > 0 && newp != *oldp) u = 1;
|
|
aom_write(bc, u, upd);
|
|
if (u) {
|
|
/* send/use new probability */
|
|
av1_write_prob_diff_update(bc, newp, *oldp);
|
|
*oldp = newp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
case ONE_LOOP_REDUCED: {
|
|
int updates = 0;
|
|
int noupdates_before_first = 0;
|
|
for (i = 0; i < PLANE_TYPES; ++i) {
|
|
for (j = 0; j < REF_TYPES; ++j) {
|
|
for (k = 0; k < COEF_BANDS; ++k) {
|
|
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
|
|
// calc probs and branch cts for this frame only
|
|
for (t = 0; t < entropy_nodes_update; ++t) {
|
|
aom_prob newp = new_coef_probs[i][j][k][l][t];
|
|
aom_prob *oldp = old_coef_probs[i][j][k][l] + t;
|
|
int s;
|
|
int u = 0;
|
|
if (t == PIVOT_NODE) {
|
|
s = av1_prob_diff_update_savings_search_model(
|
|
frame_branch_ct[i][j][k][l][0], *oldp, &newp, upd,
|
|
stepsize, probwt);
|
|
} else {
|
|
s = av1_prob_diff_update_savings_search(
|
|
frame_branch_ct[i][j][k][l][t], *oldp, &newp, upd,
|
|
probwt);
|
|
}
|
|
|
|
if (s > 0 && newp != *oldp) u = 1;
|
|
updates += u;
|
|
if (u == 0 && updates == 0) {
|
|
noupdates_before_first++;
|
|
continue;
|
|
}
|
|
if (u == 1 && updates == 1) {
|
|
int v;
|
|
// first update
|
|
aom_write_bit(bc, 1);
|
|
for (v = 0; v < noupdates_before_first; ++v)
|
|
aom_write(bc, 0, upd);
|
|
}
|
|
aom_write(bc, u, upd);
|
|
if (u) {
|
|
/* send/use new probability */
|
|
av1_write_prob_diff_update(bc, newp, *oldp);
|
|
*oldp = newp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (updates == 0) {
|
|
aom_write_bit(bc, 0); // no updates
|
|
}
|
|
return;
|
|
}
|
|
default: assert(0);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if !CONFIG_EC_ADAPT
|
|
static void update_coef_probs(AV1_COMP *cpi, aom_writer *w) {
|
|
const TX_MODE tx_mode = cpi->common.tx_mode;
|
|
const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
|
|
TX_SIZE tx_size;
|
|
|
|
for (tx_size = 0; tx_size <= max_tx_size; ++tx_size) {
|
|
av1_coeff_stats frame_branch_ct[PLANE_TYPES];
|
|
av1_coeff_probs_model frame_coef_probs[PLANE_TYPES];
|
|
if (cpi->td.counts->tx_size_totals[tx_size] <= 20 || CONFIG_RD_DEBUG ||
|
|
(tx_size >= TX_16X16 && cpi->sf.tx_size_search_method == USE_TX_8X8)) {
|
|
aom_write_bit(w, 0);
|
|
} else {
|
|
build_tree_distribution(cpi, tx_size, frame_branch_ct, frame_coef_probs);
|
|
update_coef_probs_common(w, cpi, tx_size, frame_branch_ct,
|
|
frame_coef_probs);
|
|
}
|
|
}
|
|
}
|
|
#endif // !CONFIG_EC_ADAPT
|
|
#endif // !CONFIG_EC_ADAPT
|
|
#endif // !CONFIG_LV_MAP
|
|
|
|
#if CONFIG_LOOP_RESTORATION
|
|
static void encode_restoration_mode(AV1_COMMON *cm,
|
|
struct aom_write_bit_buffer *wb) {
|
|
int p;
|
|
RestorationInfo *rsi = &cm->rst_info[0];
|
|
switch (rsi->frame_restoration_type) {
|
|
case RESTORE_NONE:
|
|
aom_wb_write_bit(wb, 0);
|
|
aom_wb_write_bit(wb, 0);
|
|
break;
|
|
case RESTORE_WIENER:
|
|
aom_wb_write_bit(wb, 1);
|
|
aom_wb_write_bit(wb, 0);
|
|
break;
|
|
case RESTORE_SGRPROJ:
|
|
aom_wb_write_bit(wb, 1);
|
|
aom_wb_write_bit(wb, 1);
|
|
break;
|
|
case RESTORE_SWITCHABLE:
|
|
aom_wb_write_bit(wb, 0);
|
|
aom_wb_write_bit(wb, 1);
|
|
break;
|
|
default: assert(0);
|
|
}
|
|
for (p = 1; p < MAX_MB_PLANE; ++p) {
|
|
rsi = &cm->rst_info[p];
|
|
switch (rsi->frame_restoration_type) {
|
|
case RESTORE_NONE: aom_wb_write_bit(wb, 0); break;
|
|
case RESTORE_WIENER:
|
|
aom_wb_write_bit(wb, 1);
|
|
aom_wb_write_bit(wb, 0);
|
|
break;
|
|
case RESTORE_SGRPROJ:
|
|
aom_wb_write_bit(wb, 1);
|
|
aom_wb_write_bit(wb, 1);
|
|
break;
|
|
default: assert(0);
|
|
}
|
|
}
|
|
if (cm->rst_info[0].frame_restoration_type != RESTORE_NONE ||
|
|
cm->rst_info[1].frame_restoration_type != RESTORE_NONE ||
|
|
cm->rst_info[2].frame_restoration_type != RESTORE_NONE) {
|
|
rsi = &cm->rst_info[0];
|
|
aom_wb_write_bit(wb, rsi->restoration_tilesize != RESTORATION_TILESIZE_MAX);
|
|
if (rsi->restoration_tilesize != RESTORATION_TILESIZE_MAX) {
|
|
aom_wb_write_bit(
|
|
wb, rsi->restoration_tilesize != (RESTORATION_TILESIZE_MAX >> 1));
|
|
}
|
|
}
|
|
int s = AOMMIN(cm->subsampling_x, cm->subsampling_y);
|
|
if (s && (cm->rst_info[1].frame_restoration_type != RESTORE_NONE ||
|
|
cm->rst_info[2].frame_restoration_type != RESTORE_NONE)) {
|
|
aom_wb_write_bit(wb, cm->rst_info[1].restoration_tilesize !=
|
|
cm->rst_info[0].restoration_tilesize);
|
|
assert(cm->rst_info[1].restoration_tilesize ==
|
|
cm->rst_info[0].restoration_tilesize ||
|
|
cm->rst_info[1].restoration_tilesize ==
|
|
(cm->rst_info[0].restoration_tilesize >> s));
|
|
assert(cm->rst_info[2].restoration_tilesize ==
|
|
cm->rst_info[1].restoration_tilesize);
|
|
} else if (!s) {
|
|
assert(cm->rst_info[1].restoration_tilesize ==
|
|
cm->rst_info[0].restoration_tilesize);
|
|
assert(cm->rst_info[2].restoration_tilesize ==
|
|
cm->rst_info[1].restoration_tilesize);
|
|
}
|
|
}
|
|
|
|
static void write_wiener_filter(WienerInfo *wiener_info,
|
|
WienerInfo *ref_wiener_info, aom_writer *wb) {
|
|
aom_write_primitive_refsubexpfin(
|
|
wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
|
|
WIENER_FILT_TAP0_SUBEXP_K,
|
|
ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV,
|
|
wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV);
|
|
aom_write_primitive_refsubexpfin(
|
|
wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
|
|
WIENER_FILT_TAP1_SUBEXP_K,
|
|
ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV,
|
|
wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV);
|
|
aom_write_primitive_refsubexpfin(
|
|
wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
|
|
WIENER_FILT_TAP2_SUBEXP_K,
|
|
ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV,
|
|
wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV);
|
|
aom_write_primitive_refsubexpfin(
|
|
wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
|
|
WIENER_FILT_TAP0_SUBEXP_K,
|
|
ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV,
|
|
wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV);
|
|
aom_write_primitive_refsubexpfin(
|
|
wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
|
|
WIENER_FILT_TAP1_SUBEXP_K,
|
|
ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV,
|
|
wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV);
|
|
aom_write_primitive_refsubexpfin(
|
|
wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
|
|
WIENER_FILT_TAP2_SUBEXP_K,
|
|
ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV,
|
|
wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV);
|
|
memcpy(ref_wiener_info, wiener_info, sizeof(*wiener_info));
|
|
}
|
|
|
|
static void write_sgrproj_filter(SgrprojInfo *sgrproj_info,
|
|
SgrprojInfo *ref_sgrproj_info,
|
|
aom_writer *wb) {
|
|
aom_write_literal(wb, sgrproj_info->ep, SGRPROJ_PARAMS_BITS);
|
|
aom_write_primitive_refsubexpfin(wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1,
|
|
SGRPROJ_PRJ_SUBEXP_K,
|
|
ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
|
|
sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
|
|
aom_write_primitive_refsubexpfin(wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1,
|
|
SGRPROJ_PRJ_SUBEXP_K,
|
|
ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
|
|
sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
|
|
memcpy(ref_sgrproj_info, sgrproj_info, sizeof(*sgrproj_info));
|
|
}
|
|
|
|
static void encode_restoration(AV1_COMMON *cm, aom_writer *wb) {
|
|
int i, p;
|
|
#if CONFIG_FRAME_SUPERRES
|
|
const int width = cm->superres_upscaled_width;
|
|
const int height = cm->superres_upscaled_height;
|
|
#else
|
|
const int width = cm->width;
|
|
const int height = cm->height;
|
|
#endif // CONFIG_FRAME_SUPERRES
|
|
const int ntiles =
|
|
av1_get_rest_ntiles(width, height, cm->rst_info[0].restoration_tilesize,
|
|
NULL, NULL, NULL, NULL);
|
|
WienerInfo ref_wiener_info;
|
|
SgrprojInfo ref_sgrproj_info;
|
|
set_default_wiener(&ref_wiener_info);
|
|
set_default_sgrproj(&ref_sgrproj_info);
|
|
const int ntiles_uv = av1_get_rest_ntiles(
|
|
ROUND_POWER_OF_TWO(width, cm->subsampling_x),
|
|
ROUND_POWER_OF_TWO(height, cm->subsampling_y),
|
|
cm->rst_info[1].restoration_tilesize, NULL, NULL, NULL, NULL);
|
|
RestorationInfo *rsi = &cm->rst_info[0];
|
|
if (rsi->frame_restoration_type != RESTORE_NONE) {
|
|
if (rsi->frame_restoration_type == RESTORE_SWITCHABLE) {
|
|
// RESTORE_SWITCHABLE
|
|
for (i = 0; i < ntiles; ++i) {
|
|
av1_write_token(
|
|
wb, av1_switchable_restore_tree, cm->fc->switchable_restore_prob,
|
|
&switchable_restore_encodings[rsi->restoration_type[i]]);
|
|
if (rsi->restoration_type[i] == RESTORE_WIENER) {
|
|
write_wiener_filter(&rsi->wiener_info[i], &ref_wiener_info, wb);
|
|
} else if (rsi->restoration_type[i] == RESTORE_SGRPROJ) {
|
|
write_sgrproj_filter(&rsi->sgrproj_info[i], &ref_sgrproj_info, wb);
|
|
}
|
|
}
|
|
} else if (rsi->frame_restoration_type == RESTORE_WIENER) {
|
|
for (i = 0; i < ntiles; ++i) {
|
|
aom_write(wb, rsi->restoration_type[i] != RESTORE_NONE,
|
|
RESTORE_NONE_WIENER_PROB);
|
|
if (rsi->restoration_type[i] != RESTORE_NONE) {
|
|
write_wiener_filter(&rsi->wiener_info[i], &ref_wiener_info, wb);
|
|
}
|
|
}
|
|
} else if (rsi->frame_restoration_type == RESTORE_SGRPROJ) {
|
|
for (i = 0; i < ntiles; ++i) {
|
|
aom_write(wb, rsi->restoration_type[i] != RESTORE_NONE,
|
|
RESTORE_NONE_SGRPROJ_PROB);
|
|
if (rsi->restoration_type[i] != RESTORE_NONE) {
|
|
write_sgrproj_filter(&rsi->sgrproj_info[i], &ref_sgrproj_info, wb);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (p = 1; p < MAX_MB_PLANE; ++p) {
|
|
set_default_wiener(&ref_wiener_info);
|
|
set_default_sgrproj(&ref_sgrproj_info);
|
|
rsi = &cm->rst_info[p];
|
|
if (rsi->frame_restoration_type == RESTORE_WIENER) {
|
|
for (i = 0; i < ntiles_uv; ++i) {
|
|
if (ntiles_uv > 1)
|
|
aom_write(wb, rsi->restoration_type[i] != RESTORE_NONE,
|
|
RESTORE_NONE_WIENER_PROB);
|
|
if (rsi->restoration_type[i] != RESTORE_NONE) {
|
|
write_wiener_filter(&rsi->wiener_info[i], &ref_wiener_info, wb);
|
|
}
|
|
}
|
|
} else if (rsi->frame_restoration_type == RESTORE_SGRPROJ) {
|
|
for (i = 0; i < ntiles_uv; ++i) {
|
|
if (ntiles_uv > 1)
|
|
aom_write(wb, rsi->restoration_type[i] != RESTORE_NONE,
|
|
RESTORE_NONE_SGRPROJ_PROB);
|
|
if (rsi->restoration_type[i] != RESTORE_NONE) {
|
|
write_sgrproj_filter(&rsi->sgrproj_info[i], &ref_sgrproj_info, wb);
|
|
}
|
|
}
|
|
} else if (rsi->frame_restoration_type != RESTORE_NONE) {
|
|
assert(0);
|
|
}
|
|
}
|
|
}
|
|
#endif // CONFIG_LOOP_RESTORATION
|
|
|
|
static void encode_loopfilter(AV1_COMMON *cm, struct aom_write_bit_buffer *wb) {
|
|
int i;
|
|
struct loopfilter *lf = &cm->lf;
|
|
|
|
// Encode the loop filter level and type
|
|
aom_wb_write_literal(wb, lf->filter_level, 6);
|
|
aom_wb_write_literal(wb, lf->sharpness_level, 3);
|
|
|
|
// Write out loop filter deltas applied at the MB level based on mode or
|
|
// ref frame (if they are enabled).
|
|
aom_wb_write_bit(wb, lf->mode_ref_delta_enabled);
|
|
|
|
if (lf->mode_ref_delta_enabled) {
|
|
aom_wb_write_bit(wb, lf->mode_ref_delta_update);
|
|
if (lf->mode_ref_delta_update) {
|
|
for (i = 0; i < TOTAL_REFS_PER_FRAME; i++) {
|
|
const int delta = lf->ref_deltas[i];
|
|
const int changed = delta != lf->last_ref_deltas[i];
|
|
aom_wb_write_bit(wb, changed);
|
|
if (changed) {
|
|
lf->last_ref_deltas[i] = delta;
|
|
aom_wb_write_inv_signed_literal(wb, delta, 6);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
|
|
const int delta = lf->mode_deltas[i];
|
|
const int changed = delta != lf->last_mode_deltas[i];
|
|
aom_wb_write_bit(wb, changed);
|
|
if (changed) {
|
|
lf->last_mode_deltas[i] = delta;
|
|
aom_wb_write_inv_signed_literal(wb, delta, 6);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if CONFIG_CDEF
|
|
static void encode_cdef(const AV1_COMMON *cm, struct aom_write_bit_buffer *wb) {
|
|
int i;
|
|
aom_wb_write_literal(wb, cm->cdef_dering_damping - 5, 1);
|
|
aom_wb_write_literal(wb, cm->cdef_clpf_damping - 3, 2);
|
|
aom_wb_write_literal(wb, cm->cdef_bits, 2);
|
|
for (i = 0; i < cm->nb_cdef_strengths; i++) {
|
|
aom_wb_write_literal(wb, cm->cdef_strengths[i], CDEF_STRENGTH_BITS);
|
|
aom_wb_write_literal(wb, cm->cdef_uv_strengths[i], CDEF_STRENGTH_BITS);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void write_delta_q(struct aom_write_bit_buffer *wb, int delta_q) {
|
|
if (delta_q != 0) {
|
|
aom_wb_write_bit(wb, 1);
|
|
aom_wb_write_inv_signed_literal(wb, delta_q, 6);
|
|
} else {
|
|
aom_wb_write_bit(wb, 0);
|
|
}
|
|
}
|
|
|
|
static void encode_quantization(const AV1_COMMON *const cm,
|
|
struct aom_write_bit_buffer *wb) {
|
|
aom_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS);
|
|
write_delta_q(wb, cm->y_dc_delta_q);
|
|
write_delta_q(wb, cm->uv_dc_delta_q);
|
|
write_delta_q(wb, cm->uv_ac_delta_q);
|
|
#if CONFIG_AOM_QM
|
|
aom_wb_write_bit(wb, cm->using_qmatrix);
|
|
if (cm->using_qmatrix) {
|
|
aom_wb_write_literal(wb, cm->min_qmlevel, QM_LEVEL_BITS);
|
|
aom_wb_write_literal(wb, cm->max_qmlevel, QM_LEVEL_BITS);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void encode_segmentation(AV1_COMMON *cm, MACROBLOCKD *xd,
|
|
struct aom_write_bit_buffer *wb) {
|
|
int i, j;
|
|
const struct segmentation *seg = &cm->seg;
|
|
|
|
aom_wb_write_bit(wb, seg->enabled);
|
|
if (!seg->enabled) return;
|
|
|
|
// Segmentation map
|
|
if (!frame_is_intra_only(cm) && !cm->error_resilient_mode) {
|
|
aom_wb_write_bit(wb, seg->update_map);
|
|
} else {
|
|
assert(seg->update_map == 1);
|
|
}
|
|
if (seg->update_map) {
|
|
// Select the coding strategy (temporal or spatial)
|
|
av1_choose_segmap_coding_method(cm, xd);
|
|
|
|
// Write out the chosen coding method.
|
|
if (!frame_is_intra_only(cm) && !cm->error_resilient_mode) {
|
|
aom_wb_write_bit(wb, seg->temporal_update);
|
|
} else {
|
|
assert(seg->temporal_update == 0);
|
|
}
|
|
}
|
|
|
|
// Segmentation data
|
|
aom_wb_write_bit(wb, seg->update_data);
|
|
if (seg->update_data) {
|
|
aom_wb_write_bit(wb, seg->abs_delta);
|
|
|
|
for (i = 0; i < MAX_SEGMENTS; i++) {
|
|
for (j = 0; j < SEG_LVL_MAX; j++) {
|
|
const int active = segfeature_active(seg, i, j);
|
|
aom_wb_write_bit(wb, active);
|
|
if (active) {
|
|
const int data = get_segdata(seg, i, j);
|
|
const int data_max = av1_seg_feature_data_max(j);
|
|
|
|
if (av1_is_segfeature_signed(j)) {
|
|
encode_unsigned_max(wb, abs(data), data_max);
|
|
aom_wb_write_bit(wb, data < 0);
|
|
} else {
|
|
encode_unsigned_max(wb, data, data_max);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if !CONFIG_EC_ADAPT
|
|
static void update_seg_probs(AV1_COMP *cpi, aom_writer *w) {
|
|
AV1_COMMON *cm = &cpi->common;
|
|
#if CONFIG_TILE_GROUPS
|
|
const int probwt = cm->num_tg;
|
|
#else
|
|
const int probwt = 1;
|
|
#endif
|
|
|
|
if (!cm->seg.enabled || !cm->seg.update_map) return;
|
|
|
|
if (cm->seg.temporal_update) {
|
|
int i;
|
|
|
|
for (i = 0; i < PREDICTION_PROBS; i++)
|
|
av1_cond_prob_diff_update(w, &cm->fc->seg.pred_probs[i],
|
|
cm->counts.seg.pred[i], probwt);
|
|
|
|
prob_diff_update(av1_segment_tree, cm->fc->seg.tree_probs,
|
|
cm->counts.seg.tree_mispred, MAX_SEGMENTS, probwt, w);
|
|
} else {
|
|
prob_diff_update(av1_segment_tree, cm->fc->seg.tree_probs,
|
|
cm->counts.seg.tree_total, MAX_SEGMENTS, probwt, w);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void write_tx_mode(AV1_COMMON *cm, MACROBLOCKD *xd, TX_MODE *mode,
|
|
struct aom_write_bit_buffer *wb) {
|
|
int i, all_lossless = 1;
|
|
|
|
if (cm->seg.enabled) {
|
|
for (i = 0; i < MAX_SEGMENTS; ++i) {
|
|
if (!xd->lossless[i]) {
|
|
all_lossless = 0;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
all_lossless = xd->lossless[0];
|
|
}
|
|
if (all_lossless) {
|
|
*mode = ONLY_4X4;
|
|
return;
|
|
}
|
|
#if CONFIG_TX64X64
|
|
aom_wb_write_bit(wb, *mode == TX_MODE_SELECT);
|
|
if (*mode != TX_MODE_SELECT) {
|
|
aom_wb_write_literal(wb, AOMMIN(*mode, ALLOW_32X32), 2);
|
|
if (*mode >= ALLOW_32X32) aom_wb_write_bit(wb, *mode == ALLOW_64X64);
|
|
}
|
|
#else
|
|
aom_wb_write_bit(wb, *mode == TX_MODE_SELECT);
|
|
if (*mode != TX_MODE_SELECT) aom_wb_write_literal(wb, *mode, 2);
|
|
#endif // CONFIG_TX64X64
|
|
}
|
|
|
|
#if !CONFIG_EC_ADAPT
|
|
static void update_txfm_probs(AV1_COMMON *cm, aom_writer *w,
|
|
FRAME_COUNTS *counts) {
|
|
#if CONFIG_TILE_GROUPS
|
|
const int probwt = cm->num_tg;
|
|
#else
|
|
const int probwt = 1;
|
|
#endif
|
|
if (cm->tx_mode == TX_MODE_SELECT) {
|
|
int i, j;
|
|
for (i = 0; i < MAX_TX_DEPTH; ++i)
|
|
for (j = 0; j < TX_SIZE_CONTEXTS; ++j)
|
|
prob_diff_update(av1_tx_size_tree[i], cm->fc->tx_size_probs[i][j],
|
|
counts->tx_size[i][j], i + 2, probwt, w);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void write_frame_interp_filter(InterpFilter filter,
|
|
struct aom_write_bit_buffer *wb) {
|
|
aom_wb_write_bit(wb, filter == SWITCHABLE);
|
|
if (filter != SWITCHABLE)
|
|
aom_wb_write_literal(wb, filter, LOG_SWITCHABLE_FILTERS);
|
|
}
|
|
|
|
static void fix_interp_filter(AV1_COMMON *cm, FRAME_COUNTS *counts) {
|
|
if (cm->interp_filter == SWITCHABLE) {
|
|
// Check to see if only one of the filters is actually used
|
|
int count[SWITCHABLE_FILTERS];
|
|
int i, j, c = 0;
|
|
for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
|
|
count[i] = 0;
|
|
for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
|
|
count[i] += counts->switchable_interp[j][i];
|
|
c += (count[i] > 0);
|
|
}
|
|
if (c == 1) {
|
|
// Only one filter is used. So set the filter at frame level
|
|
for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
|
|
if (count[i]) {
|
|
#if CONFIG_MOTION_VAR && (CONFIG_WARPED_MOTION || CONFIG_GLOBAL_MOTION)
|
|
#if CONFIG_WARPED_MOTION
|
|
if (i == EIGHTTAP_REGULAR || WARP_WM_NEIGHBORS_WITH_OBMC)
|
|
#else
|
|
if (i == EIGHTTAP_REGULAR || WARP_GM_NEIGHBORS_WITH_OBMC)
|
|
#endif // CONFIG_WARPED_MOTION
|
|
#endif // CONFIG_MOTION_VAR && (CONFIG_WARPED_MOTION || CONFIG_GLOBAL_MOTION)
|
|
cm->interp_filter = i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void write_tile_info(const AV1_COMMON *const cm,
|
|
struct aom_write_bit_buffer *wb) {
|
|
#if CONFIG_EXT_TILE
|
|
const int tile_width =
|
|
ALIGN_POWER_OF_TWO(cm->tile_width, cm->mib_size_log2) >>
|
|
cm->mib_size_log2;
|
|
const int tile_height =
|
|
ALIGN_POWER_OF_TWO(cm->tile_height, cm->mib_size_log2) >>
|
|
cm->mib_size_log2;
|
|
|
|
assert(tile_width > 0);
|
|
assert(tile_height > 0);
|
|
|
|
aom_wb_write_literal(wb, cm->tile_encoding_mode, 1);
|
|
|
|
// Write the tile sizes
|
|
#if CONFIG_EXT_PARTITION
|
|
if (cm->sb_size == BLOCK_128X128) {
|
|
assert(tile_width <= 32);
|
|
assert(tile_height <= 32);
|
|
aom_wb_write_literal(wb, tile_width - 1, 5);
|
|
aom_wb_write_literal(wb, tile_height - 1, 5);
|
|
} else
|
|
#endif // CONFIG_EXT_PARTITION
|
|
{
|
|
assert(tile_width <= 64);
|
|
assert(tile_height <= 64);
|
|
aom_wb_write_literal(wb, tile_width - 1, 6);
|
|
aom_wb_write_literal(wb, tile_height - 1, 6);
|
|
}
|
|
#if CONFIG_DEPENDENT_HORZTILES
|
|
if (tile_height > 1) aom_wb_write_bit(wb, cm->dependent_horz_tiles);
|
|
#endif
|
|
#else
|
|
int min_log2_tile_cols, max_log2_tile_cols, ones;
|
|
av1_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
|
|
|
|
// columns
|
|
ones = cm->log2_tile_cols - min_log2_tile_cols;
|
|
while (ones--) aom_wb_write_bit(wb, 1);
|
|
|
|
if (cm->log2_tile_cols < max_log2_tile_cols) aom_wb_write_bit(wb, 0);
|
|
|
|
// rows
|
|
aom_wb_write_bit(wb, cm->log2_tile_rows != 0);
|
|
if (cm->log2_tile_rows != 0) aom_wb_write_bit(wb, cm->log2_tile_rows != 1);
|
|
#if CONFIG_DEPENDENT_HORZTILES
|
|
if (cm->log2_tile_rows != 0) aom_wb_write_bit(wb, cm->dependent_horz_tiles);
|
|
#endif
|
|
#endif // CONFIG_EXT_TILE
|
|
|
|
#if CONFIG_LOOPFILTERING_ACROSS_TILES
|
|
aom_wb_write_bit(wb, cm->loop_filter_across_tiles_enabled);
|
|
#endif // CONFIG_LOOPFILTERING_ACROSS_TILES
|
|
}
|
|
|
|
static int get_refresh_mask(AV1_COMP *cpi) {
|
|
int refresh_mask = 0;
|
|
|
|
#if CONFIG_EXT_REFS
|
|
// NOTE(zoeliu): When LAST_FRAME is to get refreshed, the decoder will be
|
|
// notified to get LAST3_FRAME refreshed and then the virtual indexes for all
|
|
// the 3 LAST reference frames will be updated accordingly, i.e.:
|
|
// (1) The original virtual index for LAST3_FRAME will become the new virtual
|
|
// index for LAST_FRAME; and
|
|
// (2) The original virtual indexes for LAST_FRAME and LAST2_FRAME will be
|
|
// shifted and become the new virtual indexes for LAST2_FRAME and
|
|
// LAST3_FRAME.
|
|
refresh_mask |=
|
|
(cpi->refresh_last_frame << cpi->lst_fb_idxes[LAST_REF_FRAMES - 1]);
|
|
if (cpi->rc.is_bwd_ref_frame && cpi->num_extra_arfs) {
|
|
// We have swapped the virtual indices
|
|
refresh_mask |= (cpi->refresh_bwd_ref_frame << cpi->arf_map[0]);
|
|
} else {
|
|
refresh_mask |= (cpi->refresh_bwd_ref_frame << cpi->bwd_fb_idx);
|
|
}
|
|
#else
|
|
refresh_mask |= (cpi->refresh_last_frame << cpi->lst_fb_idx);
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
if (av1_preserve_existing_gf(cpi)) {
|
|
// We have decided to preserve the previously existing golden frame as our
|
|
// new ARF frame. However, in the short term we leave it in the GF slot and,
|
|
// if we're updating the GF with the current decoded frame, we save it
|
|
// instead to the ARF slot.
|
|
// Later, in the function av1_encoder.c:av1_update_reference_frames() we
|
|
// will swap gld_fb_idx and alt_fb_idx to achieve our objective. We do it
|
|
// there so that it can be done outside of the recode loop.
|
|
// Note: This is highly specific to the use of ARF as a forward reference,
|
|
// and this needs to be generalized as other uses are implemented
|
|
// (like RTC/temporal scalability).
|
|
return refresh_mask | (cpi->refresh_golden_frame << cpi->alt_fb_idx);
|
|
} else {
|
|
#if CONFIG_EXT_REFS
|
|
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
|
|
int arf_idx = cpi->arf_map[gf_group->arf_update_idx[gf_group->index]];
|
|
#else
|
|
int arf_idx = cpi->alt_fb_idx;
|
|
if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) {
|
|
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
|
|
arf_idx = gf_group->arf_update_idx[gf_group->index];
|
|
}
|
|
#endif // CONFIG_EXT_REFS
|
|
return refresh_mask | (cpi->refresh_golden_frame << cpi->gld_fb_idx) |
|
|
(cpi->refresh_alt_ref_frame << arf_idx);
|
|
}
|
|
}
|
|
|
|
#if CONFIG_EXT_TILE
|
|
static INLINE int find_identical_tile(
|
|
const int tile_row, const int tile_col,
|
|
TileBufferEnc (*const tile_buffers)[1024]) {
|
|
const MV32 candidate_offset[1] = { { 1, 0 } };
|
|
const uint8_t *const cur_tile_data =
|
|
tile_buffers[tile_row][tile_col].data + 4;
|
|
const size_t cur_tile_size = tile_buffers[tile_row][tile_col].size;
|
|
|
|
int i;
|
|
|
|
if (tile_row == 0) return 0;
|
|
|
|
// (TODO: yunqingwang) For now, only above tile is checked and used.
|
|
// More candidates such as left tile can be added later.
|
|
for (i = 0; i < 1; i++) {
|
|
int row_offset = candidate_offset[0].row;
|
|
int col_offset = candidate_offset[0].col;
|
|
int row = tile_row - row_offset;
|
|
int col = tile_col - col_offset;
|
|
uint8_t tile_hdr;
|
|
const uint8_t *tile_data;
|
|
TileBufferEnc *candidate;
|
|
|
|
if (row < 0 || col < 0) continue;
|
|
|
|
tile_hdr = *(tile_buffers[row][col].data);
|
|
|
|
// Read out tcm bit
|
|
if ((tile_hdr >> 7) == 1) {
|
|
// The candidate is a copy tile itself
|
|
row_offset += tile_hdr & 0x7f;
|
|
row = tile_row - row_offset;
|
|
}
|
|
|
|
candidate = &tile_buffers[row][col];
|
|
|
|
if (row_offset >= 128 || candidate->size != cur_tile_size) continue;
|
|
|
|
tile_data = candidate->data + 4;
|
|
|
|
if (memcmp(tile_data, cur_tile_data, cur_tile_size) != 0) continue;
|
|
|
|
// Identical tile found
|
|
assert(row_offset > 0);
|
|
return row_offset;
|
|
}
|
|
|
|
// No identical tile found
|
|
return 0;
|
|
}
|
|
#endif // CONFIG_EXT_TILE
|
|
|
|
#if CONFIG_TILE_GROUPS
|
|
static uint32_t write_tiles(AV1_COMP *const cpi,
|
|
struct aom_write_bit_buffer *wb,
|
|
unsigned int *max_tile_size,
|
|
unsigned int *max_tile_col_size) {
|
|
#else
|
|
static uint32_t write_tiles(AV1_COMP *const cpi, uint8_t *const dst,
|
|
unsigned int *max_tile_size,
|
|
unsigned int *max_tile_col_size) {
|
|
#endif
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
#if CONFIG_ANS
|
|
struct BufAnsCoder *buf_ans = &cpi->buf_ans;
|
|
#else
|
|
aom_writer mode_bc;
|
|
#endif // CONFIG_ANS
|
|
int tile_row, tile_col;
|
|
TOKENEXTRA *(*const tok_buffers)[MAX_TILE_COLS] = cpi->tile_tok;
|
|
TileBufferEnc(*const tile_buffers)[MAX_TILE_COLS] = cpi->tile_buffers;
|
|
uint32_t total_size = 0;
|
|
const int tile_cols = cm->tile_cols;
|
|
const int tile_rows = cm->tile_rows;
|
|
unsigned int tile_size = 0;
|
|
#if CONFIG_TILE_GROUPS
|
|
const int n_log2_tiles = cm->log2_tile_rows + cm->log2_tile_cols;
|
|
const int have_tiles = n_log2_tiles > 0;
|
|
uint32_t comp_hdr_size;
|
|
// Fixed size tile groups for the moment
|
|
const int num_tg_hdrs = cm->num_tg;
|
|
const int tg_size = (tile_rows * tile_cols + num_tg_hdrs - 1) / num_tg_hdrs;
|
|
int tile_count = 0;
|
|
int tg_count = 1;
|
|
int tile_size_bytes = 4;
|
|
int tile_col_size_bytes;
|
|
uint32_t uncompressed_hdr_size = 0;
|
|
uint8_t *dst = NULL;
|
|
struct aom_write_bit_buffer comp_hdr_len_wb;
|
|
struct aom_write_bit_buffer tg_params_wb;
|
|
struct aom_write_bit_buffer tile_size_bytes_wb;
|
|
uint32_t saved_offset;
|
|
int mtu_size = cpi->oxcf.mtu;
|
|
int curr_tg_data_size = 0;
|
|
int hdr_size;
|
|
#endif
|
|
#if CONFIG_EXT_TILE
|
|
const int have_tiles = tile_cols * tile_rows > 1;
|
|
#endif // CONFIG_EXT_TILE
|
|
|
|
*max_tile_size = 0;
|
|
*max_tile_col_size = 0;
|
|
|
|
// All tile size fields are output on 4 bytes. A call to remux_tiles will
|
|
// later compact the data if smaller headers are adequate.
|
|
|
|
#if CONFIG_EXT_TILE
|
|
for (tile_col = 0; tile_col < tile_cols; tile_col++) {
|
|
TileInfo tile_info;
|
|
const int is_last_col = (tile_col == tile_cols - 1);
|
|
const uint32_t col_offset = total_size;
|
|
|
|
av1_tile_set_col(&tile_info, cm, tile_col);
|
|
|
|
// The last column does not have a column header
|
|
if (!is_last_col) total_size += 4;
|
|
|
|
for (tile_row = 0; tile_row < tile_rows; tile_row++) {
|
|
TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col];
|
|
const TOKENEXTRA *tok = tok_buffers[tile_row][tile_col];
|
|
const TOKENEXTRA *tok_end = tok + cpi->tok_count[tile_row][tile_col];
|
|
const int data_offset = have_tiles ? 4 : 0;
|
|
#if CONFIG_EC_ADAPT
|
|
const int tile_idx = tile_row * tile_cols + tile_col;
|
|
TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
|
|
#endif
|
|
av1_tile_set_row(&tile_info, cm, tile_row);
|
|
|
|
buf->data = dst + total_size;
|
|
|
|
// Is CONFIG_EXT_TILE = 1, every tile in the row has a header,
|
|
// even for the last one, unless no tiling is used at all.
|
|
total_size += data_offset;
|
|
#if CONFIG_EC_ADAPT
|
|
// Initialise tile context from the frame context
|
|
this_tile->tctx = *cm->fc;
|
|
cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx;
|
|
#endif
|
|
#if CONFIG_PVQ
|
|
cpi->td.mb.pvq_q = &this_tile->pvq_q;
|
|
cpi->td.mb.daala_enc.state.adapt = &this_tile->tctx.pvq_context;
|
|
#endif // CONFIG_PVQ
|
|
#if !CONFIG_ANS
|
|
aom_start_encode(&mode_bc, buf->data + data_offset);
|
|
write_modes(cpi, &tile_info, &mode_bc, &tok, tok_end);
|
|
assert(tok == tok_end);
|
|
aom_stop_encode(&mode_bc);
|
|
tile_size = mode_bc.pos;
|
|
#else
|
|
buf_ans_write_init(buf_ans, buf->data + data_offset);
|
|
write_modes(cpi, &tile_info, buf_ans, &tok, tok_end);
|
|
assert(tok == tok_end);
|
|
aom_buf_ans_flush(buf_ans);
|
|
tile_size = buf_ans_write_end(buf_ans);
|
|
#endif // !CONFIG_ANS
|
|
#if CONFIG_PVQ
|
|
cpi->td.mb.pvq_q = NULL;
|
|
#endif
|
|
buf->size = tile_size;
|
|
|
|
// Record the maximum tile size we see, so we can compact headers later.
|
|
*max_tile_size = AOMMAX(*max_tile_size, tile_size);
|
|
|
|
if (have_tiles) {
|
|
// tile header: size of this tile, or copy offset
|
|
uint32_t tile_header = tile_size;
|
|
|
|
// If the tile_encoding_mode is 1 (i.e. TILE_VR), check if this tile is
|
|
// a copy tile.
|
|
// Very low chances to have copy tiles on the key frames, so don't
|
|
// search on key frames to reduce unnecessary search.
|
|
if (cm->frame_type != KEY_FRAME && cm->tile_encoding_mode) {
|
|
const int idendical_tile_offset =
|
|
find_identical_tile(tile_row, tile_col, tile_buffers);
|
|
|
|
if (idendical_tile_offset > 0) {
|
|
tile_size = 0;
|
|
tile_header = idendical_tile_offset | 0x80;
|
|
tile_header <<= 24;
|
|
}
|
|
}
|
|
|
|
mem_put_le32(buf->data, tile_header);
|
|
}
|
|
|
|
total_size += tile_size;
|
|
}
|
|
|
|
if (!is_last_col) {
|
|
uint32_t col_size = total_size - col_offset - 4;
|
|
mem_put_le32(dst + col_offset, col_size);
|
|
|
|
// If it is not final packing, record the maximum tile column size we see,
|
|
// otherwise, check if the tile size is out of the range.
|
|
*max_tile_col_size = AOMMAX(*max_tile_col_size, col_size);
|
|
}
|
|
}
|
|
#else // !CONFIG_EXT_TILE
|
|
#if CONFIG_TILE_GROUPS
|
|
write_uncompressed_header(cpi, wb);
|
|
|
|
#if CONFIG_EXT_REFS
|
|
if (cm->show_existing_frame) {
|
|
total_size = aom_wb_bytes_written(wb);
|
|
return (uint32_t)total_size;
|
|
}
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
// Write the tile length code
|
|
tile_size_bytes_wb = *wb;
|
|
aom_wb_write_literal(wb, 3, 2);
|
|
|
|
/* Write a placeholder for the number of tiles in each tile group */
|
|
tg_params_wb = *wb;
|
|
saved_offset = wb->bit_offset;
|
|
if (have_tiles) {
|
|
aom_wb_overwrite_literal(wb, 3, n_log2_tiles);
|
|
aom_wb_overwrite_literal(wb, (1 << n_log2_tiles) - 1, n_log2_tiles);
|
|
}
|
|
|
|
/* Write a placeholder for the compressed header length */
|
|
comp_hdr_len_wb = *wb;
|
|
aom_wb_write_literal(wb, 0, 16);
|
|
|
|
uncompressed_hdr_size = aom_wb_bytes_written(wb);
|
|
dst = wb->bit_buffer;
|
|
comp_hdr_size = write_compressed_header(cpi, dst + uncompressed_hdr_size);
|
|
aom_wb_overwrite_literal(&comp_hdr_len_wb, (int)(comp_hdr_size), 16);
|
|
hdr_size = uncompressed_hdr_size + comp_hdr_size;
|
|
total_size += hdr_size;
|
|
#endif
|
|
|
|
for (tile_row = 0; tile_row < tile_rows; tile_row++) {
|
|
TileInfo tile_info;
|
|
const int is_last_row = (tile_row == tile_rows - 1);
|
|
av1_tile_set_row(&tile_info, cm, tile_row);
|
|
|
|
for (tile_col = 0; tile_col < tile_cols; tile_col++) {
|
|
const int tile_idx = tile_row * tile_cols + tile_col;
|
|
TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col];
|
|
#if CONFIG_PVQ || CONFIG_EC_ADAPT
|
|
TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
|
|
#endif
|
|
const TOKENEXTRA *tok = tok_buffers[tile_row][tile_col];
|
|
const TOKENEXTRA *tok_end = tok + cpi->tok_count[tile_row][tile_col];
|
|
const int is_last_col = (tile_col == tile_cols - 1);
|
|
const int is_last_tile = is_last_col && is_last_row;
|
|
#if !CONFIG_TILE_GROUPS
|
|
(void)tile_idx;
|
|
#else
|
|
|
|
if ((!mtu_size && tile_count > tg_size) ||
|
|
(mtu_size && tile_count && curr_tg_data_size >= mtu_size)) {
|
|
// New tile group
|
|
tg_count++;
|
|
// We've exceeded the packet size
|
|
if (tile_count > 1) {
|
|
/* The last tile exceeded the packet size. The tile group size
|
|
should therefore be tile_count-1.
|
|
Move the last tile and insert headers before it
|
|
*/
|
|
uint32_t old_total_size = total_size - tile_size - 4;
|
|
memmove(dst + old_total_size + hdr_size, dst + old_total_size,
|
|
(tile_size + 4) * sizeof(uint8_t));
|
|
// Copy uncompressed header
|
|
memmove(dst + old_total_size, dst,
|
|
uncompressed_hdr_size * sizeof(uint8_t));
|
|
// Write the number of tiles in the group into the last uncompressed
|
|
// header before the one we've just inserted
|
|
aom_wb_overwrite_literal(&tg_params_wb, tile_idx - tile_count,
|
|
n_log2_tiles);
|
|
aom_wb_overwrite_literal(&tg_params_wb, tile_count - 2, n_log2_tiles);
|
|
// Update the pointer to the last TG params
|
|
tg_params_wb.bit_offset = saved_offset + 8 * old_total_size;
|
|
// Copy compressed header
|
|
memmove(dst + old_total_size + uncompressed_hdr_size,
|
|
dst + uncompressed_hdr_size, comp_hdr_size * sizeof(uint8_t));
|
|
total_size += hdr_size;
|
|
tile_count = 1;
|
|
curr_tg_data_size = hdr_size + tile_size + 4;
|
|
|
|
} else {
|
|
// We exceeded the packet size in just one tile
|
|
// Copy uncompressed header
|
|
memmove(dst + total_size, dst,
|
|
uncompressed_hdr_size * sizeof(uint8_t));
|
|
// Write the number of tiles in the group into the last uncompressed
|
|
// header
|
|
aom_wb_overwrite_literal(&tg_params_wb, tile_idx - tile_count,
|
|
n_log2_tiles);
|
|
aom_wb_overwrite_literal(&tg_params_wb, tile_count - 1, n_log2_tiles);
|
|
tg_params_wb.bit_offset = saved_offset + 8 * total_size;
|
|
// Copy compressed header
|
|
memmove(dst + total_size + uncompressed_hdr_size,
|
|
dst + uncompressed_hdr_size, comp_hdr_size * sizeof(uint8_t));
|
|
total_size += hdr_size;
|
|
tile_count = 0;
|
|
curr_tg_data_size = hdr_size;
|
|
}
|
|
}
|
|
tile_count++;
|
|
#endif
|
|
av1_tile_set_col(&tile_info, cm, tile_col);
|
|
|
|
#if CONFIG_DEPENDENT_HORZTILES && CONFIG_TILE_GROUPS
|
|
av1_tile_set_tg_boundary(&tile_info, cm, tile_row, tile_col);
|
|
#endif
|
|
buf->data = dst + total_size;
|
|
|
|
// The last tile does not have a header.
|
|
if (!is_last_tile) total_size += 4;
|
|
|
|
#if CONFIG_EC_ADAPT
|
|
// Initialise tile context from the frame context
|
|
this_tile->tctx = *cm->fc;
|
|
cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx;
|
|
#endif
|
|
#if CONFIG_PVQ
|
|
cpi->td.mb.pvq_q = &this_tile->pvq_q;
|
|
cpi->td.mb.daala_enc.state.adapt = &this_tile->tctx.pvq_context;
|
|
#endif // CONFIG_PVQ
|
|
#if CONFIG_ANS
|
|
buf_ans_write_init(buf_ans, dst + total_size);
|
|
write_modes(cpi, &tile_info, buf_ans, &tok, tok_end);
|
|
assert(tok == tok_end);
|
|
aom_buf_ans_flush(buf_ans);
|
|
tile_size = buf_ans_write_end(buf_ans);
|
|
#else
|
|
aom_start_encode(&mode_bc, dst + total_size);
|
|
write_modes(cpi, &tile_info, &mode_bc, &tok, tok_end);
|
|
#if !CONFIG_LV_MAP
|
|
assert(tok == tok_end);
|
|
#endif // !CONFIG_LV_MAP
|
|
aom_stop_encode(&mode_bc);
|
|
tile_size = mode_bc.pos;
|
|
#endif // CONFIG_ANS
|
|
#if CONFIG_PVQ
|
|
cpi->td.mb.pvq_q = NULL;
|
|
#endif
|
|
|
|
assert(tile_size > 0);
|
|
|
|
#if CONFIG_TILE_GROUPS
|
|
curr_tg_data_size += tile_size + 4;
|
|
#endif
|
|
buf->size = tile_size;
|
|
|
|
if (!is_last_tile) {
|
|
*max_tile_size = AOMMAX(*max_tile_size, tile_size);
|
|
// size of this tile
|
|
mem_put_le32(buf->data, tile_size);
|
|
}
|
|
|
|
total_size += tile_size;
|
|
}
|
|
}
|
|
#if CONFIG_TILE_GROUPS
|
|
// Write the final tile group size
|
|
if (n_log2_tiles) {
|
|
aom_wb_overwrite_literal(&tg_params_wb, (1 << n_log2_tiles) - tile_count,
|
|
n_log2_tiles);
|
|
aom_wb_overwrite_literal(&tg_params_wb, tile_count - 1, n_log2_tiles);
|
|
}
|
|
// Remux if possible. TODO (Thomas Davies): do this for more than one tile
|
|
// group
|
|
if (have_tiles && tg_count == 1) {
|
|
int data_size = total_size - (uncompressed_hdr_size + comp_hdr_size);
|
|
data_size = remux_tiles(cm, dst + uncompressed_hdr_size + comp_hdr_size,
|
|
data_size, *max_tile_size, *max_tile_col_size,
|
|
&tile_size_bytes, &tile_col_size_bytes);
|
|
total_size = data_size + uncompressed_hdr_size + comp_hdr_size;
|
|
aom_wb_overwrite_literal(&tile_size_bytes_wb, tile_size_bytes - 1, 2);
|
|
}
|
|
|
|
#endif
|
|
#endif // CONFIG_EXT_TILE
|
|
return (uint32_t)total_size;
|
|
}
|
|
|
|
static void write_render_size(const AV1_COMMON *cm,
|
|
struct aom_write_bit_buffer *wb) {
|
|
const int scaling_active = !av1_resize_unscaled(cm);
|
|
aom_wb_write_bit(wb, scaling_active);
|
|
if (scaling_active) {
|
|
aom_wb_write_literal(wb, cm->render_width - 1, 16);
|
|
aom_wb_write_literal(wb, cm->render_height - 1, 16);
|
|
}
|
|
}
|
|
|
|
#if CONFIG_FRAME_SUPERRES
|
|
static void write_superres_scale(const AV1_COMMON *const cm,
|
|
struct aom_write_bit_buffer *wb) {
|
|
// First bit is whether to to scale or not
|
|
if (cm->superres_scale_numerator == SCALE_DENOMINATOR) {
|
|
aom_wb_write_bit(wb, 0); // no scaling
|
|
} else {
|
|
aom_wb_write_bit(wb, 1); // scaling, write scale factor
|
|
aom_wb_write_literal(
|
|
wb, cm->superres_scale_numerator - SUPERRES_SCALE_NUMERATOR_MIN,
|
|
SUPERRES_SCALE_BITS);
|
|
}
|
|
}
|
|
#endif // CONFIG_FRAME_SUPERRES
|
|
|
|
static void write_frame_size(const AV1_COMMON *cm,
|
|
struct aom_write_bit_buffer *wb) {
|
|
#if CONFIG_FRAME_SUPERRES
|
|
aom_wb_write_literal(wb, cm->superres_upscaled_width - 1, 16);
|
|
aom_wb_write_literal(wb, cm->superres_upscaled_height - 1, 16);
|
|
write_superres_scale(cm, wb);
|
|
#else
|
|
aom_wb_write_literal(wb, cm->width - 1, 16);
|
|
aom_wb_write_literal(wb, cm->height - 1, 16);
|
|
#endif // CONFIG_FRAME_SUPERRES
|
|
write_render_size(cm, wb);
|
|
}
|
|
|
|
static void write_frame_size_with_refs(AV1_COMP *cpi,
|
|
struct aom_write_bit_buffer *wb) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
int found = 0;
|
|
|
|
MV_REFERENCE_FRAME ref_frame;
|
|
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
|
|
YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame);
|
|
|
|
if (cfg != NULL) {
|
|
#if CONFIG_FRAME_SUPERRES
|
|
found = cm->superres_upscaled_width == cfg->y_crop_width &&
|
|
cm->superres_upscaled_height == cfg->y_crop_height;
|
|
#else
|
|
found =
|
|
cm->width == cfg->y_crop_width && cm->height == cfg->y_crop_height;
|
|
#endif
|
|
found &= cm->render_width == cfg->render_width &&
|
|
cm->render_height == cfg->render_height;
|
|
}
|
|
aom_wb_write_bit(wb, found);
|
|
if (found) {
|
|
#if CONFIG_FRAME_SUPERRES
|
|
write_superres_scale(cm, wb);
|
|
#endif // CONFIG_FRAME_SUPERRES
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found) write_frame_size(cm, wb);
|
|
}
|
|
|
|
static void write_sync_code(struct aom_write_bit_buffer *wb) {
|
|
aom_wb_write_literal(wb, AV1_SYNC_CODE_0, 8);
|
|
aom_wb_write_literal(wb, AV1_SYNC_CODE_1, 8);
|
|
aom_wb_write_literal(wb, AV1_SYNC_CODE_2, 8);
|
|
}
|
|
|
|
static void write_profile(BITSTREAM_PROFILE profile,
|
|
struct aom_write_bit_buffer *wb) {
|
|
switch (profile) {
|
|
case PROFILE_0: aom_wb_write_literal(wb, 0, 2); break;
|
|
case PROFILE_1: aom_wb_write_literal(wb, 2, 2); break;
|
|
case PROFILE_2: aom_wb_write_literal(wb, 1, 2); break;
|
|
case PROFILE_3: aom_wb_write_literal(wb, 6, 3); break;
|
|
default: assert(0);
|
|
}
|
|
}
|
|
|
|
static void write_bitdepth_colorspace_sampling(
|
|
AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) {
|
|
if (cm->profile >= PROFILE_2) {
|
|
assert(cm->bit_depth > AOM_BITS_8);
|
|
aom_wb_write_bit(wb, cm->bit_depth == AOM_BITS_10 ? 0 : 1);
|
|
}
|
|
#if CONFIG_COLORSPACE_HEADERS
|
|
aom_wb_write_literal(wb, cm->color_space, 5);
|
|
aom_wb_write_literal(wb, cm->transfer_function, 5);
|
|
#else
|
|
aom_wb_write_literal(wb, cm->color_space, 3);
|
|
#endif
|
|
if (cm->color_space != AOM_CS_SRGB) {
|
|
// 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
|
|
aom_wb_write_bit(wb, cm->color_range);
|
|
if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
|
|
assert(cm->subsampling_x != 1 || cm->subsampling_y != 1);
|
|
aom_wb_write_bit(wb, cm->subsampling_x);
|
|
aom_wb_write_bit(wb, cm->subsampling_y);
|
|
aom_wb_write_bit(wb, 0); // unused
|
|
} else {
|
|
assert(cm->subsampling_x == 1 && cm->subsampling_y == 1);
|
|
}
|
|
#if CONFIG_COLORSPACE_HEADERS
|
|
if (cm->subsampling_x == 1 && cm->subsampling_y == 1) {
|
|
aom_wb_write_literal(wb, cm->chroma_sample_position, 2);
|
|
}
|
|
#endif
|
|
} else {
|
|
assert(cm->profile == PROFILE_1 || cm->profile == PROFILE_3);
|
|
aom_wb_write_bit(wb, 0); // unused
|
|
}
|
|
}
|
|
|
|
#if CONFIG_REFERENCE_BUFFER
|
|
void write_sequence_header(SequenceHeader *seq_params) {
|
|
/* Placeholder for actually writing to the bitstream */
|
|
seq_params->frame_id_numbers_present_flag = FRAME_ID_NUMBERS_PRESENT_FLAG;
|
|
seq_params->frame_id_length_minus7 = FRAME_ID_LENGTH_MINUS7;
|
|
seq_params->delta_frame_id_length_minus2 = DELTA_FRAME_ID_LENGTH_MINUS2;
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_EXT_INTER
|
|
static void write_compound_tools(const AV1_COMMON *cm,
|
|
struct aom_write_bit_buffer *wb) {
|
|
(void)cm;
|
|
(void)wb;
|
|
#if CONFIG_INTERINTRA
|
|
if (!frame_is_intra_only(cm) && cm->reference_mode != COMPOUND_REFERENCE) {
|
|
aom_wb_write_bit(wb, cm->allow_interintra_compound);
|
|
} else {
|
|
assert(cm->allow_interintra_compound == 0);
|
|
}
|
|
#endif // CONFIG_INTERINTRA
|
|
#if CONFIG_WEDGE || CONFIG_COMPOUND_SEGMENT
|
|
#if CONFIG_COMPOUND_SINGLEREF
|
|
if (!frame_is_intra_only(cm)) {
|
|
#else // !CONFIG_COMPOUND_SINGLEREF
|
|
if (!frame_is_intra_only(cm) && cm->reference_mode != SINGLE_REFERENCE) {
|
|
#endif // CONFIG_COMPOUND_SINGLEREF
|
|
aom_wb_write_bit(wb, cm->allow_masked_compound);
|
|
} else {
|
|
assert(cm->allow_masked_compound == 0);
|
|
}
|
|
#endif // CONFIG_WEDGE || CONFIG_COMPOUND_SEGMENT
|
|
}
|
|
#endif // CONFIG_EXT_INTER
|
|
|
|
static void write_uncompressed_header(AV1_COMP *cpi,
|
|
struct aom_write_bit_buffer *wb) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
|
|
|
|
#if CONFIG_REFERENCE_BUFFER
|
|
/* TODO: Move outside frame loop or inside key-frame branch */
|
|
write_sequence_header(&cpi->seq_params);
|
|
#endif
|
|
|
|
aom_wb_write_literal(wb, AOM_FRAME_MARKER, 2);
|
|
|
|
write_profile(cm->profile, wb);
|
|
|
|
#if CONFIG_EXT_REFS
|
|
// NOTE: By default all coded frames to be used as a reference
|
|
cm->is_reference_frame = 1;
|
|
|
|
if (cm->show_existing_frame) {
|
|
RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
|
|
const int frame_to_show = cm->ref_frame_map[cpi->existing_fb_idx_to_show];
|
|
|
|
if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) {
|
|
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
|
|
"Buffer %d does not contain a reconstructed frame",
|
|
frame_to_show);
|
|
}
|
|
ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show);
|
|
|
|
aom_wb_write_bit(wb, 1); // show_existing_frame
|
|
aom_wb_write_literal(wb, cpi->existing_fb_idx_to_show, 3);
|
|
|
|
#if CONFIG_REFERENCE_BUFFER
|
|
if (cpi->seq_params.frame_id_numbers_present_flag) {
|
|
int frame_id_len = cpi->seq_params.frame_id_length_minus7 + 7;
|
|
int display_frame_id = cm->ref_frame_id[cpi->existing_fb_idx_to_show];
|
|
aom_wb_write_literal(wb, display_frame_id, frame_id_len);
|
|
/* Add a zero byte to prevent emulation of superframe marker */
|
|
/* Same logic as when when terminating the entropy coder */
|
|
/* Consider to have this logic only one place */
|
|
aom_wb_write_literal(wb, 0, 8);
|
|
}
|
|
#endif
|
|
|
|
return;
|
|
} else {
|
|
#endif // CONFIG_EXT_REFS
|
|
aom_wb_write_bit(wb, 0); // show_existing_frame
|
|
#if CONFIG_EXT_REFS
|
|
}
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
aom_wb_write_bit(wb, cm->frame_type);
|
|
aom_wb_write_bit(wb, cm->show_frame);
|
|
aom_wb_write_bit(wb, cm->error_resilient_mode);
|
|
|
|
#if CONFIG_REFERENCE_BUFFER
|
|
cm->invalid_delta_frame_id_minus1 = 0;
|
|
if (cpi->seq_params.frame_id_numbers_present_flag) {
|
|
int frame_id_len = cpi->seq_params.frame_id_length_minus7 + 7;
|
|
aom_wb_write_literal(wb, cm->current_frame_id, frame_id_len);
|
|
}
|
|
#endif
|
|
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
write_sync_code(wb);
|
|
write_bitdepth_colorspace_sampling(cm, wb);
|
|
write_frame_size(cm, wb);
|
|
#if CONFIG_ANS && ANS_MAX_SYMBOLS
|
|
assert(cpi->common.ans_window_size_log2 >= 8);
|
|
assert(cpi->common.ans_window_size_log2 < 24);
|
|
aom_wb_write_literal(wb, cpi->common.ans_window_size_log2 - 8, 4);
|
|
#endif // CONFIG_ANS && ANS_MAX_SYMBOLS
|
|
#if CONFIG_PALETTE || CONFIG_INTRABC
|
|
aom_wb_write_bit(wb, cm->allow_screen_content_tools);
|
|
#endif // CONFIG_PALETTE || CONFIG_INTRABC
|
|
} else {
|
|
if (!cm->show_frame) aom_wb_write_bit(wb, cm->intra_only);
|
|
#if CONFIG_PALETTE || CONFIG_INTRABC
|
|
if (cm->intra_only) aom_wb_write_bit(wb, cm->allow_screen_content_tools);
|
|
#endif // CONFIG_PALETTE || CONFIG_INTRABC
|
|
if (!cm->error_resilient_mode) {
|
|
if (cm->intra_only) {
|
|
aom_wb_write_bit(wb,
|
|
cm->reset_frame_context == RESET_FRAME_CONTEXT_ALL);
|
|
} else {
|
|
aom_wb_write_bit(wb,
|
|
cm->reset_frame_context != RESET_FRAME_CONTEXT_NONE);
|
|
if (cm->reset_frame_context != RESET_FRAME_CONTEXT_NONE)
|
|
aom_wb_write_bit(wb,
|
|
cm->reset_frame_context == RESET_FRAME_CONTEXT_ALL);
|
|
}
|
|
}
|
|
|
|
#if CONFIG_EXT_REFS
|
|
cpi->refresh_frame_mask = get_refresh_mask(cpi);
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
if (cm->intra_only) {
|
|
write_sync_code(wb);
|
|
write_bitdepth_colorspace_sampling(cm, wb);
|
|
|
|
#if CONFIG_EXT_REFS
|
|
aom_wb_write_literal(wb, cpi->refresh_frame_mask, REF_FRAMES);
|
|
#else
|
|
aom_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
|
|
#endif // CONFIG_EXT_REFS
|
|
write_frame_size(cm, wb);
|
|
|
|
#if CONFIG_ANS && ANS_MAX_SYMBOLS
|
|
assert(cpi->common.ans_window_size_log2 >= 8);
|
|
assert(cpi->common.ans_window_size_log2 < 24);
|
|
aom_wb_write_literal(wb, cpi->common.ans_window_size_log2 - 8, 4);
|
|
#endif // CONFIG_ANS && ANS_MAX_SYMBOLS
|
|
} else {
|
|
MV_REFERENCE_FRAME ref_frame;
|
|
|
|
#if CONFIG_EXT_REFS
|
|
aom_wb_write_literal(wb, cpi->refresh_frame_mask, REF_FRAMES);
|
|
#else
|
|
aom_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
#if CONFIG_EXT_REFS
|
|
if (!cpi->refresh_frame_mask) {
|
|
// NOTE: "cpi->refresh_frame_mask == 0" indicates that the coded frame
|
|
// will not be used as a reference
|
|
cm->is_reference_frame = 0;
|
|
}
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
|
|
assert(get_ref_frame_map_idx(cpi, ref_frame) != INVALID_IDX);
|
|
aom_wb_write_literal(wb, get_ref_frame_map_idx(cpi, ref_frame),
|
|
REF_FRAMES_LOG2);
|
|
aom_wb_write_bit(wb, cm->ref_frame_sign_bias[ref_frame]);
|
|
#if CONFIG_REFERENCE_BUFFER
|
|
if (cpi->seq_params.frame_id_numbers_present_flag) {
|
|
int i = get_ref_frame_map_idx(cpi, ref_frame);
|
|
int frame_id_len = cpi->seq_params.frame_id_length_minus7 + 7;
|
|
int diff_len = cpi->seq_params.delta_frame_id_length_minus2 + 2;
|
|
int delta_frame_id_minus1 =
|
|
((cm->current_frame_id - cm->ref_frame_id[i] +
|
|
(1 << frame_id_len)) %
|
|
(1 << frame_id_len)) -
|
|
1;
|
|
if (delta_frame_id_minus1 < 0 ||
|
|
delta_frame_id_minus1 >= (1 << diff_len))
|
|
cm->invalid_delta_frame_id_minus1 = 1;
|
|
aom_wb_write_literal(wb, delta_frame_id_minus1, diff_len);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if CONFIG_FRAME_SIZE
|
|
if (cm->error_resilient_mode == 0) {
|
|
write_frame_size_with_refs(cpi, wb);
|
|
} else {
|
|
write_frame_size(cm, wb);
|
|
}
|
|
#else
|
|
write_frame_size_with_refs(cpi, wb);
|
|
#endif
|
|
|
|
aom_wb_write_bit(wb, cm->allow_high_precision_mv);
|
|
|
|
fix_interp_filter(cm, cpi->td.counts);
|
|
write_frame_interp_filter(cm->interp_filter, wb);
|
|
#if CONFIG_TEMPMV_SIGNALING
|
|
if (!cm->error_resilient_mode) {
|
|
aom_wb_write_bit(wb, cm->use_prev_frame_mvs);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#if CONFIG_REFERENCE_BUFFER
|
|
cm->refresh_mask = cm->frame_type == KEY_FRAME ? 0xFF : get_refresh_mask(cpi);
|
|
#endif
|
|
|
|
if (!cm->error_resilient_mode) {
|
|
aom_wb_write_bit(
|
|
wb, cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_FORWARD);
|
|
}
|
|
|
|
aom_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2);
|
|
|
|
assert(cm->mib_size == mi_size_wide[cm->sb_size]);
|
|
assert(cm->mib_size == 1 << cm->mib_size_log2);
|
|
#if CONFIG_EXT_PARTITION
|
|
assert(cm->sb_size == BLOCK_128X128 || cm->sb_size == BLOCK_64X64);
|
|
aom_wb_write_bit(wb, cm->sb_size == BLOCK_128X128 ? 1 : 0);
|
|
#else
|
|
assert(cm->sb_size == BLOCK_64X64);
|
|
#endif // CONFIG_EXT_PARTITION
|
|
|
|
encode_loopfilter(cm, wb);
|
|
#if CONFIG_CDEF
|
|
encode_cdef(cm, wb);
|
|
#endif
|
|
#if CONFIG_LOOP_RESTORATION
|
|
encode_restoration_mode(cm, wb);
|
|
#endif // CONFIG_LOOP_RESTORATION
|
|
encode_quantization(cm, wb);
|
|
encode_segmentation(cm, xd, wb);
|
|
#if CONFIG_DELTA_Q
|
|
{
|
|
int i;
|
|
struct segmentation *const seg = &cm->seg;
|
|
int segment_quantizer_active = 0;
|
|
for (i = 0; i < MAX_SEGMENTS; i++) {
|
|
if (segfeature_active(seg, i, SEG_LVL_ALT_Q)) {
|
|
segment_quantizer_active = 1;
|
|
}
|
|
}
|
|
|
|
if (cm->delta_q_present_flag)
|
|
assert(segment_quantizer_active == 0 && cm->base_qindex > 0);
|
|
if (segment_quantizer_active == 0 && cm->base_qindex > 0) {
|
|
aom_wb_write_bit(wb, cm->delta_q_present_flag);
|
|
if (cm->delta_q_present_flag) {
|
|
aom_wb_write_literal(wb, OD_ILOG_NZ(cm->delta_q_res) - 1, 2);
|
|
xd->prev_qindex = cm->base_qindex;
|
|
#if CONFIG_EXT_DELTA_Q
|
|
assert(seg->abs_delta == SEGMENT_DELTADATA);
|
|
aom_wb_write_bit(wb, cm->delta_lf_present_flag);
|
|
if (cm->delta_lf_present_flag) {
|
|
aom_wb_write_literal(wb, OD_ILOG_NZ(cm->delta_lf_res) - 1, 2);
|
|
xd->prev_delta_lf_from_base = 0;
|
|
}
|
|
#endif // CONFIG_EXT_DELTA_Q
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
write_tx_mode(cm, xd, &cm->tx_mode, wb);
|
|
|
|
if (cpi->allow_comp_inter_inter) {
|
|
const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT;
|
|
#if !CONFIG_REF_ADAPT
|
|
const int use_compound_pred = cm->reference_mode != SINGLE_REFERENCE;
|
|
#endif // !CONFIG_REF_ADAPT
|
|
|
|
aom_wb_write_bit(wb, use_hybrid_pred);
|
|
#if !CONFIG_REF_ADAPT
|
|
if (!use_hybrid_pred) aom_wb_write_bit(wb, use_compound_pred);
|
|
#endif // !CONFIG_REF_ADAPT
|
|
}
|
|
#if CONFIG_EXT_INTER
|
|
write_compound_tools(cm, wb);
|
|
#endif // CONFIG_EXT_INTER
|
|
|
|
#if CONFIG_EXT_TX
|
|
aom_wb_write_bit(wb, cm->reduced_tx_set_used);
|
|
#endif // CONFIG_EXT_TX
|
|
|
|
write_tile_info(cm, wb);
|
|
}
|
|
|
|
#if CONFIG_GLOBAL_MOTION
|
|
static void write_global_motion_params(WarpedMotionParams *params,
|
|
WarpedMotionParams *ref_params,
|
|
aom_writer *w, int allow_hp) {
|
|
TransformationType type = params->wmtype;
|
|
int trans_bits;
|
|
int trans_prec_diff;
|
|
aom_write_bit(w, type != IDENTITY);
|
|
if (type != IDENTITY) aom_write_literal(w, type - 1, GLOBAL_TYPE_BITS);
|
|
|
|
switch (type) {
|
|
case HOMOGRAPHY:
|
|
case HORTRAPEZOID:
|
|
case VERTRAPEZOID:
|
|
if (type != HORTRAPEZOID)
|
|
aom_write_signed_primitive_refsubexpfin(
|
|
w, GM_ROW3HOMO_MAX + 1, SUBEXPFIN_K,
|
|
(ref_params->wmmat[6] >> GM_ROW3HOMO_PREC_DIFF),
|
|
(params->wmmat[6] >> GM_ROW3HOMO_PREC_DIFF));
|
|
if (type != VERTRAPEZOID)
|
|
aom_write_signed_primitive_refsubexpfin(
|
|
w, GM_ROW3HOMO_MAX + 1, SUBEXPFIN_K,
|
|
(ref_params->wmmat[7] >> GM_ROW3HOMO_PREC_DIFF),
|
|
(params->wmmat[7] >> GM_ROW3HOMO_PREC_DIFF));
|
|
// fallthrough intended
|
|
case AFFINE:
|
|
case ROTZOOM:
|
|
aom_write_signed_primitive_refsubexpfin(
|
|
w, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
|
|
(ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) -
|
|
(1 << GM_ALPHA_PREC_BITS),
|
|
(params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
|
|
if (type != VERTRAPEZOID)
|
|
aom_write_signed_primitive_refsubexpfin(
|
|
w, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
|
|
(ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF),
|
|
(params->wmmat[3] >> GM_ALPHA_PREC_DIFF));
|
|
if (type >= AFFINE) {
|
|
if (type != HORTRAPEZOID)
|
|
aom_write_signed_primitive_refsubexpfin(
|
|
w, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
|
|
(ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF),
|
|
(params->wmmat[4] >> GM_ALPHA_PREC_DIFF));
|
|
aom_write_signed_primitive_refsubexpfin(
|
|
w, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
|
|
(ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) -
|
|
(1 << GM_ALPHA_PREC_BITS),
|
|
(params->wmmat[5] >> GM_ALPHA_PREC_DIFF) -
|
|
(1 << GM_ALPHA_PREC_BITS));
|
|
}
|
|
// fallthrough intended
|
|
case TRANSLATION:
|
|
trans_bits = (type == TRANSLATION) ? GM_ABS_TRANS_ONLY_BITS - !allow_hp
|
|
: GM_ABS_TRANS_BITS;
|
|
trans_prec_diff = (type == TRANSLATION)
|
|
? GM_TRANS_ONLY_PREC_DIFF + !allow_hp
|
|
: GM_TRANS_PREC_DIFF;
|
|
aom_write_signed_primitive_refsubexpfin(
|
|
w, (1 << trans_bits) + 1, SUBEXPFIN_K,
|
|
(ref_params->wmmat[0] >> trans_prec_diff),
|
|
(params->wmmat[0] >> trans_prec_diff));
|
|
aom_write_signed_primitive_refsubexpfin(
|
|
w, (1 << trans_bits) + 1, SUBEXPFIN_K,
|
|
(ref_params->wmmat[1] >> trans_prec_diff),
|
|
(params->wmmat[1] >> trans_prec_diff));
|
|
break;
|
|
case IDENTITY: break;
|
|
default: assert(0);
|
|
}
|
|
}
|
|
|
|
static void write_global_motion(AV1_COMP *cpi, aom_writer *w) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
int frame;
|
|
for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) {
|
|
write_global_motion_params(&cm->global_motion[frame],
|
|
&cm->prev_frame->global_motion[frame], w,
|
|
cm->allow_high_precision_mv);
|
|
/*
|
|
printf("Frame %d/%d: Enc Ref %d (used %d): %d %d %d %d\n",
|
|
cm->current_video_frame, cm->show_frame, frame,
|
|
cpi->global_motion_used[frame], cm->global_motion[frame].wmmat[0],
|
|
cm->global_motion[frame].wmmat[1], cm->global_motion[frame].wmmat[2],
|
|
cm->global_motion[frame].wmmat[3]);
|
|
*/
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static uint32_t write_compressed_header(AV1_COMP *cpi, uint8_t *data) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
#if CONFIG_SUPERTX
|
|
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
|
|
#endif // CONFIG_SUPERTX
|
|
FRAME_CONTEXT *const fc = cm->fc;
|
|
FRAME_COUNTS *counts = cpi->td.counts;
|
|
aom_writer *header_bc;
|
|
int i;
|
|
#if !CONFIG_NEW_MULTISYMBOL
|
|
int j;
|
|
#endif
|
|
|
|
#if CONFIG_TILE_GROUPS
|
|
const int probwt = cm->num_tg;
|
|
#else
|
|
const int probwt = 1;
|
|
#endif
|
|
|
|
#if CONFIG_ANS
|
|
int header_size;
|
|
header_bc = &cpi->buf_ans;
|
|
buf_ans_write_init(header_bc, data);
|
|
#else
|
|
aom_writer real_header_bc;
|
|
header_bc = &real_header_bc;
|
|
aom_start_encode(header_bc, data);
|
|
#endif
|
|
|
|
#if CONFIG_LOOP_RESTORATION
|
|
encode_restoration(cm, header_bc);
|
|
#endif // CONFIG_LOOP_RESTORATION
|
|
#if !CONFIG_EC_ADAPT
|
|
update_txfm_probs(cm, header_bc, counts);
|
|
#endif
|
|
#if CONFIG_EXT_TX && CONFIG_RECT_TX && CONFIG_RECT_TX_EXT
|
|
if (cm->tx_mode == TX_MODE_SELECT)
|
|
av1_cond_prob_diff_update(header_bc, &cm->fc->quarter_tx_size_prob,
|
|
cm->counts.quarter_tx_size, probwt);
|
|
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX && CONFIG_RECT_TX_EXT
|
|
#if CONFIG_LV_MAP
|
|
av1_write_txb_probs(cpi, header_bc);
|
|
#else
|
|
#if !CONFIG_PVQ
|
|
#if !CONFIG_EC_ADAPT
|
|
update_coef_probs(cpi, header_bc);
|
|
#endif // !CONFIG_EC_ADAPT
|
|
#endif // CONFIG_PVQ
|
|
#endif // CONFIG_LV_MAP
|
|
|
|
#if CONFIG_VAR_TX
|
|
update_txfm_partition_probs(cm, header_bc, counts, probwt);
|
|
#endif
|
|
|
|
#if !CONFIG_NEW_MULTISYMBOL
|
|
update_skip_probs(cm, header_bc, counts);
|
|
#endif
|
|
#if !CONFIG_EC_ADAPT && CONFIG_DELTA_Q
|
|
update_delta_q_probs(cm, header_bc, counts);
|
|
#if CONFIG_EXT_DELTA_Q
|
|
update_delta_lf_probs(cm, header_bc, counts);
|
|
#endif
|
|
#endif
|
|
#if !CONFIG_EC_ADAPT
|
|
update_seg_probs(cpi, header_bc);
|
|
|
|
for (i = 0; i < INTRA_MODES; ++i) {
|
|
prob_diff_update(av1_intra_mode_tree, fc->uv_mode_prob[i],
|
|
counts->uv_mode[i], INTRA_MODES, probwt, header_bc);
|
|
}
|
|
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
for (i = 0; i < PARTITION_PLOFFSET; ++i)
|
|
prob_diff_update(av1_partition_tree, fc->partition_prob[i],
|
|
counts->partition[i], PARTITION_TYPES, probwt, header_bc);
|
|
for (; i < PARTITION_CONTEXTS_PRIMARY; ++i)
|
|
prob_diff_update(av1_ext_partition_tree, fc->partition_prob[i],
|
|
counts->partition[i], EXT_PARTITION_TYPES, probwt,
|
|
header_bc);
|
|
#else
|
|
for (i = 0; i < PARTITION_CONTEXTS_PRIMARY; ++i)
|
|
prob_diff_update(av1_partition_tree, fc->partition_prob[i],
|
|
counts->partition[i], PARTITION_TYPES, probwt, header_bc);
|
|
#endif // CONFIG_EXT_PARTITION_TYPES
|
|
#if CONFIG_UNPOISON_PARTITION_CTX
|
|
for (; i < PARTITION_CONTEXTS_PRIMARY + PARTITION_BLOCK_SIZES; ++i) {
|
|
unsigned int ct[2] = { counts->partition[i][PARTITION_VERT],
|
|
counts->partition[i][PARTITION_SPLIT] };
|
|
assert(counts->partition[i][PARTITION_NONE] == 0);
|
|
assert(counts->partition[i][PARTITION_HORZ] == 0);
|
|
assert(fc->partition_prob[i][PARTITION_NONE] == 0);
|
|
assert(fc->partition_prob[i][PARTITION_HORZ] == 0);
|
|
av1_cond_prob_diff_update(header_bc, &fc->partition_prob[i][PARTITION_VERT],
|
|
ct, probwt);
|
|
}
|
|
for (; i < PARTITION_CONTEXTS_PRIMARY + 2 * PARTITION_BLOCK_SIZES; ++i) {
|
|
unsigned int ct[2] = { counts->partition[i][PARTITION_HORZ],
|
|
counts->partition[i][PARTITION_SPLIT] };
|
|
assert(counts->partition[i][PARTITION_NONE] == 0);
|
|
assert(counts->partition[i][PARTITION_VERT] == 0);
|
|
assert(fc->partition_prob[i][PARTITION_NONE] == 0);
|
|
assert(fc->partition_prob[i][PARTITION_VERT] == 0);
|
|
av1_cond_prob_diff_update(header_bc, &fc->partition_prob[i][PARTITION_HORZ],
|
|
ct, probwt);
|
|
}
|
|
#endif
|
|
#if CONFIG_EXT_INTRA && CONFIG_INTRA_INTERP
|
|
for (i = 0; i < INTRA_FILTERS + 1; ++i)
|
|
prob_diff_update(av1_intra_filter_tree, fc->intra_filter_probs[i],
|
|
counts->intra_filter[i], INTRA_FILTERS, probwt, header_bc);
|
|
#endif // CONFIG_EXT_INTRA && CONFIG_INTRA_INTERP
|
|
#endif // !CONFIG_EC_ADAPT
|
|
|
|
if (frame_is_intra_only(cm)) {
|
|
av1_copy(cm->kf_y_prob, av1_kf_y_mode_prob);
|
|
av1_copy(cm->fc->kf_y_cdf, av1_kf_y_mode_cdf);
|
|
|
|
#if !CONFIG_EC_ADAPT
|
|
for (i = 0; i < INTRA_MODES; ++i)
|
|
for (j = 0; j < INTRA_MODES; ++j)
|
|
prob_diff_update(av1_intra_mode_tree, cm->kf_y_prob[i][j],
|
|
counts->kf_y_mode[i][j], INTRA_MODES, probwt,
|
|
header_bc);
|
|
#endif // CONFIG_EC_ADAPT
|
|
#if CONFIG_INTRABC
|
|
if (cm->allow_screen_content_tools) {
|
|
av1_cond_prob_diff_update(header_bc, &fc->intrabc_prob,
|
|
cm->counts.intrabc, probwt);
|
|
}
|
|
#endif
|
|
} else {
|
|
#if !CONFIG_NEW_MULTISYMBOL
|
|
update_inter_mode_probs(cm, header_bc, counts);
|
|
#endif
|
|
#if CONFIG_EXT_INTER
|
|
update_inter_compound_mode_probs(cm, probwt, header_bc);
|
|
#if CONFIG_COMPOUND_SINGLEREF
|
|
update_inter_singleref_comp_mode_probs(cm, probwt, header_bc);
|
|
#endif // CONFIG_COMPOUND_SINGLEREF
|
|
|
|
#if CONFIG_INTERINTRA
|
|
if (cm->reference_mode != COMPOUND_REFERENCE &&
|
|
cm->allow_interintra_compound) {
|
|
for (i = 0; i < BLOCK_SIZE_GROUPS; i++) {
|
|
if (is_interintra_allowed_bsize_group(i)) {
|
|
av1_cond_prob_diff_update(header_bc, &fc->interintra_prob[i],
|
|
cm->counts.interintra[i], probwt);
|
|
}
|
|
}
|
|
for (i = 0; i < BLOCK_SIZE_GROUPS; i++) {
|
|
prob_diff_update(
|
|
av1_interintra_mode_tree, cm->fc->interintra_mode_prob[i],
|
|
counts->interintra_mode[i], INTERINTRA_MODES, probwt, header_bc);
|
|
}
|
|
#if CONFIG_WEDGE
|
|
for (i = 0; i < BLOCK_SIZES; i++) {
|
|
if (is_interintra_allowed_bsize(i) && is_interintra_wedge_used(i))
|
|
av1_cond_prob_diff_update(header_bc, &fc->wedge_interintra_prob[i],
|
|
cm->counts.wedge_interintra[i], probwt);
|
|
}
|
|
#endif // CONFIG_WEDGE
|
|
}
|
|
#endif // CONFIG_INTERINTRA
|
|
#if CONFIG_COMPOUND_SEGMENT || CONFIG_WEDGE
|
|
#if CONFIG_COMPOUND_SINGLEREF
|
|
if (cm->allow_masked_compound) {
|
|
#else // !CONFIG_COMPOUND_SINGLEREF
|
|
if (cm->reference_mode != SINGLE_REFERENCE && cm->allow_masked_compound) {
|
|
#endif // CONFIG_COMPOUND_SINGLEREF
|
|
for (i = 0; i < BLOCK_SIZES; i++) {
|
|
if (is_any_masked_compound_used(i)) {
|
|
prob_diff_update(av1_compound_type_tree, fc->compound_type_prob[i],
|
|
cm->counts.compound_interinter[i], COMPOUND_TYPES,
|
|
probwt, header_bc);
|
|
}
|
|
}
|
|
}
|
|
#endif // CONFIG_COMPOUND_SEGMENT || CONFIG_WEDGE
|
|
#endif // CONFIG_EXT_INTER
|
|
|
|
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
for (i = BLOCK_8X8; i < BLOCK_SIZES; ++i)
|
|
prob_diff_update(av1_motion_mode_tree, fc->motion_mode_prob[i],
|
|
counts->motion_mode[i], MOTION_MODES, probwt, header_bc);
|
|
#if CONFIG_NCOBMC_ADAPT_WEIGHT
|
|
for (i = ADAPT_OVERLAP_BLOCK_8X8; i < ADAPT_OVERLAP_BLOCKS; ++i) {
|
|
prob_diff_update(av1_ncobmc_mode_tree, fc->ncobmc_mode_prob[i],
|
|
counts->ncobmc_mode[i], MAX_NCOBMC_MODES, probwt,
|
|
header_bc);
|
|
}
|
|
#endif
|
|
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
#if !CONFIG_EC_ADAPT
|
|
if (cm->interp_filter == SWITCHABLE)
|
|
update_switchable_interp_probs(cm, header_bc, counts);
|
|
#endif
|
|
|
|
#if !CONFIG_NEW_MULTISYMBOL
|
|
for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
|
|
av1_cond_prob_diff_update(header_bc, &fc->intra_inter_prob[i],
|
|
counts->intra_inter[i], probwt);
|
|
#endif
|
|
|
|
#if !CONFIG_NEW_MULTISYMBOL
|
|
if (cpi->allow_comp_inter_inter) {
|
|
const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT;
|
|
if (use_hybrid_pred)
|
|
for (i = 0; i < COMP_INTER_CONTEXTS; i++)
|
|
av1_cond_prob_diff_update(header_bc, &fc->comp_inter_prob[i],
|
|
counts->comp_inter[i], probwt);
|
|
}
|
|
|
|
if (cm->reference_mode != COMPOUND_REFERENCE) {
|
|
for (i = 0; i < REF_CONTEXTS; i++) {
|
|
for (j = 0; j < (SINGLE_REFS - 1); j++) {
|
|
av1_cond_prob_diff_update(header_bc, &fc->single_ref_prob[i][j],
|
|
counts->single_ref[i][j], probwt);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
if (cm->reference_mode != SINGLE_REFERENCE) {
|
|
#if CONFIG_EXT_COMP_REFS
|
|
for (i = 0; i < COMP_REF_TYPE_CONTEXTS; i++)
|
|
av1_cond_prob_diff_update(header_bc, &fc->comp_ref_type_prob[i],
|
|
counts->comp_ref_type[i], probwt);
|
|
|
|
for (i = 0; i < UNI_COMP_REF_CONTEXTS; i++)
|
|
for (j = 0; j < (UNIDIR_COMP_REFS - 1); j++)
|
|
av1_cond_prob_diff_update(header_bc, &fc->uni_comp_ref_prob[i][j],
|
|
counts->uni_comp_ref[i][j], probwt);
|
|
#endif // CONFIG_EXT_COMP_REFS
|
|
|
|
#if !CONFIG_NEW_MULTISYMBOL
|
|
for (i = 0; i < REF_CONTEXTS; i++) {
|
|
#if CONFIG_EXT_REFS
|
|
for (j = 0; j < (FWD_REFS - 1); j++) {
|
|
av1_cond_prob_diff_update(header_bc, &fc->comp_ref_prob[i][j],
|
|
counts->comp_ref[i][j], probwt);
|
|
}
|
|
for (j = 0; j < (BWD_REFS - 1); j++) {
|
|
av1_cond_prob_diff_update(header_bc, &fc->comp_bwdref_prob[i][j],
|
|
counts->comp_bwdref[i][j], probwt);
|
|
}
|
|
#else
|
|
for (j = 0; j < (COMP_REFS - 1); j++) {
|
|
av1_cond_prob_diff_update(header_bc, &fc->comp_ref_prob[i][j],
|
|
counts->comp_ref[i][j], probwt);
|
|
}
|
|
#endif // CONFIG_EXT_REFS
|
|
}
|
|
#endif // CONFIG_NEW_MULTISYMBOL
|
|
}
|
|
|
|
#if CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF
|
|
for (i = 0; i < COMP_INTER_MODE_CONTEXTS; i++)
|
|
av1_cond_prob_diff_update(header_bc, &fc->comp_inter_mode_prob[i],
|
|
counts->comp_inter_mode[i], probwt);
|
|
#endif // CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF
|
|
|
|
#if !CONFIG_EC_ADAPT
|
|
for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) {
|
|
prob_diff_update(av1_intra_mode_tree, cm->fc->y_mode_prob[i],
|
|
counts->y_mode[i], INTRA_MODES, probwt, header_bc);
|
|
}
|
|
#endif
|
|
|
|
av1_write_nmv_probs(cm, cm->allow_high_precision_mv, header_bc, counts->mv);
|
|
#if !CONFIG_EC_ADAPT
|
|
update_ext_tx_probs(cm, header_bc);
|
|
#endif
|
|
#if CONFIG_SUPERTX
|
|
if (!xd->lossless[0]) update_supertx_probs(cm, probwt, header_bc);
|
|
#endif // CONFIG_SUPERTX
|
|
#if CONFIG_GLOBAL_MOTION
|
|
write_global_motion(cpi, header_bc);
|
|
#endif // CONFIG_GLOBAL_MOTION
|
|
}
|
|
#if !CONFIG_EC_ADAPT
|
|
av1_coef_head_cdfs(fc);
|
|
av1_coef_pareto_cdfs(fc);
|
|
for (i = 0; i < NMV_CONTEXTS; ++i) av1_set_mv_cdfs(&fc->nmvc[i]);
|
|
av1_set_mode_cdfs(cm);
|
|
#endif // !CONFIG_EC_ADAPT
|
|
#if CONFIG_ANS
|
|
aom_buf_ans_flush(header_bc);
|
|
header_size = buf_ans_write_end(header_bc);
|
|
assert(header_size <= 0xffff);
|
|
return header_size;
|
|
#else
|
|
aom_stop_encode(header_bc);
|
|
assert(header_bc->pos <= 0xffff);
|
|
return header_bc->pos;
|
|
#endif // CONFIG_ANS
|
|
}
|
|
|
|
static int choose_size_bytes(uint32_t size, int spare_msbs) {
|
|
// Choose the number of bytes required to represent size, without
|
|
// using the 'spare_msbs' number of most significant bits.
|
|
|
|
// Make sure we will fit in 4 bytes to start with..
|
|
if (spare_msbs > 0 && size >> (32 - spare_msbs) != 0) return -1;
|
|
|
|
// Normalise to 32 bits
|
|
size <<= spare_msbs;
|
|
|
|
if (size >> 24 != 0)
|
|
return 4;
|
|
else if (size >> 16 != 0)
|
|
return 3;
|
|
else if (size >> 8 != 0)
|
|
return 2;
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
static void mem_put_varsize(uint8_t *const dst, const int sz, const int val) {
|
|
switch (sz) {
|
|
case 1: dst[0] = (uint8_t)(val & 0xff); break;
|
|
case 2: mem_put_le16(dst, val); break;
|
|
case 3: mem_put_le24(dst, val); break;
|
|
case 4: mem_put_le32(dst, val); break;
|
|
default: assert(0 && "Invalid size"); break;
|
|
}
|
|
}
|
|
static int remux_tiles(const AV1_COMMON *const cm, uint8_t *dst,
|
|
const uint32_t data_size, const uint32_t max_tile_size,
|
|
const uint32_t max_tile_col_size,
|
|
int *const tile_size_bytes,
|
|
int *const tile_col_size_bytes) {
|
|
// Choose the tile size bytes (tsb) and tile column size bytes (tcsb)
|
|
#if CONFIG_EXT_TILE
|
|
// The top bit in the tile size field indicates tile copy mode, so we
|
|
// have 1 less bit to code the tile size
|
|
const int tsb = choose_size_bytes(max_tile_size, 1);
|
|
const int tcsb = choose_size_bytes(max_tile_col_size, 0);
|
|
#else
|
|
const int tsb = choose_size_bytes(max_tile_size, 0);
|
|
const int tcsb = 4; // This is ignored
|
|
(void)max_tile_col_size;
|
|
#endif // CONFIG_EXT_TILE
|
|
|
|
assert(tsb > 0);
|
|
assert(tcsb > 0);
|
|
|
|
*tile_size_bytes = tsb;
|
|
*tile_col_size_bytes = tcsb;
|
|
|
|
if (tsb == 4 && tcsb == 4) {
|
|
return data_size;
|
|
} else {
|
|
uint32_t wpos = 0;
|
|
uint32_t rpos = 0;
|
|
|
|
#if CONFIG_EXT_TILE
|
|
int tile_row;
|
|
int tile_col;
|
|
|
|
for (tile_col = 0; tile_col < cm->tile_cols; tile_col++) {
|
|
// All but the last column has a column header
|
|
if (tile_col < cm->tile_cols - 1) {
|
|
uint32_t tile_col_size = mem_get_le32(dst + rpos);
|
|
rpos += 4;
|
|
|
|
// Adjust the tile column size by the number of bytes removed
|
|
// from the tile size fields.
|
|
tile_col_size -= (4 - tsb) * cm->tile_rows;
|
|
|
|
mem_put_varsize(dst + wpos, tcsb, tile_col_size);
|
|
wpos += tcsb;
|
|
}
|
|
|
|
for (tile_row = 0; tile_row < cm->tile_rows; tile_row++) {
|
|
// All, including the last row has a header
|
|
uint32_t tile_header = mem_get_le32(dst + rpos);
|
|
rpos += 4;
|
|
|
|
// If this is a copy tile, we need to shift the MSB to the
|
|
// top bit of the new width, and there is no data to copy.
|
|
if (tile_header >> 31 != 0) {
|
|
if (tsb < 4) tile_header >>= 32 - 8 * tsb;
|
|
mem_put_varsize(dst + wpos, tsb, tile_header);
|
|
wpos += tsb;
|
|
} else {
|
|
mem_put_varsize(dst + wpos, tsb, tile_header);
|
|
wpos += tsb;
|
|
|
|
memmove(dst + wpos, dst + rpos, tile_header);
|
|
rpos += tile_header;
|
|
wpos += tile_header;
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
const int n_tiles = cm->tile_cols * cm->tile_rows;
|
|
int n;
|
|
|
|
for (n = 0; n < n_tiles; n++) {
|
|
int tile_size;
|
|
|
|
if (n == n_tiles - 1) {
|
|
tile_size = data_size - rpos;
|
|
} else {
|
|
tile_size = mem_get_le32(dst + rpos);
|
|
rpos += 4;
|
|
mem_put_varsize(dst + wpos, tsb, tile_size);
|
|
wpos += tsb;
|
|
}
|
|
|
|
memmove(dst + wpos, dst + rpos, tile_size);
|
|
|
|
rpos += tile_size;
|
|
wpos += tile_size;
|
|
}
|
|
#endif // CONFIG_EXT_TILE
|
|
|
|
assert(rpos > wpos);
|
|
assert(rpos == data_size);
|
|
|
|
return wpos;
|
|
}
|
|
}
|
|
|
|
void av1_pack_bitstream(AV1_COMP *const cpi, uint8_t *dst, size_t *size) {
|
|
uint8_t *data = dst;
|
|
#if !CONFIG_TILE_GROUPS
|
|
uint32_t compressed_header_size;
|
|
uint32_t uncompressed_header_size;
|
|
struct aom_write_bit_buffer saved_wb;
|
|
#endif
|
|
uint32_t data_size;
|
|
struct aom_write_bit_buffer wb = { data, 0 };
|
|
|
|
unsigned int max_tile_size;
|
|
unsigned int max_tile_col_size;
|
|
|
|
#if CONFIG_BITSTREAM_DEBUG
|
|
bitstream_queue_reset_write();
|
|
#endif
|
|
|
|
#if !CONFIG_TILE_GROUPS
|
|
int tile_size_bytes;
|
|
int tile_col_size_bytes;
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
const int have_tiles = cm->tile_cols * cm->tile_rows > 1;
|
|
|
|
// Write the uncompressed header
|
|
write_uncompressed_header(cpi, &wb);
|
|
|
|
#if CONFIG_EXT_REFS
|
|
if (cm->show_existing_frame) {
|
|
*size = aom_wb_bytes_written(&wb);
|
|
return;
|
|
}
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
// We do not know these in advance. Output placeholder bit.
|
|
saved_wb = wb;
|
|
// Write tile size magnitudes
|
|
if (have_tiles) {
|
|
// Note that the last item in the uncompressed header is the data
|
|
// describing tile configuration.
|
|
#if CONFIG_EXT_TILE
|
|
// Number of bytes in tile column size - 1
|
|
aom_wb_write_literal(&wb, 0, 2);
|
|
#endif // CONFIG_EXT_TILE
|
|
// Number of bytes in tile size - 1
|
|
aom_wb_write_literal(&wb, 0, 2);
|
|
}
|
|
// Size of compressed header
|
|
aom_wb_write_literal(&wb, 0, 16);
|
|
|
|
uncompressed_header_size = (uint32_t)aom_wb_bytes_written(&wb);
|
|
data += uncompressed_header_size;
|
|
|
|
aom_clear_system_state();
|
|
|
|
// Write the compressed header
|
|
compressed_header_size = write_compressed_header(cpi, data);
|
|
data += compressed_header_size;
|
|
|
|
// Write the encoded tile data
|
|
data_size = write_tiles(cpi, data, &max_tile_size, &max_tile_col_size);
|
|
#else
|
|
data_size = write_tiles(cpi, &wb, &max_tile_size, &max_tile_col_size);
|
|
#endif
|
|
#if !CONFIG_TILE_GROUPS
|
|
if (have_tiles) {
|
|
data_size =
|
|
remux_tiles(cm, data, data_size, max_tile_size, max_tile_col_size,
|
|
&tile_size_bytes, &tile_col_size_bytes);
|
|
}
|
|
|
|
data += data_size;
|
|
|
|
// Now fill in the gaps in the uncompressed header.
|
|
if (have_tiles) {
|
|
#if CONFIG_EXT_TILE
|
|
assert(tile_col_size_bytes >= 1 && tile_col_size_bytes <= 4);
|
|
aom_wb_write_literal(&saved_wb, tile_col_size_bytes - 1, 2);
|
|
#endif // CONFIG_EXT_TILE
|
|
assert(tile_size_bytes >= 1 && tile_size_bytes <= 4);
|
|
aom_wb_write_literal(&saved_wb, tile_size_bytes - 1, 2);
|
|
}
|
|
// TODO(jbb): Figure out what to do if compressed_header_size > 16 bits.
|
|
assert(compressed_header_size <= 0xffff);
|
|
aom_wb_write_literal(&saved_wb, compressed_header_size, 16);
|
|
#else
|
|
data += data_size;
|
|
#endif
|
|
#if CONFIG_ANS && ANS_REVERSE
|
|
// Avoid aliasing the superframe index
|
|
*data++ = 0;
|
|
#endif
|
|
*size = data - dst;
|
|
}
|