2990 строки
108 KiB
C
2990 строки
108 KiB
C
/*
|
|
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
|
|
*
|
|
* This source code is subject to the terms of the BSD 2 Clause License and
|
|
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
|
|
* was not distributed with this source code in the LICENSE file, you can
|
|
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
|
|
* Media Patent License 1.0 was not distributed with this source code in the
|
|
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
|
|
*/
|
|
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
|
|
#include "./aom_dsp_rtcd.h"
|
|
#include "./aom_scale_rtcd.h"
|
|
|
|
#include "aom_dsp/aom_dsp_common.h"
|
|
#include "aom_mem/aom_mem.h"
|
|
#include "aom_ports/mem.h"
|
|
#include "aom_ports/system_state.h"
|
|
#include "aom_scale/aom_scale.h"
|
|
#include "aom_scale/yv12config.h"
|
|
|
|
#include "aom_dsp/variance.h"
|
|
#include "av1/common/entropymv.h"
|
|
#include "av1/common/quant_common.h"
|
|
#include "av1/common/reconinter.h" // av1_setup_dst_planes()
|
|
#include "av1/encoder/av1_quantize.h"
|
|
#include "av1/encoder/aq_variance.h"
|
|
#include "av1/encoder/block.h"
|
|
#include "av1/encoder/encodeframe.h"
|
|
#include "av1/encoder/encodemb.h"
|
|
#include "av1/encoder/encodemv.h"
|
|
#include "av1/encoder/encoder.h"
|
|
#include "av1/encoder/extend.h"
|
|
#include "av1/encoder/firstpass.h"
|
|
#include "av1/encoder/mcomp.h"
|
|
#include "av1/encoder/rd.h"
|
|
|
|
#define OUTPUT_FPF 0
|
|
#define ARF_STATS_OUTPUT 0
|
|
|
|
#define GROUP_ADAPTIVE_MAXQ 1
|
|
|
|
#define BOOST_BREAKOUT 12.5
|
|
#define BOOST_FACTOR 12.5
|
|
#define FACTOR_PT_LOW 0.70
|
|
#define FACTOR_PT_HIGH 0.90
|
|
#define FIRST_PASS_Q 10.0
|
|
#define GF_MAX_BOOST 96.0
|
|
#define INTRA_MODE_PENALTY 1024
|
|
#define KF_MAX_BOOST 128.0
|
|
#define MIN_ARF_GF_BOOST 240
|
|
#define MIN_DECAY_FACTOR 0.01
|
|
#define MIN_KF_BOOST 300
|
|
#define NEW_MV_MODE_PENALTY 32
|
|
#define DARK_THRESH 64
|
|
#define DEFAULT_GRP_WEIGHT 1.0
|
|
#define RC_FACTOR_MIN 0.75
|
|
#define RC_FACTOR_MAX 1.75
|
|
|
|
#define NCOUNT_INTRA_THRESH 8192
|
|
#define NCOUNT_INTRA_FACTOR 3
|
|
#define NCOUNT_FRAME_II_THRESH 5.0
|
|
|
|
#define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x)-0.000001 : (x) + 0.000001)
|
|
|
|
#if ARF_STATS_OUTPUT
|
|
unsigned int arf_count = 0;
|
|
#endif
|
|
|
|
// Resets the first pass file to the given position using a relative seek from
|
|
// the current position.
|
|
static void reset_fpf_position(TWO_PASS *p, const FIRSTPASS_STATS *position) {
|
|
p->stats_in = position;
|
|
}
|
|
|
|
// Read frame stats at an offset from the current position.
|
|
static const FIRSTPASS_STATS *read_frame_stats(const TWO_PASS *p, int offset) {
|
|
if ((offset >= 0 && p->stats_in + offset >= p->stats_in_end) ||
|
|
(offset < 0 && p->stats_in + offset < p->stats_in_start)) {
|
|
return NULL;
|
|
}
|
|
|
|
return &p->stats_in[offset];
|
|
}
|
|
|
|
static int input_stats(TWO_PASS *p, FIRSTPASS_STATS *fps) {
|
|
if (p->stats_in >= p->stats_in_end) return EOF;
|
|
|
|
*fps = *p->stats_in;
|
|
++p->stats_in;
|
|
return 1;
|
|
}
|
|
|
|
static void output_stats(FIRSTPASS_STATS *stats,
|
|
struct aom_codec_pkt_list *pktlist) {
|
|
struct aom_codec_cx_pkt pkt;
|
|
pkt.kind = AOM_CODEC_STATS_PKT;
|
|
pkt.data.twopass_stats.buf = stats;
|
|
pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS);
|
|
aom_codec_pkt_list_add(pktlist, &pkt);
|
|
|
|
// TEMP debug code
|
|
#if OUTPUT_FPF
|
|
{
|
|
FILE *fpfile;
|
|
fpfile = fopen("firstpass.stt", "a");
|
|
|
|
fprintf(fpfile,
|
|
"%12.0lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf %12.4lf"
|
|
"%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf"
|
|
"%12.4lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf\n",
|
|
stats->frame, stats->weight, stats->intra_error, stats->coded_error,
|
|
stats->sr_coded_error, stats->pcnt_inter, stats->pcnt_motion,
|
|
stats->pcnt_second_ref, stats->pcnt_neutral, stats->intra_skip_pct,
|
|
stats->inactive_zone_rows, stats->inactive_zone_cols, stats->MVr,
|
|
stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv,
|
|
stats->MVcv, stats->mv_in_out_count, stats->new_mv_count,
|
|
stats->count, stats->duration);
|
|
fclose(fpfile);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if CONFIG_FP_MB_STATS
|
|
static void output_fpmb_stats(uint8_t *this_frame_mb_stats, int stats_size,
|
|
struct aom_codec_pkt_list *pktlist) {
|
|
struct aom_codec_cx_pkt pkt;
|
|
pkt.kind = AOM_CODEC_FPMB_STATS_PKT;
|
|
pkt.data.firstpass_mb_stats.buf = this_frame_mb_stats;
|
|
pkt.data.firstpass_mb_stats.sz = stats_size * sizeof(*this_frame_mb_stats);
|
|
aom_codec_pkt_list_add(pktlist, &pkt);
|
|
}
|
|
#endif
|
|
|
|
static void zero_stats(FIRSTPASS_STATS *section) {
|
|
section->frame = 0.0;
|
|
section->weight = 0.0;
|
|
section->intra_error = 0.0;
|
|
section->coded_error = 0.0;
|
|
section->sr_coded_error = 0.0;
|
|
section->pcnt_inter = 0.0;
|
|
section->pcnt_motion = 0.0;
|
|
section->pcnt_second_ref = 0.0;
|
|
section->pcnt_neutral = 0.0;
|
|
section->intra_skip_pct = 0.0;
|
|
section->inactive_zone_rows = 0.0;
|
|
section->inactive_zone_cols = 0.0;
|
|
section->MVr = 0.0;
|
|
section->mvr_abs = 0.0;
|
|
section->MVc = 0.0;
|
|
section->mvc_abs = 0.0;
|
|
section->MVrv = 0.0;
|
|
section->MVcv = 0.0;
|
|
section->mv_in_out_count = 0.0;
|
|
section->new_mv_count = 0.0;
|
|
section->count = 0.0;
|
|
section->duration = 1.0;
|
|
}
|
|
|
|
static void accumulate_stats(FIRSTPASS_STATS *section,
|
|
const FIRSTPASS_STATS *frame) {
|
|
section->frame += frame->frame;
|
|
section->weight += frame->weight;
|
|
section->intra_error += frame->intra_error;
|
|
section->coded_error += frame->coded_error;
|
|
section->sr_coded_error += frame->sr_coded_error;
|
|
section->pcnt_inter += frame->pcnt_inter;
|
|
section->pcnt_motion += frame->pcnt_motion;
|
|
section->pcnt_second_ref += frame->pcnt_second_ref;
|
|
section->pcnt_neutral += frame->pcnt_neutral;
|
|
section->intra_skip_pct += frame->intra_skip_pct;
|
|
section->inactive_zone_rows += frame->inactive_zone_rows;
|
|
section->inactive_zone_cols += frame->inactive_zone_cols;
|
|
section->MVr += frame->MVr;
|
|
section->mvr_abs += frame->mvr_abs;
|
|
section->MVc += frame->MVc;
|
|
section->mvc_abs += frame->mvc_abs;
|
|
section->MVrv += frame->MVrv;
|
|
section->MVcv += frame->MVcv;
|
|
section->mv_in_out_count += frame->mv_in_out_count;
|
|
section->new_mv_count += frame->new_mv_count;
|
|
section->count += frame->count;
|
|
section->duration += frame->duration;
|
|
}
|
|
|
|
static void subtract_stats(FIRSTPASS_STATS *section,
|
|
const FIRSTPASS_STATS *frame) {
|
|
section->frame -= frame->frame;
|
|
section->weight -= frame->weight;
|
|
section->intra_error -= frame->intra_error;
|
|
section->coded_error -= frame->coded_error;
|
|
section->sr_coded_error -= frame->sr_coded_error;
|
|
section->pcnt_inter -= frame->pcnt_inter;
|
|
section->pcnt_motion -= frame->pcnt_motion;
|
|
section->pcnt_second_ref -= frame->pcnt_second_ref;
|
|
section->pcnt_neutral -= frame->pcnt_neutral;
|
|
section->intra_skip_pct -= frame->intra_skip_pct;
|
|
section->inactive_zone_rows -= frame->inactive_zone_rows;
|
|
section->inactive_zone_cols -= frame->inactive_zone_cols;
|
|
section->MVr -= frame->MVr;
|
|
section->mvr_abs -= frame->mvr_abs;
|
|
section->MVc -= frame->MVc;
|
|
section->mvc_abs -= frame->mvc_abs;
|
|
section->MVrv -= frame->MVrv;
|
|
section->MVcv -= frame->MVcv;
|
|
section->mv_in_out_count -= frame->mv_in_out_count;
|
|
section->new_mv_count -= frame->new_mv_count;
|
|
section->count -= frame->count;
|
|
section->duration -= frame->duration;
|
|
}
|
|
|
|
// Calculate the linear size relative to a baseline of 1080P
|
|
#define BASE_SIZE 2073600.0 // 1920x1080
|
|
static double get_linear_size_factor(const AV1_COMP *cpi) {
|
|
const double this_area = cpi->initial_width * cpi->initial_height;
|
|
return pow(this_area / BASE_SIZE, 0.5);
|
|
}
|
|
|
|
// Calculate an active area of the image that discounts formatting
|
|
// bars and partially discounts other 0 energy areas.
|
|
#define MIN_ACTIVE_AREA 0.5
|
|
#define MAX_ACTIVE_AREA 1.0
|
|
static double calculate_active_area(const AV1_COMP *cpi,
|
|
const FIRSTPASS_STATS *this_frame) {
|
|
double active_pct;
|
|
|
|
active_pct =
|
|
1.0 -
|
|
((this_frame->intra_skip_pct / 2) +
|
|
((this_frame->inactive_zone_rows * 2) / (double)cpi->common.mb_rows));
|
|
return fclamp(active_pct, MIN_ACTIVE_AREA, MAX_ACTIVE_AREA);
|
|
}
|
|
|
|
// Calculate a modified Error used in distributing bits between easier and
|
|
// harder frames.
|
|
#define ACT_AREA_CORRECTION 0.5
|
|
static double calculate_modified_err(const AV1_COMP *cpi,
|
|
const TWO_PASS *twopass,
|
|
const AV1EncoderConfig *oxcf,
|
|
const FIRSTPASS_STATS *this_frame) {
|
|
const FIRSTPASS_STATS *const stats = &twopass->total_stats;
|
|
const double av_weight = stats->weight / stats->count;
|
|
const double av_err = (stats->coded_error * av_weight) / stats->count;
|
|
double modified_error =
|
|
av_err * pow(this_frame->coded_error * this_frame->weight /
|
|
DOUBLE_DIVIDE_CHECK(av_err),
|
|
oxcf->two_pass_vbrbias / 100.0);
|
|
|
|
// Correction for active area. Frames with a reduced active area
|
|
// (eg due to formatting bars) have a higher error per mb for the
|
|
// remaining active MBs. The correction here assumes that coding
|
|
// 0.5N blocks of complexity 2X is a little easier than coding N
|
|
// blocks of complexity X.
|
|
modified_error *=
|
|
pow(calculate_active_area(cpi, this_frame), ACT_AREA_CORRECTION);
|
|
|
|
return fclamp(modified_error, twopass->modified_error_min,
|
|
twopass->modified_error_max);
|
|
}
|
|
|
|
// This function returns the maximum target rate per frame.
|
|
static int frame_max_bits(const RATE_CONTROL *rc,
|
|
const AV1EncoderConfig *oxcf) {
|
|
int64_t max_bits = ((int64_t)rc->avg_frame_bandwidth *
|
|
(int64_t)oxcf->two_pass_vbrmax_section) /
|
|
100;
|
|
if (max_bits < 0)
|
|
max_bits = 0;
|
|
else if (max_bits > rc->max_frame_bandwidth)
|
|
max_bits = rc->max_frame_bandwidth;
|
|
|
|
return (int)max_bits;
|
|
}
|
|
|
|
void av1_init_first_pass(AV1_COMP *cpi) {
|
|
zero_stats(&cpi->twopass.total_stats);
|
|
}
|
|
|
|
void av1_end_first_pass(AV1_COMP *cpi) {
|
|
output_stats(&cpi->twopass.total_stats, cpi->output_pkt_list);
|
|
}
|
|
|
|
static aom_variance_fn_t get_block_variance_fn(BLOCK_SIZE bsize) {
|
|
switch (bsize) {
|
|
case BLOCK_8X8: return aom_mse8x8;
|
|
case BLOCK_16X8: return aom_mse16x8;
|
|
case BLOCK_8X16: return aom_mse8x16;
|
|
default: return aom_mse16x16;
|
|
}
|
|
}
|
|
|
|
static unsigned int get_prediction_error(BLOCK_SIZE bsize,
|
|
const struct buf_2d *src,
|
|
const struct buf_2d *ref) {
|
|
unsigned int sse;
|
|
const aom_variance_fn_t fn = get_block_variance_fn(bsize);
|
|
fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
|
|
return sse;
|
|
}
|
|
|
|
#if CONFIG_HIGHBITDEPTH
|
|
static aom_variance_fn_t highbd_get_block_variance_fn(BLOCK_SIZE bsize,
|
|
int bd) {
|
|
switch (bd) {
|
|
default:
|
|
switch (bsize) {
|
|
case BLOCK_8X8: return aom_highbd_8_mse8x8;
|
|
case BLOCK_16X8: return aom_highbd_8_mse16x8;
|
|
case BLOCK_8X16: return aom_highbd_8_mse8x16;
|
|
default: return aom_highbd_8_mse16x16;
|
|
}
|
|
break;
|
|
case 10:
|
|
switch (bsize) {
|
|
case BLOCK_8X8: return aom_highbd_10_mse8x8;
|
|
case BLOCK_16X8: return aom_highbd_10_mse16x8;
|
|
case BLOCK_8X16: return aom_highbd_10_mse8x16;
|
|
default: return aom_highbd_10_mse16x16;
|
|
}
|
|
break;
|
|
case 12:
|
|
switch (bsize) {
|
|
case BLOCK_8X8: return aom_highbd_12_mse8x8;
|
|
case BLOCK_16X8: return aom_highbd_12_mse16x8;
|
|
case BLOCK_8X16: return aom_highbd_12_mse8x16;
|
|
default: return aom_highbd_12_mse16x16;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
static unsigned int highbd_get_prediction_error(BLOCK_SIZE bsize,
|
|
const struct buf_2d *src,
|
|
const struct buf_2d *ref,
|
|
int bd) {
|
|
unsigned int sse;
|
|
const aom_variance_fn_t fn = highbd_get_block_variance_fn(bsize, bd);
|
|
fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
|
|
return sse;
|
|
}
|
|
#endif // CONFIG_HIGHBITDEPTH
|
|
|
|
// Refine the motion search range according to the frame dimension
|
|
// for first pass test.
|
|
static int get_search_range(const AV1_COMP *cpi) {
|
|
int sr = 0;
|
|
const int dim = AOMMIN(cpi->initial_width, cpi->initial_height);
|
|
|
|
while ((dim << sr) < MAX_FULL_PEL_VAL) ++sr;
|
|
return sr;
|
|
}
|
|
|
|
static void first_pass_motion_search(AV1_COMP *cpi, MACROBLOCK *x,
|
|
const MV *ref_mv, MV *best_mv,
|
|
int *best_motion_err) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MV tmp_mv = { 0, 0 };
|
|
MV ref_mv_full = { ref_mv->row >> 3, ref_mv->col >> 3 };
|
|
int num00, tmp_err, n;
|
|
const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
|
|
aom_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[bsize];
|
|
const int new_mv_mode_penalty = NEW_MV_MODE_PENALTY;
|
|
|
|
int step_param = 3;
|
|
int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
|
|
const int sr = get_search_range(cpi);
|
|
step_param += sr;
|
|
further_steps -= sr;
|
|
|
|
// Override the default variance function to use MSE.
|
|
v_fn_ptr.vf = get_block_variance_fn(bsize);
|
|
#if CONFIG_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
v_fn_ptr.vf = highbd_get_block_variance_fn(bsize, xd->bd);
|
|
}
|
|
#endif // CONFIG_HIGHBITDEPTH
|
|
|
|
// Center the initial step/diamond search on best mv.
|
|
tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv,
|
|
step_param, x->sadperbit16, &num00,
|
|
&v_fn_ptr, ref_mv);
|
|
if (tmp_err < INT_MAX)
|
|
tmp_err = av1_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1);
|
|
if (tmp_err < INT_MAX - new_mv_mode_penalty) tmp_err += new_mv_mode_penalty;
|
|
|
|
if (tmp_err < *best_motion_err) {
|
|
*best_motion_err = tmp_err;
|
|
*best_mv = tmp_mv;
|
|
}
|
|
|
|
// Carry out further step/diamond searches as necessary.
|
|
n = num00;
|
|
num00 = 0;
|
|
|
|
while (n < further_steps) {
|
|
++n;
|
|
|
|
if (num00) {
|
|
--num00;
|
|
} else {
|
|
tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv,
|
|
step_param + n, x->sadperbit16, &num00,
|
|
&v_fn_ptr, ref_mv);
|
|
if (tmp_err < INT_MAX)
|
|
tmp_err = av1_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1);
|
|
if (tmp_err < INT_MAX - new_mv_mode_penalty)
|
|
tmp_err += new_mv_mode_penalty;
|
|
|
|
if (tmp_err < *best_motion_err) {
|
|
*best_motion_err = tmp_err;
|
|
*best_mv = tmp_mv;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static BLOCK_SIZE get_bsize(const AV1_COMMON *cm, int mb_row, int mb_col) {
|
|
if (mi_size_wide[BLOCK_16X16] * mb_col + mi_size_wide[BLOCK_8X8] <
|
|
cm->mi_cols) {
|
|
return mi_size_wide[BLOCK_16X16] * mb_row + mi_size_wide[BLOCK_8X8] <
|
|
cm->mi_rows
|
|
? BLOCK_16X16
|
|
: BLOCK_16X8;
|
|
} else {
|
|
return mi_size_wide[BLOCK_16X16] * mb_row + mi_size_wide[BLOCK_8X8] <
|
|
cm->mi_rows
|
|
? BLOCK_8X16
|
|
: BLOCK_8X8;
|
|
}
|
|
}
|
|
|
|
static int find_fp_qindex(aom_bit_depth_t bit_depth) {
|
|
int i;
|
|
|
|
for (i = 0; i < QINDEX_RANGE; ++i)
|
|
if (av1_convert_qindex_to_q(i, bit_depth) >= FIRST_PASS_Q) break;
|
|
|
|
if (i == QINDEX_RANGE) i--;
|
|
|
|
return i;
|
|
}
|
|
|
|
static void set_first_pass_params(AV1_COMP *cpi) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
if (!cpi->refresh_alt_ref_frame &&
|
|
(cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY))) {
|
|
cm->frame_type = KEY_FRAME;
|
|
} else {
|
|
cm->frame_type = INTER_FRAME;
|
|
}
|
|
// Do not use periodic key frames.
|
|
cpi->rc.frames_to_key = INT_MAX;
|
|
}
|
|
|
|
#define UL_INTRA_THRESH 50
|
|
#define INVALID_ROW -1
|
|
void av1_first_pass(AV1_COMP *cpi, const struct lookahead_entry *source) {
|
|
int mb_row, mb_col;
|
|
MACROBLOCK *const x = &cpi->td.mb;
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
TileInfo tile;
|
|
struct macroblock_plane *const p = x->plane;
|
|
struct macroblockd_plane *const pd = xd->plane;
|
|
const PICK_MODE_CONTEXT *ctx =
|
|
&cpi->td.pc_root[MAX_MIB_SIZE_LOG2 - MIN_MIB_SIZE_LOG2]->none;
|
|
int i;
|
|
|
|
int recon_yoffset, recon_uvoffset;
|
|
int64_t intra_error = 0;
|
|
int64_t coded_error = 0;
|
|
int64_t sr_coded_error = 0;
|
|
|
|
int sum_mvr = 0, sum_mvc = 0;
|
|
int sum_mvr_abs = 0, sum_mvc_abs = 0;
|
|
int64_t sum_mvrs = 0, sum_mvcs = 0;
|
|
int mvcount = 0;
|
|
int intercount = 0;
|
|
int second_ref_count = 0;
|
|
const int intrapenalty = INTRA_MODE_PENALTY;
|
|
double neutral_count;
|
|
int intra_skip_count = 0;
|
|
int image_data_start_row = INVALID_ROW;
|
|
int new_mv_count = 0;
|
|
int sum_in_vectors = 0;
|
|
MV lastmv = { 0, 0 };
|
|
TWO_PASS *twopass = &cpi->twopass;
|
|
const MV zero_mv = { 0, 0 };
|
|
int recon_y_stride, recon_uv_stride, uv_mb_height;
|
|
|
|
YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
|
|
YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
|
|
YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm);
|
|
const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12;
|
|
double intra_factor;
|
|
double brightness_factor;
|
|
BufferPool *const pool = cm->buffer_pool;
|
|
const int qindex = find_fp_qindex(cm->bit_depth);
|
|
const int mb_scale = mi_size_wide[BLOCK_16X16];
|
|
#if CONFIG_PVQ
|
|
PVQ_QUEUE pvq_q;
|
|
od_adapt_ctx pvq_context;
|
|
#endif
|
|
|
|
// First pass code requires valid last and new frame buffers.
|
|
assert(new_yv12 != NULL);
|
|
assert(frame_is_intra_only(cm) || (lst_yv12 != NULL));
|
|
|
|
#if CONFIG_FP_MB_STATS
|
|
if (cpi->use_fp_mb_stats) {
|
|
av1_zero_array(cpi->twopass.frame_mb_stats_buf, cpi->initial_mbs);
|
|
}
|
|
#endif
|
|
|
|
aom_clear_system_state();
|
|
|
|
xd->mi = cm->mi_grid_visible;
|
|
xd->mi[0] = cm->mi;
|
|
x->e_mbd.mi[0]->mbmi.sb_type = BLOCK_16X16;
|
|
|
|
intra_factor = 0.0;
|
|
brightness_factor = 0.0;
|
|
neutral_count = 0.0;
|
|
|
|
set_first_pass_params(cpi);
|
|
av1_set_quantizer(cm, qindex);
|
|
|
|
av1_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
|
|
|
|
av1_setup_src_planes(x, cpi->source, 0, 0);
|
|
av1_setup_dst_planes(xd->plane, cm->sb_size, new_yv12, 0, 0);
|
|
|
|
if (!frame_is_intra_only(cm)) {
|
|
av1_setup_pre_planes(xd, 0, first_ref_buf, 0, 0, NULL);
|
|
}
|
|
|
|
xd->mi = cm->mi_grid_visible;
|
|
xd->mi[0] = cm->mi;
|
|
|
|
#if CONFIG_CFL
|
|
// Don't store luma on the fist pass since chroma is not computed
|
|
x->cfl_store_y = 0;
|
|
#endif
|
|
av1_frame_init_quantizer(cpi);
|
|
|
|
#if CONFIG_PVQ
|
|
// For pass 1 of 2-pass encoding, init here for PVQ for now.
|
|
{
|
|
pvq_q.buf_len = 5000;
|
|
CHECK_MEM_ERROR(cm, pvq_q.buf,
|
|
aom_malloc(pvq_q.buf_len * sizeof(PVQ_INFO)));
|
|
pvq_q.curr_pos = 0;
|
|
x->pvq_coded = 0;
|
|
|
|
x->pvq_q = &pvq_q;
|
|
|
|
// TODO(yushin): Since this init step is also called in 2nd pass,
|
|
// or 1-pass encoding, consider factoring out it as a function.
|
|
// TODO(yushin)
|
|
// If activity masking is enabled, change below to OD_HVS_QM
|
|
x->daala_enc.qm = OD_FLAT_QM; // Hard coded. Enc/dec required to sync.
|
|
x->daala_enc.pvq_norm_lambda = OD_PVQ_LAMBDA;
|
|
x->daala_enc.pvq_norm_lambda_dc = OD_PVQ_LAMBDA;
|
|
|
|
od_init_qm(x->daala_enc.state.qm, x->daala_enc.state.qm_inv,
|
|
x->daala_enc.qm == OD_HVS_QM ? OD_QM8_Q4_HVS : OD_QM8_Q4_FLAT);
|
|
#if !CONFIG_ANS
|
|
od_ec_enc_init(&x->daala_enc.w.ec, 65025);
|
|
od_ec_enc_reset(&x->daala_enc.w.ec);
|
|
#else
|
|
#error "CONFIG_PVQ currently requires !CONFIG_ANS."
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
for (i = 0; i < MAX_MB_PLANE; ++i) {
|
|
p[i].coeff = ctx->coeff[i];
|
|
p[i].qcoeff = ctx->qcoeff[i];
|
|
pd[i].dqcoeff = ctx->dqcoeff[i];
|
|
#if CONFIG_PVQ
|
|
pd[i].pvq_ref_coeff = ctx->pvq_ref_coeff[i];
|
|
#endif
|
|
p[i].eobs = ctx->eobs[i];
|
|
#if CONFIG_LV_MAP
|
|
p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
|
|
#endif
|
|
}
|
|
|
|
av1_init_mv_probs(cm);
|
|
#if CONFIG_ADAPT_SCAN
|
|
av1_init_scan_order(cm);
|
|
av1_deliver_eob_threshold(cm, xd);
|
|
#endif
|
|
av1_convolve_init(cm);
|
|
#if CONFIG_PVQ
|
|
od_adapt_ctx_reset(&pvq_context, 0);
|
|
x->daala_enc.state.adapt = &pvq_context;
|
|
#endif // CONFIG_PVQ
|
|
av1_initialize_rd_consts(cpi);
|
|
|
|
// Tiling is ignored in the first pass.
|
|
av1_tile_init(&tile, cm, 0, 0);
|
|
|
|
recon_y_stride = new_yv12->y_stride;
|
|
recon_uv_stride = new_yv12->uv_stride;
|
|
uv_mb_height = 16 >> (new_yv12->y_height > new_yv12->uv_height);
|
|
|
|
for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
|
|
MV best_ref_mv = { 0, 0 };
|
|
|
|
// Reset above block coeffs.
|
|
xd->up_available = (mb_row != 0);
|
|
recon_yoffset = (mb_row * recon_y_stride * 16);
|
|
recon_uvoffset = (mb_row * recon_uv_stride * uv_mb_height);
|
|
|
|
// Set up limit values for motion vectors to prevent them extending
|
|
// outside the UMV borders.
|
|
x->mv_limits.row_min = -((mb_row * 16) + BORDER_MV_PIXELS_B16);
|
|
x->mv_limits.row_max =
|
|
((cm->mb_rows - 1 - mb_row) * 16) + BORDER_MV_PIXELS_B16;
|
|
|
|
for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) {
|
|
int this_error;
|
|
const int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
|
|
const BLOCK_SIZE bsize = get_bsize(cm, mb_row, mb_col);
|
|
double log_intra;
|
|
int level_sample;
|
|
|
|
#if CONFIG_FP_MB_STATS
|
|
const int mb_index = mb_row * cm->mb_cols + mb_col;
|
|
#endif
|
|
|
|
aom_clear_system_state();
|
|
|
|
xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset;
|
|
xd->plane[1].dst.buf = new_yv12->u_buffer + recon_uvoffset;
|
|
xd->plane[2].dst.buf = new_yv12->v_buffer + recon_uvoffset;
|
|
xd->left_available = (mb_col != 0);
|
|
xd->mi[0]->mbmi.sb_type = bsize;
|
|
xd->mi[0]->mbmi.ref_frame[0] = INTRA_FRAME;
|
|
set_mi_row_col(xd, &tile, mb_row * mb_scale, mi_size_high[bsize],
|
|
mb_col * mb_scale, mi_size_wide[bsize],
|
|
#if CONFIG_DEPENDENT_HORZTILES
|
|
cm->dependent_horz_tiles,
|
|
#endif // CONFIG_DEPENDENT_HORZTILES
|
|
cm->mi_rows, cm->mi_cols);
|
|
|
|
set_plane_n4(xd, mi_size_wide[bsize], mi_size_high[bsize]);
|
|
|
|
// Do intra 16x16 prediction.
|
|
xd->mi[0]->mbmi.segment_id = 0;
|
|
#if CONFIG_SUPERTX
|
|
xd->mi[0]->mbmi.segment_id_supertx = 0;
|
|
#endif // CONFIG_SUPERTX
|
|
xd->lossless[xd->mi[0]->mbmi.segment_id] = (qindex == 0);
|
|
xd->mi[0]->mbmi.mode = DC_PRED;
|
|
xd->mi[0]->mbmi.tx_size =
|
|
use_dc_pred ? (bsize >= BLOCK_16X16 ? TX_16X16 : TX_8X8) : TX_4X4;
|
|
av1_encode_intra_block_plane(cm, x, bsize, 0, 0, mb_row * 2, mb_col * 2);
|
|
this_error = aom_get_mb_ss(x->plane[0].src_diff);
|
|
|
|
// Keep a record of blocks that have almost no intra error residual
|
|
// (i.e. are in effect completely flat and untextured in the intra
|
|
// domain). In natural videos this is uncommon, but it is much more
|
|
// common in animations, graphics and screen content, so may be used
|
|
// as a signal to detect these types of content.
|
|
if (this_error < UL_INTRA_THRESH) {
|
|
++intra_skip_count;
|
|
} else if ((mb_col > 0) && (image_data_start_row == INVALID_ROW)) {
|
|
image_data_start_row = mb_row;
|
|
}
|
|
|
|
#if CONFIG_HIGHBITDEPTH
|
|
if (cm->use_highbitdepth) {
|
|
switch (cm->bit_depth) {
|
|
case AOM_BITS_8: break;
|
|
case AOM_BITS_10: this_error >>= 4; break;
|
|
case AOM_BITS_12: this_error >>= 8; break;
|
|
default:
|
|
assert(0 &&
|
|
"cm->bit_depth should be AOM_BITS_8, "
|
|
"AOM_BITS_10 or AOM_BITS_12");
|
|
return;
|
|
}
|
|
}
|
|
#endif // CONFIG_HIGHBITDEPTH
|
|
|
|
aom_clear_system_state();
|
|
log_intra = log(this_error + 1.0);
|
|
if (log_intra < 10.0)
|
|
intra_factor += 1.0 + ((10.0 - log_intra) * 0.05);
|
|
else
|
|
intra_factor += 1.0;
|
|
|
|
#if CONFIG_HIGHBITDEPTH
|
|
if (cm->use_highbitdepth)
|
|
level_sample = CONVERT_TO_SHORTPTR(x->plane[0].src.buf)[0];
|
|
else
|
|
level_sample = x->plane[0].src.buf[0];
|
|
#else
|
|
level_sample = x->plane[0].src.buf[0];
|
|
#endif
|
|
if ((level_sample < DARK_THRESH) && (log_intra < 9.0))
|
|
brightness_factor += 1.0 + (0.01 * (DARK_THRESH - level_sample));
|
|
else
|
|
brightness_factor += 1.0;
|
|
|
|
// Intrapenalty below deals with situations where the intra and inter
|
|
// error scores are very low (e.g. a plain black frame).
|
|
// We do not have special cases in first pass for 0,0 and nearest etc so
|
|
// all inter modes carry an overhead cost estimate for the mv.
|
|
// When the error score is very low this causes us to pick all or lots of
|
|
// INTRA modes and throw lots of key frames.
|
|
// This penalty adds a cost matching that of a 0,0 mv to the intra case.
|
|
this_error += intrapenalty;
|
|
|
|
// Accumulate the intra error.
|
|
intra_error += (int64_t)this_error;
|
|
|
|
#if CONFIG_FP_MB_STATS
|
|
if (cpi->use_fp_mb_stats) {
|
|
// initialization
|
|
cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
|
|
}
|
|
#endif
|
|
|
|
// Set up limit values for motion vectors to prevent them extending
|
|
// outside the UMV borders.
|
|
x->mv_limits.col_min = -((mb_col * 16) + BORDER_MV_PIXELS_B16);
|
|
x->mv_limits.col_max =
|
|
((cm->mb_cols - 1 - mb_col) * 16) + BORDER_MV_PIXELS_B16;
|
|
|
|
if (!frame_is_intra_only(cm)) { // Do a motion search
|
|
int tmp_err, motion_error, raw_motion_error;
|
|
// Assume 0,0 motion with no mv overhead.
|
|
MV mv = { 0, 0 }, tmp_mv = { 0, 0 };
|
|
struct buf_2d unscaled_last_source_buf_2d;
|
|
|
|
xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset;
|
|
#if CONFIG_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
motion_error = highbd_get_prediction_error(
|
|
bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd);
|
|
} else {
|
|
motion_error = get_prediction_error(bsize, &x->plane[0].src,
|
|
&xd->plane[0].pre[0]);
|
|
}
|
|
#else
|
|
motion_error =
|
|
get_prediction_error(bsize, &x->plane[0].src, &xd->plane[0].pre[0]);
|
|
#endif // CONFIG_HIGHBITDEPTH
|
|
|
|
// Compute the motion error of the 0,0 motion using the last source
|
|
// frame as the reference. Skip the further motion search on
|
|
// reconstructed frame if this error is small.
|
|
unscaled_last_source_buf_2d.buf =
|
|
cpi->unscaled_last_source->y_buffer + recon_yoffset;
|
|
unscaled_last_source_buf_2d.stride =
|
|
cpi->unscaled_last_source->y_stride;
|
|
#if CONFIG_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
raw_motion_error = highbd_get_prediction_error(
|
|
bsize, &x->plane[0].src, &unscaled_last_source_buf_2d, xd->bd);
|
|
} else {
|
|
raw_motion_error = get_prediction_error(bsize, &x->plane[0].src,
|
|
&unscaled_last_source_buf_2d);
|
|
}
|
|
#else
|
|
raw_motion_error = get_prediction_error(bsize, &x->plane[0].src,
|
|
&unscaled_last_source_buf_2d);
|
|
#endif // CONFIG_HIGHBITDEPTH
|
|
|
|
// TODO(pengchong): Replace the hard-coded threshold
|
|
if (raw_motion_error > 25) {
|
|
// Test last reference frame using the previous best mv as the
|
|
// starting point (best reference) for the search.
|
|
first_pass_motion_search(cpi, x, &best_ref_mv, &mv, &motion_error);
|
|
|
|
// If the current best reference mv is not centered on 0,0 then do a
|
|
// 0,0 based search as well.
|
|
if (!is_zero_mv(&best_ref_mv)) {
|
|
tmp_err = INT_MAX;
|
|
first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv, &tmp_err);
|
|
|
|
if (tmp_err < motion_error) {
|
|
motion_error = tmp_err;
|
|
mv = tmp_mv;
|
|
}
|
|
}
|
|
|
|
// Search in an older reference frame.
|
|
if ((cm->current_video_frame > 1) && gld_yv12 != NULL) {
|
|
// Assume 0,0 motion with no mv overhead.
|
|
int gf_motion_error;
|
|
|
|
xd->plane[0].pre[0].buf = gld_yv12->y_buffer + recon_yoffset;
|
|
#if CONFIG_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
gf_motion_error = highbd_get_prediction_error(
|
|
bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd);
|
|
} else {
|
|
gf_motion_error = get_prediction_error(bsize, &x->plane[0].src,
|
|
&xd->plane[0].pre[0]);
|
|
}
|
|
#else
|
|
gf_motion_error = get_prediction_error(bsize, &x->plane[0].src,
|
|
&xd->plane[0].pre[0]);
|
|
#endif // CONFIG_HIGHBITDEPTH
|
|
|
|
first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv,
|
|
&gf_motion_error);
|
|
|
|
if (gf_motion_error < motion_error && gf_motion_error < this_error)
|
|
++second_ref_count;
|
|
|
|
// Reset to last frame as reference buffer.
|
|
xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset;
|
|
xd->plane[1].pre[0].buf = first_ref_buf->u_buffer + recon_uvoffset;
|
|
xd->plane[2].pre[0].buf = first_ref_buf->v_buffer + recon_uvoffset;
|
|
|
|
// In accumulating a score for the older reference frame take the
|
|
// best of the motion predicted score and the intra coded error
|
|
// (just as will be done for) accumulation of "coded_error" for
|
|
// the last frame.
|
|
if (gf_motion_error < this_error)
|
|
sr_coded_error += gf_motion_error;
|
|
else
|
|
sr_coded_error += this_error;
|
|
} else {
|
|
sr_coded_error += motion_error;
|
|
}
|
|
} else {
|
|
sr_coded_error += motion_error;
|
|
}
|
|
|
|
// Start by assuming that intra mode is best.
|
|
best_ref_mv.row = 0;
|
|
best_ref_mv.col = 0;
|
|
|
|
#if CONFIG_FP_MB_STATS
|
|
if (cpi->use_fp_mb_stats) {
|
|
// intra predication statistics
|
|
cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
|
|
cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_DCINTRA_MASK;
|
|
cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK;
|
|
if (this_error > FPMB_ERROR_LARGE_TH) {
|
|
cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_LARGE_MASK;
|
|
} else if (this_error < FPMB_ERROR_SMALL_TH) {
|
|
cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_SMALL_MASK;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (motion_error <= this_error) {
|
|
aom_clear_system_state();
|
|
|
|
// Keep a count of cases where the inter and intra were very close
|
|
// and very low. This helps with scene cut detection for example in
|
|
// cropped clips with black bars at the sides or top and bottom.
|
|
if (((this_error - intrapenalty) * 9 <= motion_error * 10) &&
|
|
(this_error < (2 * intrapenalty))) {
|
|
neutral_count += 1.0;
|
|
// Also track cases where the intra is not much worse than the inter
|
|
// and use this in limiting the GF/arf group length.
|
|
} else if ((this_error > NCOUNT_INTRA_THRESH) &&
|
|
(this_error < (NCOUNT_INTRA_FACTOR * motion_error))) {
|
|
neutral_count +=
|
|
(double)motion_error / DOUBLE_DIVIDE_CHECK((double)this_error);
|
|
}
|
|
|
|
mv.row *= 8;
|
|
mv.col *= 8;
|
|
this_error = motion_error;
|
|
xd->mi[0]->mbmi.mode = NEWMV;
|
|
xd->mi[0]->mbmi.mv[0].as_mv = mv;
|
|
xd->mi[0]->mbmi.tx_size = TX_4X4;
|
|
xd->mi[0]->mbmi.ref_frame[0] = LAST_FRAME;
|
|
xd->mi[0]->mbmi.ref_frame[1] = NONE_FRAME;
|
|
av1_build_inter_predictors_sby(cm, xd, mb_row * mb_scale,
|
|
mb_col * mb_scale, NULL, bsize);
|
|
av1_encode_sby_pass1(cm, x, bsize);
|
|
sum_mvr += mv.row;
|
|
sum_mvr_abs += abs(mv.row);
|
|
sum_mvc += mv.col;
|
|
sum_mvc_abs += abs(mv.col);
|
|
sum_mvrs += mv.row * mv.row;
|
|
sum_mvcs += mv.col * mv.col;
|
|
++intercount;
|
|
|
|
best_ref_mv = mv;
|
|
|
|
#if CONFIG_FP_MB_STATS
|
|
if (cpi->use_fp_mb_stats) {
|
|
// inter predication statistics
|
|
cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
|
|
cpi->twopass.frame_mb_stats_buf[mb_index] &= ~FPMB_DCINTRA_MASK;
|
|
cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK;
|
|
if (this_error > FPMB_ERROR_LARGE_TH) {
|
|
cpi->twopass.frame_mb_stats_buf[mb_index] |=
|
|
FPMB_ERROR_LARGE_MASK;
|
|
} else if (this_error < FPMB_ERROR_SMALL_TH) {
|
|
cpi->twopass.frame_mb_stats_buf[mb_index] |=
|
|
FPMB_ERROR_SMALL_MASK;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (!is_zero_mv(&mv)) {
|
|
++mvcount;
|
|
|
|
#if CONFIG_FP_MB_STATS
|
|
if (cpi->use_fp_mb_stats) {
|
|
cpi->twopass.frame_mb_stats_buf[mb_index] &=
|
|
~FPMB_MOTION_ZERO_MASK;
|
|
// check estimated motion direction
|
|
if (mv.col > 0 && mv.col >= abs(mv.row)) {
|
|
// right direction
|
|
cpi->twopass.frame_mb_stats_buf[mb_index] |=
|
|
FPMB_MOTION_RIGHT_MASK;
|
|
} else if (mv.row < 0 && abs(mv.row) >= abs(mv.col)) {
|
|
// up direction
|
|
cpi->twopass.frame_mb_stats_buf[mb_index] |=
|
|
FPMB_MOTION_UP_MASK;
|
|
} else if (mv.col < 0 && abs(mv.col) >= abs(mv.row)) {
|
|
// left direction
|
|
cpi->twopass.frame_mb_stats_buf[mb_index] |=
|
|
FPMB_MOTION_LEFT_MASK;
|
|
} else {
|
|
// down direction
|
|
cpi->twopass.frame_mb_stats_buf[mb_index] |=
|
|
FPMB_MOTION_DOWN_MASK;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Non-zero vector, was it different from the last non zero vector?
|
|
if (!is_equal_mv(&mv, &lastmv)) ++new_mv_count;
|
|
lastmv = mv;
|
|
|
|
// Does the row vector point inwards or outwards?
|
|
if (mb_row < cm->mb_rows / 2) {
|
|
if (mv.row > 0)
|
|
--sum_in_vectors;
|
|
else if (mv.row < 0)
|
|
++sum_in_vectors;
|
|
} else if (mb_row > cm->mb_rows / 2) {
|
|
if (mv.row > 0)
|
|
++sum_in_vectors;
|
|
else if (mv.row < 0)
|
|
--sum_in_vectors;
|
|
}
|
|
|
|
// Does the col vector point inwards or outwards?
|
|
if (mb_col < cm->mb_cols / 2) {
|
|
if (mv.col > 0)
|
|
--sum_in_vectors;
|
|
else if (mv.col < 0)
|
|
++sum_in_vectors;
|
|
} else if (mb_col > cm->mb_cols / 2) {
|
|
if (mv.col > 0)
|
|
++sum_in_vectors;
|
|
else if (mv.col < 0)
|
|
--sum_in_vectors;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
sr_coded_error += (int64_t)this_error;
|
|
}
|
|
coded_error += (int64_t)this_error;
|
|
|
|
// Adjust to the next column of MBs.
|
|
x->plane[0].src.buf += 16;
|
|
x->plane[1].src.buf += uv_mb_height;
|
|
x->plane[2].src.buf += uv_mb_height;
|
|
|
|
recon_yoffset += 16;
|
|
recon_uvoffset += uv_mb_height;
|
|
}
|
|
|
|
// Adjust to the next row of MBs.
|
|
x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols;
|
|
x->plane[1].src.buf +=
|
|
uv_mb_height * x->plane[1].src.stride - uv_mb_height * cm->mb_cols;
|
|
x->plane[2].src.buf +=
|
|
uv_mb_height * x->plane[1].src.stride - uv_mb_height * cm->mb_cols;
|
|
|
|
aom_clear_system_state();
|
|
}
|
|
|
|
#if CONFIG_PVQ
|
|
#if !CONFIG_ANS
|
|
od_ec_enc_clear(&x->daala_enc.w.ec);
|
|
#else
|
|
#error "CONFIG_PVQ currently requires !CONFIG_ANS."
|
|
#endif
|
|
|
|
x->pvq_q->last_pos = x->pvq_q->curr_pos;
|
|
x->pvq_q->curr_pos = 0;
|
|
x->pvq_q = NULL;
|
|
|
|
aom_free(pvq_q.buf);
|
|
#endif
|
|
|
|
// Clamp the image start to rows/2. This number of rows is discarded top
|
|
// and bottom as dead data so rows / 2 means the frame is blank.
|
|
if ((image_data_start_row > cm->mb_rows / 2) ||
|
|
(image_data_start_row == INVALID_ROW)) {
|
|
image_data_start_row = cm->mb_rows / 2;
|
|
}
|
|
// Exclude any image dead zone
|
|
if (image_data_start_row > 0) {
|
|
intra_skip_count =
|
|
AOMMAX(0, intra_skip_count - (image_data_start_row * cm->mb_cols * 2));
|
|
}
|
|
|
|
{
|
|
FIRSTPASS_STATS fps;
|
|
// The minimum error here insures some bit allocation to frames even
|
|
// in static regions. The allocation per MB declines for larger formats
|
|
// where the typical "real" energy per MB also falls.
|
|
// Initial estimate here uses sqrt(mbs) to define the min_err, where the
|
|
// number of mbs is proportional to the image area.
|
|
const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
|
|
? cpi->initial_mbs
|
|
: cpi->common.MBs;
|
|
const double min_err = 200 * sqrt(num_mbs);
|
|
|
|
intra_factor = intra_factor / (double)num_mbs;
|
|
brightness_factor = brightness_factor / (double)num_mbs;
|
|
fps.weight = intra_factor * brightness_factor;
|
|
|
|
fps.frame = cm->current_video_frame;
|
|
fps.coded_error = (double)(coded_error >> 8) + min_err;
|
|
fps.sr_coded_error = (double)(sr_coded_error >> 8) + min_err;
|
|
fps.intra_error = (double)(intra_error >> 8) + min_err;
|
|
fps.count = 1.0;
|
|
fps.pcnt_inter = (double)intercount / num_mbs;
|
|
fps.pcnt_second_ref = (double)second_ref_count / num_mbs;
|
|
fps.pcnt_neutral = (double)neutral_count / num_mbs;
|
|
fps.intra_skip_pct = (double)intra_skip_count / num_mbs;
|
|
fps.inactive_zone_rows = (double)image_data_start_row;
|
|
fps.inactive_zone_cols = (double)0; // TODO(paulwilkins): fix
|
|
|
|
if (mvcount > 0) {
|
|
fps.MVr = (double)sum_mvr / mvcount;
|
|
fps.mvr_abs = (double)sum_mvr_abs / mvcount;
|
|
fps.MVc = (double)sum_mvc / mvcount;
|
|
fps.mvc_abs = (double)sum_mvc_abs / mvcount;
|
|
fps.MVrv =
|
|
((double)sum_mvrs - ((double)sum_mvr * sum_mvr / mvcount)) / mvcount;
|
|
fps.MVcv =
|
|
((double)sum_mvcs - ((double)sum_mvc * sum_mvc / mvcount)) / mvcount;
|
|
fps.mv_in_out_count = (double)sum_in_vectors / (mvcount * 2);
|
|
fps.new_mv_count = new_mv_count;
|
|
fps.pcnt_motion = (double)mvcount / num_mbs;
|
|
} else {
|
|
fps.MVr = 0.0;
|
|
fps.mvr_abs = 0.0;
|
|
fps.MVc = 0.0;
|
|
fps.mvc_abs = 0.0;
|
|
fps.MVrv = 0.0;
|
|
fps.MVcv = 0.0;
|
|
fps.mv_in_out_count = 0.0;
|
|
fps.new_mv_count = 0.0;
|
|
fps.pcnt_motion = 0.0;
|
|
}
|
|
|
|
// TODO(paulwilkins): Handle the case when duration is set to 0, or
|
|
// something less than the full time between subsequent values of
|
|
// cpi->source_time_stamp.
|
|
fps.duration = (double)(source->ts_end - source->ts_start);
|
|
|
|
// Don't want to do output stats with a stack variable!
|
|
twopass->this_frame_stats = fps;
|
|
output_stats(&twopass->this_frame_stats, cpi->output_pkt_list);
|
|
accumulate_stats(&twopass->total_stats, &fps);
|
|
|
|
#if CONFIG_FP_MB_STATS
|
|
if (cpi->use_fp_mb_stats) {
|
|
output_fpmb_stats(twopass->frame_mb_stats_buf, cpi->initial_mbs,
|
|
cpi->output_pkt_list);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Copy the previous Last Frame back into gf and and arf buffers if
|
|
// the prediction is good enough... but also don't allow it to lag too far.
|
|
if ((twopass->sr_update_lag > 3) ||
|
|
((cm->current_video_frame > 0) &&
|
|
(twopass->this_frame_stats.pcnt_inter > 0.20) &&
|
|
((twopass->this_frame_stats.intra_error /
|
|
DOUBLE_DIVIDE_CHECK(twopass->this_frame_stats.coded_error)) > 2.0))) {
|
|
if (gld_yv12 != NULL) {
|
|
#if CONFIG_EXT_REFS
|
|
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx],
|
|
cm->ref_frame_map[cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME]]);
|
|
#else
|
|
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx],
|
|
cm->ref_frame_map[cpi->lst_fb_idx]);
|
|
#endif // CONFIG_EXT_REFS
|
|
}
|
|
twopass->sr_update_lag = 1;
|
|
} else {
|
|
++twopass->sr_update_lag;
|
|
}
|
|
|
|
aom_extend_frame_borders(new_yv12);
|
|
|
|
// The frame we just compressed now becomes the last frame.
|
|
#if CONFIG_EXT_REFS
|
|
ref_cnt_fb(pool->frame_bufs,
|
|
&cm->ref_frame_map[cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME]],
|
|
cm->new_fb_idx);
|
|
#else
|
|
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->lst_fb_idx],
|
|
cm->new_fb_idx);
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
// Special case for the first frame. Copy into the GF buffer as a second
|
|
// reference.
|
|
if (cm->current_video_frame == 0 && cpi->gld_fb_idx != INVALID_IDX) {
|
|
#if CONFIG_EXT_REFS
|
|
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx],
|
|
cm->ref_frame_map[cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME]]);
|
|
#else
|
|
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx],
|
|
cm->ref_frame_map[cpi->lst_fb_idx]);
|
|
#endif // CONFIG_EXT_REFS
|
|
}
|
|
|
|
// Use this to see what the first pass reconstruction looks like.
|
|
if (0) {
|
|
char filename[512];
|
|
FILE *recon_file;
|
|
snprintf(filename, sizeof(filename), "enc%04d.yuv",
|
|
(int)cm->current_video_frame);
|
|
|
|
if (cm->current_video_frame == 0)
|
|
recon_file = fopen(filename, "wb");
|
|
else
|
|
recon_file = fopen(filename, "ab");
|
|
|
|
(void)fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file);
|
|
fclose(recon_file);
|
|
}
|
|
|
|
++cm->current_video_frame;
|
|
}
|
|
|
|
static double calc_correction_factor(double err_per_mb, double err_divisor,
|
|
double pt_low, double pt_high, int q,
|
|
aom_bit_depth_t bit_depth) {
|
|
const double error_term = err_per_mb / err_divisor;
|
|
|
|
// Adjustment based on actual quantizer to power term.
|
|
const double power_term =
|
|
AOMMIN(av1_convert_qindex_to_q(q, bit_depth) * 0.01 + pt_low, pt_high);
|
|
|
|
// Calculate correction factor.
|
|
if (power_term < 1.0) assert(error_term >= 0.0);
|
|
|
|
return fclamp(pow(error_term, power_term), 0.05, 5.0);
|
|
}
|
|
|
|
#define ERR_DIVISOR 100.0
|
|
static int get_twopass_worst_quality(const AV1_COMP *cpi,
|
|
const double section_err,
|
|
double inactive_zone,
|
|
int section_target_bandwidth,
|
|
double group_weight_factor) {
|
|
const RATE_CONTROL *const rc = &cpi->rc;
|
|
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
|
|
|
|
inactive_zone = fclamp(inactive_zone, 0.0, 1.0);
|
|
|
|
if (section_target_bandwidth <= 0) {
|
|
return rc->worst_quality; // Highest value allowed
|
|
} else {
|
|
const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
|
|
? cpi->initial_mbs
|
|
: cpi->common.MBs;
|
|
const int active_mbs = AOMMAX(1, num_mbs - (int)(num_mbs * inactive_zone));
|
|
const double av_err_per_mb = section_err / active_mbs;
|
|
const double speed_term = 1.0 + 0.04 * oxcf->speed;
|
|
double ediv_size_correction;
|
|
const int target_norm_bits_per_mb =
|
|
(int)((uint64_t)section_target_bandwidth << BPER_MB_NORMBITS) /
|
|
active_mbs;
|
|
int q;
|
|
|
|
// Larger image formats are expected to be a little harder to code
|
|
// relatively given the same prediction error score. This in part at
|
|
// least relates to the increased size and hence coding overheads of
|
|
// motion vectors. Some account of this is made through adjustment of
|
|
// the error divisor.
|
|
ediv_size_correction =
|
|
AOMMAX(0.2, AOMMIN(5.0, get_linear_size_factor(cpi)));
|
|
if (ediv_size_correction < 1.0)
|
|
ediv_size_correction = -(1.0 / ediv_size_correction);
|
|
ediv_size_correction *= 4.0;
|
|
|
|
// Try and pick a max Q that will be high enough to encode the
|
|
// content at the given rate.
|
|
for (q = rc->best_quality; q < rc->worst_quality; ++q) {
|
|
const double factor = calc_correction_factor(
|
|
av_err_per_mb, ERR_DIVISOR - ediv_size_correction, FACTOR_PT_LOW,
|
|
FACTOR_PT_HIGH, q, cpi->common.bit_depth);
|
|
const int bits_per_mb = av1_rc_bits_per_mb(
|
|
INTER_FRAME, q, factor * speed_term * group_weight_factor,
|
|
cpi->common.bit_depth);
|
|
if (bits_per_mb <= target_norm_bits_per_mb) break;
|
|
}
|
|
|
|
// Restriction on active max q for constrained quality mode.
|
|
if (cpi->oxcf.rc_mode == AOM_CQ) q = AOMMAX(q, oxcf->cq_level);
|
|
return q;
|
|
}
|
|
}
|
|
|
|
static void setup_rf_level_maxq(AV1_COMP *cpi) {
|
|
int i;
|
|
RATE_CONTROL *const rc = &cpi->rc;
|
|
for (i = INTER_NORMAL; i < RATE_FACTOR_LEVELS; ++i) {
|
|
int qdelta = av1_frame_type_qdelta(cpi, i, rc->worst_quality);
|
|
rc->rf_level_maxq[i] = AOMMAX(rc->worst_quality + qdelta, rc->best_quality);
|
|
}
|
|
}
|
|
|
|
void av1_init_second_pass(AV1_COMP *cpi) {
|
|
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
|
|
TWO_PASS *const twopass = &cpi->twopass;
|
|
double frame_rate;
|
|
FIRSTPASS_STATS *stats;
|
|
|
|
zero_stats(&twopass->total_stats);
|
|
zero_stats(&twopass->total_left_stats);
|
|
|
|
if (!twopass->stats_in_end) return;
|
|
|
|
stats = &twopass->total_stats;
|
|
|
|
*stats = *twopass->stats_in_end;
|
|
twopass->total_left_stats = *stats;
|
|
|
|
frame_rate = 10000000.0 * stats->count / stats->duration;
|
|
// Each frame can have a different duration, as the frame rate in the source
|
|
// isn't guaranteed to be constant. The frame rate prior to the first frame
|
|
// encoded in the second pass is a guess. However, the sum duration is not.
|
|
// It is calculated based on the actual durations of all frames from the
|
|
// first pass.
|
|
av1_new_framerate(cpi, frame_rate);
|
|
twopass->bits_left =
|
|
(int64_t)(stats->duration * oxcf->target_bandwidth / 10000000.0);
|
|
|
|
// This variable monitors how far behind the second ref update is lagging.
|
|
twopass->sr_update_lag = 1;
|
|
|
|
// Scan the first pass file and calculate a modified total error based upon
|
|
// the bias/power function used to allocate bits.
|
|
{
|
|
const double avg_error =
|
|
stats->coded_error / DOUBLE_DIVIDE_CHECK(stats->count);
|
|
const FIRSTPASS_STATS *s = twopass->stats_in;
|
|
double modified_error_total = 0.0;
|
|
twopass->modified_error_min =
|
|
(avg_error * oxcf->two_pass_vbrmin_section) / 100;
|
|
twopass->modified_error_max =
|
|
(avg_error * oxcf->two_pass_vbrmax_section) / 100;
|
|
while (s < twopass->stats_in_end) {
|
|
modified_error_total += calculate_modified_err(cpi, twopass, oxcf, s);
|
|
++s;
|
|
}
|
|
twopass->modified_error_left = modified_error_total;
|
|
}
|
|
|
|
// Reset the vbr bits off target counters
|
|
cpi->rc.vbr_bits_off_target = 0;
|
|
cpi->rc.vbr_bits_off_target_fast = 0;
|
|
|
|
cpi->rc.rate_error_estimate = 0;
|
|
|
|
// Static sequence monitor variables.
|
|
twopass->kf_zeromotion_pct = 100;
|
|
twopass->last_kfgroup_zeromotion_pct = 100;
|
|
|
|
if (oxcf->resize_mode != RESIZE_NONE) {
|
|
setup_rf_level_maxq(cpi);
|
|
}
|
|
}
|
|
|
|
#define SR_DIFF_PART 0.0015
|
|
#define MOTION_AMP_PART 0.003
|
|
#define INTRA_PART 0.005
|
|
#define DEFAULT_DECAY_LIMIT 0.75
|
|
#define LOW_SR_DIFF_TRHESH 0.1
|
|
#define SR_DIFF_MAX 128.0
|
|
|
|
static double get_sr_decay_rate(const AV1_COMP *cpi,
|
|
const FIRSTPASS_STATS *frame) {
|
|
const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs
|
|
: cpi->common.MBs;
|
|
double sr_diff = (frame->sr_coded_error - frame->coded_error) / num_mbs;
|
|
double sr_decay = 1.0;
|
|
double modified_pct_inter;
|
|
double modified_pcnt_intra;
|
|
const double motion_amplitude_factor =
|
|
frame->pcnt_motion * ((frame->mvc_abs + frame->mvr_abs) / 2);
|
|
|
|
modified_pct_inter = frame->pcnt_inter;
|
|
if ((frame->intra_error / DOUBLE_DIVIDE_CHECK(frame->coded_error)) <
|
|
(double)NCOUNT_FRAME_II_THRESH) {
|
|
modified_pct_inter = frame->pcnt_inter - frame->pcnt_neutral;
|
|
}
|
|
modified_pcnt_intra = 100 * (1.0 - modified_pct_inter);
|
|
|
|
if ((sr_diff > LOW_SR_DIFF_TRHESH)) {
|
|
sr_diff = AOMMIN(sr_diff, SR_DIFF_MAX);
|
|
sr_decay = 1.0 - (SR_DIFF_PART * sr_diff) -
|
|
(MOTION_AMP_PART * motion_amplitude_factor) -
|
|
(INTRA_PART * modified_pcnt_intra);
|
|
}
|
|
return AOMMAX(sr_decay, AOMMIN(DEFAULT_DECAY_LIMIT, modified_pct_inter));
|
|
}
|
|
|
|
// This function gives an estimate of how badly we believe the prediction
|
|
// quality is decaying from frame to frame.
|
|
static double get_zero_motion_factor(const AV1_COMP *cpi,
|
|
const FIRSTPASS_STATS *frame) {
|
|
const double zero_motion_pct = frame->pcnt_inter - frame->pcnt_motion;
|
|
double sr_decay = get_sr_decay_rate(cpi, frame);
|
|
return AOMMIN(sr_decay, zero_motion_pct);
|
|
}
|
|
|
|
#define ZM_POWER_FACTOR 0.75
|
|
|
|
static double get_prediction_decay_rate(const AV1_COMP *cpi,
|
|
const FIRSTPASS_STATS *next_frame) {
|
|
const double sr_decay_rate = get_sr_decay_rate(cpi, next_frame);
|
|
const double zero_motion_factor =
|
|
(0.95 * pow((next_frame->pcnt_inter - next_frame->pcnt_motion),
|
|
ZM_POWER_FACTOR));
|
|
|
|
return AOMMAX(zero_motion_factor,
|
|
(sr_decay_rate + ((1.0 - sr_decay_rate) * zero_motion_factor)));
|
|
}
|
|
|
|
// Function to test for a condition where a complex transition is followed
|
|
// by a static section. For example in slide shows where there is a fade
|
|
// between slides. This is to help with more optimal kf and gf positioning.
|
|
static int detect_transition_to_still(AV1_COMP *cpi, int frame_interval,
|
|
int still_interval,
|
|
double loop_decay_rate,
|
|
double last_decay_rate) {
|
|
TWO_PASS *const twopass = &cpi->twopass;
|
|
RATE_CONTROL *const rc = &cpi->rc;
|
|
|
|
// Break clause to detect very still sections after motion
|
|
// For example a static image after a fade or other transition
|
|
// instead of a clean scene cut.
|
|
if (frame_interval > rc->min_gf_interval && loop_decay_rate >= 0.999 &&
|
|
last_decay_rate < 0.9) {
|
|
int j;
|
|
|
|
// Look ahead a few frames to see if static condition persists...
|
|
for (j = 0; j < still_interval; ++j) {
|
|
const FIRSTPASS_STATS *stats = &twopass->stats_in[j];
|
|
if (stats >= twopass->stats_in_end) break;
|
|
|
|
if (stats->pcnt_inter - stats->pcnt_motion < 0.999) break;
|
|
}
|
|
|
|
// Only if it does do we signal a transition to still.
|
|
return j == still_interval;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// This function detects a flash through the high relative pcnt_second_ref
|
|
// score in the frame following a flash frame. The offset passed in should
|
|
// reflect this.
|
|
static int detect_flash(const TWO_PASS *twopass, int offset) {
|
|
const FIRSTPASS_STATS *const next_frame = read_frame_stats(twopass, offset);
|
|
|
|
// What we are looking for here is a situation where there is a
|
|
// brief break in prediction (such as a flash) but subsequent frames
|
|
// are reasonably well predicted by an earlier (pre flash) frame.
|
|
// The recovery after a flash is indicated by a high pcnt_second_ref
|
|
// compared to pcnt_inter.
|
|
return next_frame != NULL &&
|
|
next_frame->pcnt_second_ref > next_frame->pcnt_inter &&
|
|
next_frame->pcnt_second_ref >= 0.5;
|
|
}
|
|
|
|
// Update the motion related elements to the GF arf boost calculation.
|
|
static void accumulate_frame_motion_stats(const FIRSTPASS_STATS *stats,
|
|
double *mv_in_out,
|
|
double *mv_in_out_accumulator,
|
|
double *abs_mv_in_out_accumulator,
|
|
double *mv_ratio_accumulator) {
|
|
const double pct = stats->pcnt_motion;
|
|
|
|
// Accumulate Motion In/Out of frame stats.
|
|
*mv_in_out = stats->mv_in_out_count * pct;
|
|
*mv_in_out_accumulator += *mv_in_out;
|
|
*abs_mv_in_out_accumulator += fabs(*mv_in_out);
|
|
|
|
// Accumulate a measure of how uniform (or conversely how random) the motion
|
|
// field is (a ratio of abs(mv) / mv).
|
|
if (pct > 0.05) {
|
|
const double mvr_ratio =
|
|
fabs(stats->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVr));
|
|
const double mvc_ratio =
|
|
fabs(stats->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVc));
|
|
|
|
*mv_ratio_accumulator +=
|
|
pct * (mvr_ratio < stats->mvr_abs ? mvr_ratio : stats->mvr_abs);
|
|
*mv_ratio_accumulator +=
|
|
pct * (mvc_ratio < stats->mvc_abs ? mvc_ratio : stats->mvc_abs);
|
|
}
|
|
}
|
|
|
|
#define BASELINE_ERR_PER_MB 1000.0
|
|
static double calc_frame_boost(AV1_COMP *cpi, const FIRSTPASS_STATS *this_frame,
|
|
double this_frame_mv_in_out, double max_boost) {
|
|
double frame_boost;
|
|
const double lq = av1_convert_qindex_to_q(
|
|
cpi->rc.avg_frame_qindex[INTER_FRAME], cpi->common.bit_depth);
|
|
const double boost_q_correction = AOMMIN((0.5 + (lq * 0.015)), 1.5);
|
|
int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs
|
|
: cpi->common.MBs;
|
|
|
|
// Correct for any inactive region in the image
|
|
num_mbs = (int)AOMMAX(1, num_mbs * calculate_active_area(cpi, this_frame));
|
|
|
|
// Underlying boost factor is based on inter error ratio.
|
|
frame_boost = (BASELINE_ERR_PER_MB * num_mbs) /
|
|
DOUBLE_DIVIDE_CHECK(this_frame->coded_error);
|
|
frame_boost = frame_boost * BOOST_FACTOR * boost_q_correction;
|
|
|
|
// Increase boost for frames where new data coming into frame (e.g. zoom out).
|
|
// Slightly reduce boost if there is a net balance of motion out of the frame
|
|
// (zoom in). The range for this_frame_mv_in_out is -1.0 to +1.0.
|
|
if (this_frame_mv_in_out > 0.0)
|
|
frame_boost += frame_boost * (this_frame_mv_in_out * 2.0);
|
|
// In the extreme case the boost is halved.
|
|
else
|
|
frame_boost += frame_boost * (this_frame_mv_in_out / 2.0);
|
|
|
|
return AOMMIN(frame_boost, max_boost * boost_q_correction);
|
|
}
|
|
|
|
static int calc_arf_boost(AV1_COMP *cpi, int offset, int f_frames, int b_frames,
|
|
int *f_boost, int *b_boost) {
|
|
TWO_PASS *const twopass = &cpi->twopass;
|
|
int i;
|
|
double boost_score = 0.0;
|
|
double mv_ratio_accumulator = 0.0;
|
|
double decay_accumulator = 1.0;
|
|
double this_frame_mv_in_out = 0.0;
|
|
double mv_in_out_accumulator = 0.0;
|
|
double abs_mv_in_out_accumulator = 0.0;
|
|
int arf_boost;
|
|
int flash_detected = 0;
|
|
|
|
// Search forward from the proposed arf/next gf position.
|
|
for (i = 0; i < f_frames; ++i) {
|
|
const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset);
|
|
if (this_frame == NULL) break;
|
|
|
|
// Update the motion related elements to the boost calculation.
|
|
accumulate_frame_motion_stats(
|
|
this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
|
|
&abs_mv_in_out_accumulator, &mv_ratio_accumulator);
|
|
|
|
// We want to discount the flash frame itself and the recovery
|
|
// frame that follows as both will have poor scores.
|
|
flash_detected = detect_flash(twopass, i + offset) ||
|
|
detect_flash(twopass, i + offset + 1);
|
|
|
|
// Accumulate the effect of prediction quality decay.
|
|
if (!flash_detected) {
|
|
decay_accumulator *= get_prediction_decay_rate(cpi, this_frame);
|
|
decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
|
|
? MIN_DECAY_FACTOR
|
|
: decay_accumulator;
|
|
}
|
|
|
|
boost_score +=
|
|
decay_accumulator *
|
|
calc_frame_boost(cpi, this_frame, this_frame_mv_in_out, GF_MAX_BOOST);
|
|
}
|
|
|
|
*f_boost = (int)boost_score;
|
|
|
|
// Reset for backward looking loop.
|
|
boost_score = 0.0;
|
|
mv_ratio_accumulator = 0.0;
|
|
decay_accumulator = 1.0;
|
|
this_frame_mv_in_out = 0.0;
|
|
mv_in_out_accumulator = 0.0;
|
|
abs_mv_in_out_accumulator = 0.0;
|
|
|
|
// Search backward towards last gf position.
|
|
for (i = -1; i >= -b_frames; --i) {
|
|
const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset);
|
|
if (this_frame == NULL) break;
|
|
|
|
// Update the motion related elements to the boost calculation.
|
|
accumulate_frame_motion_stats(
|
|
this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
|
|
&abs_mv_in_out_accumulator, &mv_ratio_accumulator);
|
|
|
|
// We want to discount the the flash frame itself and the recovery
|
|
// frame that follows as both will have poor scores.
|
|
flash_detected = detect_flash(twopass, i + offset) ||
|
|
detect_flash(twopass, i + offset + 1);
|
|
|
|
// Cumulative effect of prediction quality decay.
|
|
if (!flash_detected) {
|
|
decay_accumulator *= get_prediction_decay_rate(cpi, this_frame);
|
|
decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
|
|
? MIN_DECAY_FACTOR
|
|
: decay_accumulator;
|
|
}
|
|
|
|
boost_score +=
|
|
decay_accumulator *
|
|
calc_frame_boost(cpi, this_frame, this_frame_mv_in_out, GF_MAX_BOOST);
|
|
}
|
|
*b_boost = (int)boost_score;
|
|
|
|
arf_boost = (*f_boost + *b_boost);
|
|
if (arf_boost < ((b_frames + f_frames) * 20))
|
|
arf_boost = ((b_frames + f_frames) * 20);
|
|
arf_boost = AOMMAX(arf_boost, MIN_ARF_GF_BOOST);
|
|
|
|
return arf_boost;
|
|
}
|
|
|
|
// Calculate a section intra ratio used in setting max loop filter.
|
|
static int calculate_section_intra_ratio(const FIRSTPASS_STATS *begin,
|
|
const FIRSTPASS_STATS *end,
|
|
int section_length) {
|
|
const FIRSTPASS_STATS *s = begin;
|
|
double intra_error = 0.0;
|
|
double coded_error = 0.0;
|
|
int i = 0;
|
|
|
|
while (s < end && i < section_length) {
|
|
intra_error += s->intra_error;
|
|
coded_error += s->coded_error;
|
|
++s;
|
|
++i;
|
|
}
|
|
|
|
return (int)(intra_error / DOUBLE_DIVIDE_CHECK(coded_error));
|
|
}
|
|
|
|
// Calculate the total bits to allocate in this GF/ARF group.
|
|
static int64_t calculate_total_gf_group_bits(AV1_COMP *cpi,
|
|
double gf_group_err) {
|
|
const RATE_CONTROL *const rc = &cpi->rc;
|
|
const TWO_PASS *const twopass = &cpi->twopass;
|
|
const int max_bits = frame_max_bits(rc, &cpi->oxcf);
|
|
int64_t total_group_bits;
|
|
|
|
// Calculate the bits to be allocated to the group as a whole.
|
|
if ((twopass->kf_group_bits > 0) && (twopass->kf_group_error_left > 0)) {
|
|
total_group_bits = (int64_t)(twopass->kf_group_bits *
|
|
(gf_group_err / twopass->kf_group_error_left));
|
|
} else {
|
|
total_group_bits = 0;
|
|
}
|
|
|
|
// Clamp odd edge cases.
|
|
total_group_bits = (total_group_bits < 0)
|
|
? 0
|
|
: (total_group_bits > twopass->kf_group_bits)
|
|
? twopass->kf_group_bits
|
|
: total_group_bits;
|
|
|
|
// Clip based on user supplied data rate variability limit.
|
|
if (total_group_bits > (int64_t)max_bits * rc->baseline_gf_interval)
|
|
total_group_bits = (int64_t)max_bits * rc->baseline_gf_interval;
|
|
|
|
return total_group_bits;
|
|
}
|
|
|
|
// Calculate the number bits extra to assign to boosted frames in a group.
|
|
static int calculate_boost_bits(int frame_count, int boost,
|
|
int64_t total_group_bits) {
|
|
int allocation_chunks;
|
|
|
|
// return 0 for invalid inputs (could arise e.g. through rounding errors)
|
|
if (!boost || (total_group_bits <= 0) || (frame_count <= 0)) return 0;
|
|
|
|
allocation_chunks = (frame_count * 100) + boost;
|
|
|
|
// Prevent overflow.
|
|
if (boost > 1023) {
|
|
int divisor = boost >> 10;
|
|
boost /= divisor;
|
|
allocation_chunks /= divisor;
|
|
}
|
|
|
|
// Calculate the number of extra bits for use in the boosted frame or frames.
|
|
return AOMMAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks),
|
|
0);
|
|
}
|
|
|
|
#if !CONFIG_EXT_REFS
|
|
// Current limit on maximum number of active arfs in a GF/ARF group.
|
|
#define MAX_ACTIVE_ARFS 2
|
|
#define ARF_SLOT1 2
|
|
#define ARF_SLOT2 3
|
|
// This function indirects the choice of buffers for arfs.
|
|
// At the moment the values are fixed but this may change as part of
|
|
// the integration process with other codec features that swap buffers around.
|
|
static void get_arf_buffer_indices(unsigned char *arf_buffer_indices) {
|
|
arf_buffer_indices[0] = ARF_SLOT1;
|
|
arf_buffer_indices[1] = ARF_SLOT2;
|
|
}
|
|
#endif
|
|
|
|
static void allocate_gf_group_bits(AV1_COMP *cpi, int64_t gf_group_bits,
|
|
double group_error, int gf_arf_bits) {
|
|
RATE_CONTROL *const rc = &cpi->rc;
|
|
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
|
|
TWO_PASS *const twopass = &cpi->twopass;
|
|
GF_GROUP *const gf_group = &twopass->gf_group;
|
|
FIRSTPASS_STATS frame_stats;
|
|
int i;
|
|
int frame_index = 0;
|
|
int target_frame_size;
|
|
int key_frame;
|
|
const int max_bits = frame_max_bits(&cpi->rc, &cpi->oxcf);
|
|
int64_t total_group_bits = gf_group_bits;
|
|
double modified_err = 0.0;
|
|
double err_fraction;
|
|
int mid_boost_bits = 0;
|
|
#if CONFIG_EXT_REFS
|
|
// The use of bi-predictive frames are only enabled when following 3
|
|
// conditions are met:
|
|
// (1) Alt-ref is enabled;
|
|
// (2) The bi-predictive group interval is at least 2; and
|
|
// (3) The bi-predictive group interval is strictly smaller than the
|
|
// golden group interval.
|
|
const int is_bipred_enabled =
|
|
rc->source_alt_ref_pending && rc->bipred_group_interval &&
|
|
rc->bipred_group_interval <=
|
|
(rc->baseline_gf_interval - rc->source_alt_ref_pending);
|
|
int bipred_group_end = 0;
|
|
int bipred_frame_index = 0;
|
|
|
|
int arf_pos[MAX_EXT_ARFS + 1];
|
|
const unsigned char ext_arf_interval =
|
|
(unsigned char)(rc->baseline_gf_interval / (cpi->num_extra_arfs + 1) - 1);
|
|
int which_arf = cpi->num_extra_arfs;
|
|
int subgroup_interval[MAX_EXT_ARFS + 1];
|
|
int ext_arf_boost[MAX_EXT_ARFS];
|
|
int is_sg_bipred_enabled = is_bipred_enabled;
|
|
int accumulative_subgroup_interval = 0;
|
|
#else
|
|
int mid_frame_idx;
|
|
unsigned char arf_buffer_indices[MAX_ACTIVE_ARFS];
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
#if CONFIG_EXT_REFS
|
|
av1_zero_array(ext_arf_boost, MAX_EXT_ARFS);
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
key_frame = cpi->common.frame_type == KEY_FRAME;
|
|
|
|
#if !CONFIG_EXT_REFS
|
|
get_arf_buffer_indices(arf_buffer_indices);
|
|
#endif // !CONFIG_EXT_REFS
|
|
|
|
// For key frames the frame target rate is already set and it
|
|
// is also the golden frame.
|
|
if (!key_frame) {
|
|
if (rc->source_alt_ref_active) {
|
|
gf_group->update_type[frame_index] = OVERLAY_UPDATE;
|
|
gf_group->rf_level[frame_index] = INTER_NORMAL;
|
|
gf_group->bit_allocation[frame_index] = 0;
|
|
} else {
|
|
gf_group->update_type[frame_index] = GF_UPDATE;
|
|
gf_group->rf_level[frame_index] = GF_ARF_STD;
|
|
gf_group->bit_allocation[frame_index] = gf_arf_bits;
|
|
}
|
|
#if CONFIG_EXT_REFS
|
|
gf_group->arf_update_idx[frame_index] = 0;
|
|
gf_group->arf_ref_idx[frame_index] = 0;
|
|
#else
|
|
gf_group->arf_update_idx[frame_index] = arf_buffer_indices[0];
|
|
gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[0];
|
|
#endif // CONFIG_EXT_REFS
|
|
// Step over the golden frame / overlay frame
|
|
if (EOF == input_stats(twopass, &frame_stats)) return;
|
|
}
|
|
|
|
#if CONFIG_EXT_REFS
|
|
gf_group->bidir_pred_enabled[frame_index] = 0;
|
|
gf_group->brf_src_offset[frame_index] = 0;
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
// Deduct the boost bits for arf (or gf if it is not a key frame)
|
|
// from the group total.
|
|
if (rc->source_alt_ref_pending || !key_frame) total_group_bits -= gf_arf_bits;
|
|
|
|
frame_index++;
|
|
|
|
#if CONFIG_EXT_REFS
|
|
bipred_frame_index++;
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
// Store the bits to spend on the ARF if there is one.
|
|
if (rc->source_alt_ref_pending) {
|
|
gf_group->update_type[frame_index] = ARF_UPDATE;
|
|
gf_group->rf_level[frame_index] = GF_ARF_STD;
|
|
gf_group->bit_allocation[frame_index] = gf_arf_bits;
|
|
|
|
gf_group->arf_src_offset[frame_index] =
|
|
(unsigned char)(rc->baseline_gf_interval - 1);
|
|
|
|
#if CONFIG_EXT_REFS
|
|
gf_group->arf_update_idx[frame_index] = 0;
|
|
gf_group->arf_ref_idx[frame_index] = 0;
|
|
|
|
gf_group->bidir_pred_enabled[frame_index] = 0;
|
|
gf_group->brf_src_offset[frame_index] = 0;
|
|
// NOTE: "bidir_pred_frame_index" stays unchanged for ARF_UPDATE frames.
|
|
#else
|
|
gf_group->arf_update_idx[frame_index] = arf_buffer_indices[0];
|
|
gf_group->arf_ref_idx[frame_index] =
|
|
arf_buffer_indices[cpi->multi_arf_last_grp_enabled &&
|
|
rc->source_alt_ref_active];
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
#if CONFIG_EXT_REFS
|
|
// Work out the ARFs' positions in this gf group
|
|
// NOTE(weitinglin): ALT_REFs' are indexed inversely, but coded in display
|
|
// order (except for the original ARF). In the example of three ALT_REF's,
|
|
// We index ALTREF's as: KEY ----- ALT2 ----- ALT1 ----- ALT0
|
|
// but code them in the following order:
|
|
// KEY-ALT0-ALT2 ----- OVERLAY2-ALT1 ----- OVERLAY1 ----- OVERLAY0
|
|
arf_pos[0] =
|
|
frame_index + cpi->num_extra_arfs + gf_group->arf_src_offset[1] + 1;
|
|
for (i = 0; i < cpi->num_extra_arfs; ++i) {
|
|
arf_pos[i + 1] =
|
|
frame_index + (cpi->num_extra_arfs - i) * (ext_arf_interval + 2);
|
|
subgroup_interval[i] = arf_pos[i] - arf_pos[i + 1] - (i == 0 ? 1 : 2);
|
|
}
|
|
subgroup_interval[cpi->num_extra_arfs] = arf_pos[cpi->num_extra_arfs] -
|
|
frame_index -
|
|
(cpi->num_extra_arfs == 0 ? 1 : 2);
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
++frame_index;
|
|
|
|
#if CONFIG_EXT_REFS
|
|
// Insert an extra ARF
|
|
if (cpi->num_extra_arfs) {
|
|
gf_group->update_type[frame_index] = ARF_UPDATE;
|
|
// Note (weitinglin): GF_ARF_LOW is also used as an identifier
|
|
// for internal ALT_REF's:
|
|
gf_group->rf_level[frame_index] = GF_ARF_LOW;
|
|
gf_group->arf_src_offset[frame_index] = ext_arf_interval;
|
|
gf_group->arf_update_idx[frame_index] = which_arf;
|
|
gf_group->arf_ref_idx[frame_index] = 0;
|
|
++frame_index;
|
|
}
|
|
accumulative_subgroup_interval += subgroup_interval[cpi->num_extra_arfs];
|
|
#else
|
|
if (cpi->multi_arf_enabled) {
|
|
// Set aside a slot for a level 1 arf.
|
|
gf_group->update_type[frame_index] = ARF_UPDATE;
|
|
gf_group->rf_level[frame_index] = GF_ARF_LOW;
|
|
gf_group->arf_src_offset[frame_index] =
|
|
(unsigned char)((rc->baseline_gf_interval >> 1) - 1);
|
|
gf_group->arf_update_idx[frame_index] = arf_buffer_indices[1];
|
|
gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[0];
|
|
++frame_index;
|
|
}
|
|
#endif // CONFIG_EXT_ARFS
|
|
}
|
|
|
|
#if !CONFIG_EXT_REFS
|
|
// Define middle frame
|
|
mid_frame_idx = frame_index + (rc->baseline_gf_interval >> 1) - 1;
|
|
#endif // !CONFIG_EXT_REFS
|
|
|
|
// Allocate bits to the other frames in the group.
|
|
for (i = 0; i < rc->baseline_gf_interval - rc->source_alt_ref_pending; ++i) {
|
|
#if !CONFIG_EXT_REFS
|
|
int arf_idx = 0;
|
|
#endif // !CONFIG_EXT_REFS
|
|
|
|
if (EOF == input_stats(twopass, &frame_stats)) break;
|
|
|
|
modified_err = calculate_modified_err(cpi, twopass, oxcf, &frame_stats);
|
|
|
|
if (group_error > 0)
|
|
err_fraction = modified_err / DOUBLE_DIVIDE_CHECK(group_error);
|
|
else
|
|
err_fraction = 0.0;
|
|
|
|
target_frame_size = (int)((double)total_group_bits * err_fraction);
|
|
|
|
if (rc->source_alt_ref_pending && cpi->multi_arf_enabled) {
|
|
mid_boost_bits += (target_frame_size >> 4);
|
|
target_frame_size -= (target_frame_size >> 4);
|
|
#if !CONFIG_EXT_REFS
|
|
if (frame_index <= mid_frame_idx) arf_idx = 1;
|
|
#endif // !CONFIG_EXT_REFS
|
|
}
|
|
|
|
#if CONFIG_EXT_REFS
|
|
gf_group->arf_update_idx[frame_index] = which_arf;
|
|
gf_group->arf_ref_idx[frame_index] = which_arf;
|
|
#else
|
|
gf_group->arf_update_idx[frame_index] = arf_buffer_indices[arf_idx];
|
|
gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[arf_idx];
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
target_frame_size =
|
|
clamp(target_frame_size, 0, AOMMIN(max_bits, (int)total_group_bits));
|
|
|
|
#if CONFIG_EXT_REFS
|
|
// If we are going to have ARFs, check if we can have BWDREF in this
|
|
// subgroup.
|
|
if (rc->source_alt_ref_pending) {
|
|
is_sg_bipred_enabled =
|
|
is_bipred_enabled &&
|
|
(subgroup_interval[which_arf] > rc->bipred_group_interval);
|
|
}
|
|
|
|
// NOTE: BIDIR_PRED is only enabled when the length of the bi-predictive
|
|
// frame group interval is strictly smaller than that of the GOLDEN
|
|
// FRAME group interval.
|
|
// TODO(zoeliu): Currently BIDIR_PRED is only enabled when alt-ref is on.
|
|
if (is_sg_bipred_enabled && !bipred_group_end) {
|
|
const int cur_brf_src_offset = rc->bipred_group_interval - 1;
|
|
|
|
// --- BRF_UPDATE ---
|
|
if (bipred_frame_index == 1) {
|
|
gf_group->update_type[frame_index] = BRF_UPDATE;
|
|
gf_group->bidir_pred_enabled[frame_index] = 1;
|
|
gf_group->brf_src_offset[frame_index] = cur_brf_src_offset;
|
|
// --- LAST_BIPRED_UPDATE ---
|
|
} else if (bipred_frame_index == rc->bipred_group_interval) {
|
|
gf_group->update_type[frame_index] = LAST_BIPRED_UPDATE;
|
|
gf_group->bidir_pred_enabled[frame_index] = 1;
|
|
gf_group->brf_src_offset[frame_index] = 0;
|
|
// Reset the bi-predictive frame index.
|
|
bipred_frame_index = 0;
|
|
// --- BIPRED_UPDATE ---
|
|
} else {
|
|
gf_group->update_type[frame_index] = BIPRED_UPDATE;
|
|
gf_group->bidir_pred_enabled[frame_index] = 1;
|
|
gf_group->brf_src_offset[frame_index] = 0;
|
|
}
|
|
|
|
bipred_frame_index++;
|
|
// Check whether the next bi-predictive frame group would entirely be
|
|
// included within the current golden frame group.
|
|
// In addition, we need to avoid coding a BRF right before an ARF.
|
|
if (bipred_frame_index == 1 &&
|
|
(i + 2 + cur_brf_src_offset) >= accumulative_subgroup_interval) {
|
|
bipred_group_end = 1;
|
|
}
|
|
} else {
|
|
#endif // CONFIG_EXT_REFS
|
|
gf_group->update_type[frame_index] = LF_UPDATE;
|
|
#if CONFIG_EXT_REFS
|
|
gf_group->bidir_pred_enabled[frame_index] = 0;
|
|
gf_group->brf_src_offset[frame_index] = 0;
|
|
}
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
#if CONFIG_EXT_REFS
|
|
if (gf_group->update_type[frame_index] == BRF_UPDATE) {
|
|
// Boost up the allocated bits on BWDREF_FRAME
|
|
gf_group->rf_level[frame_index] = GF_ARF_LOW;
|
|
gf_group->bit_allocation[frame_index] =
|
|
target_frame_size + (target_frame_size >> 2);
|
|
} else if (gf_group->update_type[frame_index] == LAST_BIPRED_UPDATE) {
|
|
// Press down the allocated bits on LAST_BIPRED_UPDATE frames
|
|
gf_group->rf_level[frame_index] = INTER_NORMAL;
|
|
gf_group->bit_allocation[frame_index] =
|
|
target_frame_size - (target_frame_size >> 1);
|
|
} else if (gf_group->update_type[frame_index] == BIPRED_UPDATE) {
|
|
// TODO(zoeliu): To investigate whether the allocated bits on
|
|
// BIPRED_UPDATE frames need to be further adjusted.
|
|
gf_group->rf_level[frame_index] = INTER_NORMAL;
|
|
gf_group->bit_allocation[frame_index] = target_frame_size;
|
|
} else {
|
|
#endif // CONFIG_EXT_REFS
|
|
gf_group->rf_level[frame_index] = INTER_NORMAL;
|
|
gf_group->bit_allocation[frame_index] = target_frame_size;
|
|
#if CONFIG_EXT_REFS
|
|
}
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
++frame_index;
|
|
|
|
#if CONFIG_EXT_REFS
|
|
// Check if we need to update the ARF
|
|
if (is_sg_bipred_enabled && cpi->num_extra_arfs && which_arf > 0 &&
|
|
frame_index > arf_pos[which_arf]) {
|
|
--which_arf;
|
|
accumulative_subgroup_interval += subgroup_interval[which_arf] + 1;
|
|
// Meet the new subgroup. Reset the bipred_group_end flag;
|
|
bipred_group_end = 0;
|
|
// Insert another extra ARF after the overlay frame
|
|
if (which_arf) {
|
|
gf_group->update_type[frame_index] = ARF_UPDATE;
|
|
gf_group->rf_level[frame_index] = GF_ARF_LOW;
|
|
gf_group->arf_src_offset[frame_index] = ext_arf_interval;
|
|
gf_group->arf_update_idx[frame_index] = which_arf;
|
|
gf_group->arf_ref_idx[frame_index] = 0;
|
|
++frame_index;
|
|
}
|
|
}
|
|
#endif // CONFIG_EXT_REFS
|
|
}
|
|
|
|
// Note:
|
|
// We need to configure the frame at the end of the sequence + 1 that will be
|
|
// the start frame for the next group. Otherwise prior to the call to
|
|
// av1_rc_get_second_pass_params() the data will be undefined.
|
|
#if CONFIG_EXT_REFS
|
|
gf_group->arf_update_idx[frame_index] = 0;
|
|
gf_group->arf_ref_idx[frame_index] = 0;
|
|
#else
|
|
gf_group->arf_update_idx[frame_index] = arf_buffer_indices[0];
|
|
gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[0];
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
if (rc->source_alt_ref_pending) {
|
|
gf_group->update_type[frame_index] = OVERLAY_UPDATE;
|
|
gf_group->rf_level[frame_index] = INTER_NORMAL;
|
|
|
|
#if CONFIG_EXT_REFS
|
|
if (cpi->num_extra_arfs) {
|
|
for (i = cpi->num_extra_arfs; i > 0; --i) {
|
|
int arf_pos_in_gf = (i == cpi->num_extra_arfs ? 2 : arf_pos[i + 1] + 1);
|
|
gf_group->bit_allocation[arf_pos_in_gf] =
|
|
gf_group->bit_allocation[arf_pos[i]];
|
|
gf_group->update_type[arf_pos[i]] = INTNL_OVERLAY_UPDATE;
|
|
gf_group->bit_allocation[arf_pos[i]] = 0;
|
|
gf_group->rf_level[arf_pos[i]] = INTER_NORMAL;
|
|
}
|
|
}
|
|
#else
|
|
// Final setup for second arf and its overlay.
|
|
if (cpi->multi_arf_enabled) {
|
|
gf_group->bit_allocation[2] =
|
|
gf_group->bit_allocation[mid_frame_idx] + mid_boost_bits;
|
|
gf_group->update_type[mid_frame_idx] = OVERLAY_UPDATE;
|
|
gf_group->bit_allocation[mid_frame_idx] = 0;
|
|
}
|
|
#endif // CONFIG_EXT_REFS
|
|
} else {
|
|
gf_group->update_type[frame_index] = GF_UPDATE;
|
|
gf_group->rf_level[frame_index] = GF_ARF_STD;
|
|
}
|
|
|
|
#if CONFIG_EXT_REFS
|
|
gf_group->bidir_pred_enabled[frame_index] = 0;
|
|
gf_group->brf_src_offset[frame_index] = 0;
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
// Note whether multi-arf was enabled this group for next time.
|
|
cpi->multi_arf_last_grp_enabled = cpi->multi_arf_enabled;
|
|
}
|
|
|
|
// Analyse and define a gf/arf group.
|
|
static void define_gf_group(AV1_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
RATE_CONTROL *const rc = &cpi->rc;
|
|
AV1EncoderConfig *const oxcf = &cpi->oxcf;
|
|
TWO_PASS *const twopass = &cpi->twopass;
|
|
FIRSTPASS_STATS next_frame;
|
|
const FIRSTPASS_STATS *const start_pos = twopass->stats_in;
|
|
int i;
|
|
|
|
double boost_score = 0.0;
|
|
double old_boost_score = 0.0;
|
|
double gf_group_err = 0.0;
|
|
#if GROUP_ADAPTIVE_MAXQ
|
|
double gf_group_raw_error = 0.0;
|
|
#endif
|
|
double gf_group_skip_pct = 0.0;
|
|
double gf_group_inactive_zone_rows = 0.0;
|
|
double gf_first_frame_err = 0.0;
|
|
double mod_frame_err = 0.0;
|
|
|
|
double mv_ratio_accumulator = 0.0;
|
|
double decay_accumulator = 1.0;
|
|
double zero_motion_accumulator = 1.0;
|
|
|
|
double loop_decay_rate = 1.00;
|
|
double last_loop_decay_rate = 1.00;
|
|
|
|
double this_frame_mv_in_out = 0.0;
|
|
double mv_in_out_accumulator = 0.0;
|
|
double abs_mv_in_out_accumulator = 0.0;
|
|
double mv_ratio_accumulator_thresh;
|
|
unsigned int allow_alt_ref = is_altref_enabled(cpi);
|
|
|
|
int f_boost = 0;
|
|
int b_boost = 0;
|
|
int flash_detected;
|
|
int active_max_gf_interval;
|
|
int active_min_gf_interval;
|
|
int64_t gf_group_bits;
|
|
double gf_group_error_left;
|
|
int gf_arf_bits;
|
|
const int is_key_frame = frame_is_intra_only(cm);
|
|
const int arf_active_or_kf = is_key_frame || rc->source_alt_ref_active;
|
|
|
|
// Reset the GF group data structures unless this is a key
|
|
// frame in which case it will already have been done.
|
|
if (is_key_frame == 0) {
|
|
av1_zero(twopass->gf_group);
|
|
}
|
|
|
|
aom_clear_system_state();
|
|
av1_zero(next_frame);
|
|
|
|
// Load stats for the current frame.
|
|
mod_frame_err = calculate_modified_err(cpi, twopass, oxcf, this_frame);
|
|
|
|
// Note the error of the frame at the start of the group. This will be
|
|
// the GF frame error if we code a normal gf.
|
|
gf_first_frame_err = mod_frame_err;
|
|
|
|
// If this is a key frame or the overlay from a previous arf then
|
|
// the error score / cost of this frame has already been accounted for.
|
|
if (arf_active_or_kf) {
|
|
gf_group_err -= gf_first_frame_err;
|
|
#if GROUP_ADAPTIVE_MAXQ
|
|
gf_group_raw_error -= this_frame->coded_error;
|
|
#endif
|
|
gf_group_skip_pct -= this_frame->intra_skip_pct;
|
|
gf_group_inactive_zone_rows -= this_frame->inactive_zone_rows;
|
|
}
|
|
|
|
// Motion breakout threshold for loop below depends on image size.
|
|
mv_ratio_accumulator_thresh =
|
|
(cpi->initial_height + cpi->initial_width) / 4.0;
|
|
|
|
// Set a maximum and minimum interval for the GF group.
|
|
// If the image appears almost completely static we can extend beyond this.
|
|
{
|
|
int int_max_q = (int)(av1_convert_qindex_to_q(twopass->active_worst_quality,
|
|
cpi->common.bit_depth));
|
|
int int_lbq = (int)(av1_convert_qindex_to_q(rc->last_boosted_qindex,
|
|
cpi->common.bit_depth));
|
|
|
|
active_min_gf_interval = rc->min_gf_interval + AOMMIN(2, int_max_q / 200);
|
|
if (active_min_gf_interval > rc->max_gf_interval)
|
|
active_min_gf_interval = rc->max_gf_interval;
|
|
|
|
if (cpi->multi_arf_allowed) {
|
|
active_max_gf_interval = rc->max_gf_interval;
|
|
} else {
|
|
// The value chosen depends on the active Q range. At low Q we have
|
|
// bits to spare and are better with a smaller interval and smaller boost.
|
|
// At high Q when there are few bits to spare we are better with a longer
|
|
// interval to spread the cost of the GF.
|
|
active_max_gf_interval = 12 + AOMMIN(4, (int_lbq / 6));
|
|
|
|
// We have: active_min_gf_interval <= rc->max_gf_interval
|
|
if (active_max_gf_interval < active_min_gf_interval)
|
|
active_max_gf_interval = active_min_gf_interval;
|
|
else if (active_max_gf_interval > rc->max_gf_interval)
|
|
active_max_gf_interval = rc->max_gf_interval;
|
|
}
|
|
}
|
|
|
|
i = 0;
|
|
while (i < rc->static_scene_max_gf_interval && i < rc->frames_to_key) {
|
|
++i;
|
|
|
|
// Accumulate error score of frames in this gf group.
|
|
mod_frame_err = calculate_modified_err(cpi, twopass, oxcf, this_frame);
|
|
gf_group_err += mod_frame_err;
|
|
#if GROUP_ADAPTIVE_MAXQ
|
|
gf_group_raw_error += this_frame->coded_error;
|
|
#endif
|
|
gf_group_skip_pct += this_frame->intra_skip_pct;
|
|
gf_group_inactive_zone_rows += this_frame->inactive_zone_rows;
|
|
|
|
if (EOF == input_stats(twopass, &next_frame)) break;
|
|
|
|
// Test for the case where there is a brief flash but the prediction
|
|
// quality back to an earlier frame is then restored.
|
|
flash_detected = detect_flash(twopass, 0);
|
|
|
|
// Update the motion related elements to the boost calculation.
|
|
accumulate_frame_motion_stats(
|
|
&next_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
|
|
&abs_mv_in_out_accumulator, &mv_ratio_accumulator);
|
|
|
|
// Accumulate the effect of prediction quality decay.
|
|
if (!flash_detected) {
|
|
last_loop_decay_rate = loop_decay_rate;
|
|
loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
|
|
|
|
decay_accumulator = decay_accumulator * loop_decay_rate;
|
|
|
|
// Monitor for static sections.
|
|
zero_motion_accumulator = AOMMIN(
|
|
zero_motion_accumulator, get_zero_motion_factor(cpi, &next_frame));
|
|
|
|
// Break clause to detect very still sections after motion. For example,
|
|
// a static image after a fade or other transition.
|
|
if (detect_transition_to_still(cpi, i, 5, loop_decay_rate,
|
|
last_loop_decay_rate)) {
|
|
allow_alt_ref = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Calculate a boost number for this frame.
|
|
boost_score +=
|
|
decay_accumulator *
|
|
calc_frame_boost(cpi, &next_frame, this_frame_mv_in_out, GF_MAX_BOOST);
|
|
|
|
// Break out conditions.
|
|
if (
|
|
// Break at active_max_gf_interval unless almost totally static.
|
|
(i >= (active_max_gf_interval + arf_active_or_kf) &&
|
|
zero_motion_accumulator < 0.995) ||
|
|
(
|
|
// Don't break out with a very short interval.
|
|
(i >= active_min_gf_interval + arf_active_or_kf) &&
|
|
(!flash_detected) &&
|
|
((mv_ratio_accumulator > mv_ratio_accumulator_thresh) ||
|
|
(abs_mv_in_out_accumulator > 3.0) ||
|
|
(mv_in_out_accumulator < -2.0) ||
|
|
((boost_score - old_boost_score) < BOOST_BREAKOUT)))) {
|
|
boost_score = old_boost_score;
|
|
break;
|
|
}
|
|
|
|
*this_frame = next_frame;
|
|
old_boost_score = boost_score;
|
|
}
|
|
|
|
twopass->gf_zeromotion_pct = (int)(zero_motion_accumulator * 1000.0);
|
|
|
|
// Was the group length constrained by the requirement for a new KF?
|
|
rc->constrained_gf_group = (i >= rc->frames_to_key) ? 1 : 0;
|
|
|
|
// Should we use the alternate reference frame.
|
|
if (allow_alt_ref && (i < cpi->oxcf.lag_in_frames) &&
|
|
(i >= rc->min_gf_interval)) {
|
|
// Calculate the boost for alt ref.
|
|
rc->gfu_boost =
|
|
calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost, &b_boost);
|
|
rc->source_alt_ref_pending = 1;
|
|
|
|
// Test to see if multi arf is appropriate.
|
|
cpi->multi_arf_enabled =
|
|
(cpi->multi_arf_allowed && (rc->baseline_gf_interval >= 6) &&
|
|
(zero_motion_accumulator < 0.995))
|
|
? 1
|
|
: 0;
|
|
} else {
|
|
rc->gfu_boost = AOMMAX((int)boost_score, MIN_ARF_GF_BOOST);
|
|
rc->source_alt_ref_pending = 0;
|
|
}
|
|
|
|
// Set the interval until the next gf.
|
|
rc->baseline_gf_interval = i - (is_key_frame || rc->source_alt_ref_pending);
|
|
|
|
#if CONFIG_EXT_REFS
|
|
// Compute how many extra alt_refs we can have
|
|
cpi->num_extra_arfs = get_number_of_extra_arfs(rc->baseline_gf_interval,
|
|
rc->source_alt_ref_pending);
|
|
// Currently at maximum two extra ARFs' are allowed
|
|
assert(cpi->num_extra_arfs <= MAX_EXT_ARFS);
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
rc->frames_till_gf_update_due = rc->baseline_gf_interval;
|
|
|
|
#if CONFIG_EXT_REFS
|
|
rc->bipred_group_interval = BFG_INTERVAL;
|
|
// The minimum bi-predictive frame group interval is 2.
|
|
if (rc->bipred_group_interval < 2) rc->bipred_group_interval = 0;
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
// Reset the file position.
|
|
reset_fpf_position(twopass, start_pos);
|
|
|
|
// Calculate the bits to be allocated to the gf/arf group as a whole
|
|
gf_group_bits = calculate_total_gf_group_bits(cpi, gf_group_err);
|
|
|
|
#if GROUP_ADAPTIVE_MAXQ
|
|
// Calculate an estimate of the maxq needed for the group.
|
|
// We are more agressive about correcting for sections
|
|
// where there could be significant overshoot than for easier
|
|
// sections where we do not wish to risk creating an overshoot
|
|
// of the allocated bit budget.
|
|
if ((cpi->oxcf.rc_mode != AOM_Q) && (rc->baseline_gf_interval > 1)) {
|
|
const int vbr_group_bits_per_frame =
|
|
(int)(gf_group_bits / rc->baseline_gf_interval);
|
|
const double group_av_err = gf_group_raw_error / rc->baseline_gf_interval;
|
|
const double group_av_skip_pct =
|
|
gf_group_skip_pct / rc->baseline_gf_interval;
|
|
const double group_av_inactive_zone =
|
|
((gf_group_inactive_zone_rows * 2) /
|
|
(rc->baseline_gf_interval * (double)cm->mb_rows));
|
|
|
|
int tmp_q;
|
|
// rc factor is a weight factor that corrects for local rate control drift.
|
|
double rc_factor = 1.0;
|
|
if (rc->rate_error_estimate > 0) {
|
|
rc_factor = AOMMAX(RC_FACTOR_MIN,
|
|
(double)(100 - rc->rate_error_estimate) / 100.0);
|
|
} else {
|
|
rc_factor = AOMMIN(RC_FACTOR_MAX,
|
|
(double)(100 - rc->rate_error_estimate) / 100.0);
|
|
}
|
|
tmp_q = get_twopass_worst_quality(
|
|
cpi, group_av_err, (group_av_skip_pct + group_av_inactive_zone),
|
|
vbr_group_bits_per_frame, twopass->kfgroup_inter_fraction * rc_factor);
|
|
twopass->active_worst_quality =
|
|
AOMMAX(tmp_q, twopass->active_worst_quality >> 1);
|
|
}
|
|
#endif
|
|
|
|
// Calculate the extra bits to be used for boosted frame(s)
|
|
gf_arf_bits = calculate_boost_bits(rc->baseline_gf_interval, rc->gfu_boost,
|
|
gf_group_bits);
|
|
|
|
// Adjust KF group bits and error remaining.
|
|
twopass->kf_group_error_left -= (int64_t)gf_group_err;
|
|
|
|
// If this is an arf update we want to remove the score for the overlay
|
|
// frame at the end which will usually be very cheap to code.
|
|
// The overlay frame has already, in effect, been coded so we want to spread
|
|
// the remaining bits among the other frames.
|
|
// For normal GFs remove the score for the GF itself unless this is
|
|
// also a key frame in which case it has already been accounted for.
|
|
if (rc->source_alt_ref_pending) {
|
|
gf_group_error_left = gf_group_err - mod_frame_err;
|
|
} else if (is_key_frame == 0) {
|
|
gf_group_error_left = gf_group_err - gf_first_frame_err;
|
|
} else {
|
|
gf_group_error_left = gf_group_err;
|
|
}
|
|
|
|
// Allocate bits to each of the frames in the GF group.
|
|
allocate_gf_group_bits(cpi, gf_group_bits, gf_group_error_left, gf_arf_bits);
|
|
|
|
// Reset the file position.
|
|
reset_fpf_position(twopass, start_pos);
|
|
|
|
// Calculate a section intra ratio used in setting max loop filter.
|
|
if (cpi->common.frame_type != KEY_FRAME) {
|
|
twopass->section_intra_rating = calculate_section_intra_ratio(
|
|
start_pos, twopass->stats_in_end, rc->baseline_gf_interval);
|
|
}
|
|
}
|
|
|
|
// Threshold for use of the lagging second reference frame. High second ref
|
|
// usage may point to a transient event like a flash or occlusion rather than
|
|
// a real scene cut.
|
|
#define SECOND_REF_USEAGE_THRESH 0.1
|
|
// Minimum % intra coding observed in first pass (1.0 = 100%)
|
|
#define MIN_INTRA_LEVEL 0.25
|
|
// Minimum ratio between the % of intra coding and inter coding in the first
|
|
// pass after discounting neutral blocks (discounting neutral blocks in this
|
|
// way helps catch scene cuts in clips with very flat areas or letter box
|
|
// format clips with image padding.
|
|
#define INTRA_VS_INTER_THRESH 2.0
|
|
// Hard threshold where the first pass chooses intra for almost all blocks.
|
|
// In such a case even if the frame is not a scene cut coding a key frame
|
|
// may be a good option.
|
|
#define VERY_LOW_INTER_THRESH 0.05
|
|
// Maximum threshold for the relative ratio of intra error score vs best
|
|
// inter error score.
|
|
#define KF_II_ERR_THRESHOLD 2.5
|
|
// In real scene cuts there is almost always a sharp change in the intra
|
|
// or inter error score.
|
|
#define ERR_CHANGE_THRESHOLD 0.4
|
|
// For real scene cuts we expect an improvment in the intra inter error
|
|
// ratio in the next frame.
|
|
#define II_IMPROVEMENT_THRESHOLD 3.5
|
|
#define KF_II_MAX 128.0
|
|
|
|
static int test_candidate_kf(TWO_PASS *twopass,
|
|
const FIRSTPASS_STATS *last_frame,
|
|
const FIRSTPASS_STATS *this_frame,
|
|
const FIRSTPASS_STATS *next_frame) {
|
|
int is_viable_kf = 0;
|
|
double pcnt_intra = 1.0 - this_frame->pcnt_inter;
|
|
double modified_pcnt_inter =
|
|
this_frame->pcnt_inter - this_frame->pcnt_neutral;
|
|
|
|
// Does the frame satisfy the primary criteria of a key frame?
|
|
// See above for an explanation of the test criteria.
|
|
// If so, then examine how well it predicts subsequent frames.
|
|
if ((this_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) &&
|
|
(next_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) &&
|
|
((this_frame->pcnt_inter < VERY_LOW_INTER_THRESH) ||
|
|
((pcnt_intra > MIN_INTRA_LEVEL) &&
|
|
(pcnt_intra > (INTRA_VS_INTER_THRESH * modified_pcnt_inter)) &&
|
|
((this_frame->intra_error /
|
|
DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) <
|
|
KF_II_ERR_THRESHOLD) &&
|
|
((fabs(last_frame->coded_error - this_frame->coded_error) /
|
|
DOUBLE_DIVIDE_CHECK(this_frame->coded_error) >
|
|
ERR_CHANGE_THRESHOLD) ||
|
|
(fabs(last_frame->intra_error - this_frame->intra_error) /
|
|
DOUBLE_DIVIDE_CHECK(this_frame->intra_error) >
|
|
ERR_CHANGE_THRESHOLD) ||
|
|
((next_frame->intra_error /
|
|
DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) >
|
|
II_IMPROVEMENT_THRESHOLD))))) {
|
|
int i;
|
|
const FIRSTPASS_STATS *start_pos = twopass->stats_in;
|
|
FIRSTPASS_STATS local_next_frame = *next_frame;
|
|
double boost_score = 0.0;
|
|
double old_boost_score = 0.0;
|
|
double decay_accumulator = 1.0;
|
|
|
|
// Examine how well the key frame predicts subsequent frames.
|
|
for (i = 0; i < 16; ++i) {
|
|
double next_iiratio = (BOOST_FACTOR * local_next_frame.intra_error /
|
|
DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error));
|
|
|
|
if (next_iiratio > KF_II_MAX) next_iiratio = KF_II_MAX;
|
|
|
|
// Cumulative effect of decay in prediction quality.
|
|
if (local_next_frame.pcnt_inter > 0.85)
|
|
decay_accumulator *= local_next_frame.pcnt_inter;
|
|
else
|
|
decay_accumulator *= (0.85 + local_next_frame.pcnt_inter) / 2.0;
|
|
|
|
// Keep a running total.
|
|
boost_score += (decay_accumulator * next_iiratio);
|
|
|
|
// Test various breakout clauses.
|
|
if ((local_next_frame.pcnt_inter < 0.05) || (next_iiratio < 1.5) ||
|
|
(((local_next_frame.pcnt_inter - local_next_frame.pcnt_neutral) <
|
|
0.20) &&
|
|
(next_iiratio < 3.0)) ||
|
|
((boost_score - old_boost_score) < 3.0) ||
|
|
(local_next_frame.intra_error < 200)) {
|
|
break;
|
|
}
|
|
|
|
old_boost_score = boost_score;
|
|
|
|
// Get the next frame details
|
|
if (EOF == input_stats(twopass, &local_next_frame)) break;
|
|
}
|
|
|
|
// If there is tolerable prediction for at least the next 3 frames then
|
|
// break out else discard this potential key frame and move on
|
|
if (boost_score > 30.0 && (i > 3)) {
|
|
is_viable_kf = 1;
|
|
} else {
|
|
// Reset the file position
|
|
reset_fpf_position(twopass, start_pos);
|
|
|
|
is_viable_kf = 0;
|
|
}
|
|
}
|
|
|
|
return is_viable_kf;
|
|
}
|
|
|
|
#define FRAMES_TO_CHECK_DECAY 8
|
|
|
|
static void find_next_key_frame(AV1_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
|
int i, j;
|
|
RATE_CONTROL *const rc = &cpi->rc;
|
|
TWO_PASS *const twopass = &cpi->twopass;
|
|
GF_GROUP *const gf_group = &twopass->gf_group;
|
|
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
|
|
const FIRSTPASS_STATS first_frame = *this_frame;
|
|
const FIRSTPASS_STATS *const start_position = twopass->stats_in;
|
|
FIRSTPASS_STATS next_frame;
|
|
FIRSTPASS_STATS last_frame;
|
|
int kf_bits = 0;
|
|
int loop_decay_counter = 0;
|
|
double decay_accumulator = 1.0;
|
|
double av_decay_accumulator = 0.0;
|
|
double zero_motion_accumulator = 1.0;
|
|
double boost_score = 0.0;
|
|
double kf_mod_err = 0.0;
|
|
double kf_group_err = 0.0;
|
|
double recent_loop_decay[FRAMES_TO_CHECK_DECAY];
|
|
|
|
av1_zero(next_frame);
|
|
|
|
cpi->common.frame_type = KEY_FRAME;
|
|
|
|
// Reset the GF group data structures.
|
|
av1_zero(*gf_group);
|
|
|
|
// Is this a forced key frame by interval.
|
|
rc->this_key_frame_forced = rc->next_key_frame_forced;
|
|
|
|
// Clear the alt ref active flag and last group multi arf flags as they
|
|
// can never be set for a key frame.
|
|
rc->source_alt_ref_active = 0;
|
|
cpi->multi_arf_last_grp_enabled = 0;
|
|
|
|
// KF is always a GF so clear frames till next gf counter.
|
|
rc->frames_till_gf_update_due = 0;
|
|
|
|
rc->frames_to_key = 1;
|
|
|
|
twopass->kf_group_bits = 0; // Total bits available to kf group
|
|
twopass->kf_group_error_left = 0; // Group modified error score.
|
|
|
|
kf_mod_err = calculate_modified_err(cpi, twopass, oxcf, this_frame);
|
|
|
|
// Initialize the decay rates for the recent frames to check
|
|
for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) recent_loop_decay[j] = 1.0;
|
|
|
|
// Find the next keyframe.
|
|
i = 0;
|
|
while (twopass->stats_in < twopass->stats_in_end &&
|
|
rc->frames_to_key < cpi->oxcf.key_freq) {
|
|
// Accumulate kf group error.
|
|
kf_group_err += calculate_modified_err(cpi, twopass, oxcf, this_frame);
|
|
|
|
// Load the next frame's stats.
|
|
last_frame = *this_frame;
|
|
input_stats(twopass, this_frame);
|
|
|
|
// Provided that we are not at the end of the file...
|
|
if (cpi->oxcf.auto_key && twopass->stats_in < twopass->stats_in_end) {
|
|
double loop_decay_rate;
|
|
|
|
// Check for a scene cut.
|
|
if (test_candidate_kf(twopass, &last_frame, this_frame,
|
|
twopass->stats_in))
|
|
break;
|
|
|
|
// How fast is the prediction quality decaying?
|
|
loop_decay_rate = get_prediction_decay_rate(cpi, twopass->stats_in);
|
|
|
|
// We want to know something about the recent past... rather than
|
|
// as used elsewhere where we are concerned with decay in prediction
|
|
// quality since the last GF or KF.
|
|
recent_loop_decay[i % FRAMES_TO_CHECK_DECAY] = loop_decay_rate;
|
|
decay_accumulator = 1.0;
|
|
for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j)
|
|
decay_accumulator *= recent_loop_decay[j];
|
|
|
|
// Special check for transition or high motion followed by a
|
|
// static scene.
|
|
if (detect_transition_to_still(cpi, i, cpi->oxcf.key_freq - i,
|
|
loop_decay_rate, decay_accumulator))
|
|
break;
|
|
|
|
// Step on to the next frame.
|
|
++rc->frames_to_key;
|
|
|
|
// If we don't have a real key frame within the next two
|
|
// key_freq intervals then break out of the loop.
|
|
if (rc->frames_to_key >= 2 * cpi->oxcf.key_freq) break;
|
|
} else {
|
|
++rc->frames_to_key;
|
|
}
|
|
++i;
|
|
}
|
|
|
|
// If there is a max kf interval set by the user we must obey it.
|
|
// We already breakout of the loop above at 2x max.
|
|
// This code centers the extra kf if the actual natural interval
|
|
// is between 1x and 2x.
|
|
if (cpi->oxcf.auto_key && rc->frames_to_key > cpi->oxcf.key_freq) {
|
|
FIRSTPASS_STATS tmp_frame = first_frame;
|
|
|
|
rc->frames_to_key /= 2;
|
|
|
|
// Reset to the start of the group.
|
|
reset_fpf_position(twopass, start_position);
|
|
|
|
kf_group_err = 0.0;
|
|
|
|
// Rescan to get the correct error data for the forced kf group.
|
|
for (i = 0; i < rc->frames_to_key; ++i) {
|
|
kf_group_err += calculate_modified_err(cpi, twopass, oxcf, &tmp_frame);
|
|
input_stats(twopass, &tmp_frame);
|
|
}
|
|
rc->next_key_frame_forced = 1;
|
|
} else if (twopass->stats_in == twopass->stats_in_end ||
|
|
rc->frames_to_key >= cpi->oxcf.key_freq) {
|
|
rc->next_key_frame_forced = 1;
|
|
} else {
|
|
rc->next_key_frame_forced = 0;
|
|
}
|
|
|
|
// Special case for the last key frame of the file.
|
|
if (twopass->stats_in >= twopass->stats_in_end) {
|
|
// Accumulate kf group error.
|
|
kf_group_err += calculate_modified_err(cpi, twopass, oxcf, this_frame);
|
|
}
|
|
|
|
// Calculate the number of bits that should be assigned to the kf group.
|
|
if (twopass->bits_left > 0 && twopass->modified_error_left > 0.0) {
|
|
// Maximum number of bits for a single normal frame (not key frame).
|
|
const int max_bits = frame_max_bits(rc, &cpi->oxcf);
|
|
|
|
// Maximum number of bits allocated to the key frame group.
|
|
int64_t max_grp_bits;
|
|
|
|
// Default allocation based on bits left and relative
|
|
// complexity of the section.
|
|
twopass->kf_group_bits = (int64_t)(
|
|
twopass->bits_left * (kf_group_err / twopass->modified_error_left));
|
|
|
|
// Clip based on maximum per frame rate defined by the user.
|
|
max_grp_bits = (int64_t)max_bits * (int64_t)rc->frames_to_key;
|
|
if (twopass->kf_group_bits > max_grp_bits)
|
|
twopass->kf_group_bits = max_grp_bits;
|
|
} else {
|
|
twopass->kf_group_bits = 0;
|
|
}
|
|
twopass->kf_group_bits = AOMMAX(0, twopass->kf_group_bits);
|
|
|
|
// Reset the first pass file position.
|
|
reset_fpf_position(twopass, start_position);
|
|
|
|
// Scan through the kf group collating various stats used to determine
|
|
// how many bits to spend on it.
|
|
decay_accumulator = 1.0;
|
|
boost_score = 0.0;
|
|
for (i = 0; i < (rc->frames_to_key - 1); ++i) {
|
|
if (EOF == input_stats(twopass, &next_frame)) break;
|
|
|
|
// Monitor for static sections.
|
|
zero_motion_accumulator = AOMMIN(zero_motion_accumulator,
|
|
get_zero_motion_factor(cpi, &next_frame));
|
|
|
|
// Not all frames in the group are necessarily used in calculating boost.
|
|
if ((i <= rc->max_gf_interval) ||
|
|
((i <= (rc->max_gf_interval * 4)) && (decay_accumulator > 0.5))) {
|
|
const double frame_boost =
|
|
calc_frame_boost(cpi, this_frame, 0, KF_MAX_BOOST);
|
|
|
|
// How fast is prediction quality decaying.
|
|
if (!detect_flash(twopass, 0)) {
|
|
const double loop_decay_rate =
|
|
get_prediction_decay_rate(cpi, &next_frame);
|
|
decay_accumulator *= loop_decay_rate;
|
|
decay_accumulator = AOMMAX(decay_accumulator, MIN_DECAY_FACTOR);
|
|
av_decay_accumulator += decay_accumulator;
|
|
++loop_decay_counter;
|
|
}
|
|
boost_score += (decay_accumulator * frame_boost);
|
|
}
|
|
}
|
|
av_decay_accumulator /= (double)loop_decay_counter;
|
|
|
|
reset_fpf_position(twopass, start_position);
|
|
|
|
// Store the zero motion percentage
|
|
twopass->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0);
|
|
|
|
// Calculate a section intra ratio used in setting max loop filter.
|
|
twopass->section_intra_rating = calculate_section_intra_ratio(
|
|
start_position, twopass->stats_in_end, rc->frames_to_key);
|
|
|
|
// Apply various clamps for min and max boost
|
|
rc->kf_boost = (int)(av_decay_accumulator * boost_score);
|
|
rc->kf_boost = AOMMAX(rc->kf_boost, (rc->frames_to_key * 3));
|
|
rc->kf_boost = AOMMAX(rc->kf_boost, MIN_KF_BOOST);
|
|
|
|
// Work out how many bits to allocate for the key frame itself.
|
|
kf_bits = calculate_boost_bits((rc->frames_to_key - 1), rc->kf_boost,
|
|
twopass->kf_group_bits);
|
|
|
|
// Work out the fraction of the kf group bits reserved for the inter frames
|
|
// within the group after discounting the bits for the kf itself.
|
|
if (twopass->kf_group_bits) {
|
|
twopass->kfgroup_inter_fraction =
|
|
(double)(twopass->kf_group_bits - kf_bits) /
|
|
(double)twopass->kf_group_bits;
|
|
} else {
|
|
twopass->kfgroup_inter_fraction = 1.0;
|
|
}
|
|
|
|
twopass->kf_group_bits -= kf_bits;
|
|
|
|
// Save the bits to spend on the key frame.
|
|
gf_group->bit_allocation[0] = kf_bits;
|
|
gf_group->update_type[0] = KF_UPDATE;
|
|
gf_group->rf_level[0] = KF_STD;
|
|
|
|
// Note the total error score of the kf group minus the key frame itself.
|
|
twopass->kf_group_error_left = (int)(kf_group_err - kf_mod_err);
|
|
|
|
// Adjust the count of total modified error left.
|
|
// The count of bits left is adjusted elsewhere based on real coded frame
|
|
// sizes.
|
|
twopass->modified_error_left -= kf_group_err;
|
|
}
|
|
|
|
// Define the reference buffers that will be updated post encode.
|
|
static void configure_buffer_updates(AV1_COMP *cpi) {
|
|
TWO_PASS *const twopass = &cpi->twopass;
|
|
|
|
// Wei-Ting: Should we define another function to take care of
|
|
// cpi->rc.is_$Source_Type to make this function as it is in the comment?
|
|
|
|
cpi->rc.is_src_frame_alt_ref = 0;
|
|
#if CONFIG_EXT_REFS
|
|
cpi->rc.is_bwd_ref_frame = 0;
|
|
cpi->rc.is_last_bipred_frame = 0;
|
|
cpi->rc.is_bipred_frame = 0;
|
|
cpi->rc.is_src_frame_ext_arf = 0;
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
switch (twopass->gf_group.update_type[twopass->gf_group.index]) {
|
|
case KF_UPDATE:
|
|
#if CONFIG_EXT_REFS
|
|
cpi->refresh_bwd_ref_frame = 1;
|
|
#endif // CONFIG_EXT_REFS
|
|
cpi->refresh_last_frame = 1;
|
|
cpi->refresh_golden_frame = 1;
|
|
cpi->refresh_alt_ref_frame = 1;
|
|
break;
|
|
|
|
case LF_UPDATE:
|
|
#if CONFIG_EXT_REFS
|
|
// If we have extra ALT_REFs, we can use the farthest ALT (ALT0) as
|
|
// the BWD_REF.
|
|
if (cpi->num_extra_arfs) {
|
|
int tmp = cpi->bwd_fb_idx;
|
|
|
|
cpi->bwd_fb_idx = cpi->alt_fb_idx;
|
|
cpi->alt_fb_idx = cpi->arf_map[0];
|
|
cpi->arf_map[0] = tmp;
|
|
|
|
cpi->rc.is_bwd_ref_frame = 1;
|
|
} else {
|
|
cpi->rc.is_bwd_ref_frame = 0;
|
|
}
|
|
#endif // CONFIG_EXT_REFS
|
|
cpi->refresh_last_frame = 1;
|
|
cpi->refresh_golden_frame = 0;
|
|
cpi->refresh_alt_ref_frame = 0;
|
|
break;
|
|
|
|
case GF_UPDATE:
|
|
#if CONFIG_EXT_REFS
|
|
cpi->refresh_bwd_ref_frame = 0;
|
|
#endif // CONFIG_EXT_REFS
|
|
cpi->refresh_last_frame = 1;
|
|
cpi->refresh_golden_frame = 1;
|
|
cpi->refresh_alt_ref_frame = 0;
|
|
break;
|
|
|
|
case OVERLAY_UPDATE:
|
|
cpi->refresh_last_frame = 0;
|
|
cpi->refresh_golden_frame = 1;
|
|
#if CONFIG_EXT_REFS
|
|
cpi->refresh_bwd_ref_frame = 0;
|
|
#endif // CONFIG_EXT_REFS
|
|
cpi->refresh_alt_ref_frame = 0;
|
|
cpi->rc.is_src_frame_alt_ref = 1;
|
|
break;
|
|
|
|
case ARF_UPDATE:
|
|
#if CONFIG_EXT_REFS
|
|
cpi->refresh_bwd_ref_frame = 1;
|
|
#endif // CONFIG_EXT_REFS
|
|
cpi->refresh_last_frame = 0;
|
|
cpi->refresh_golden_frame = 0;
|
|
cpi->refresh_alt_ref_frame = 1;
|
|
break;
|
|
|
|
#if CONFIG_EXT_REFS
|
|
case BRF_UPDATE:
|
|
cpi->refresh_last_frame = 0;
|
|
cpi->refresh_golden_frame = 0;
|
|
cpi->refresh_bwd_ref_frame = 1;
|
|
cpi->refresh_alt_ref_frame = 0;
|
|
cpi->rc.is_bwd_ref_frame = 1;
|
|
if (cpi->num_extra_arfs) {
|
|
// Allow BRF use the farthest ALT_REF (ALT0) as BWD_REF by swapping
|
|
// the virtual indices.
|
|
// NOTE: The indices will be swapped back after this frame is encoded
|
|
// (in av1_update_reference_frames()).
|
|
int tmp = cpi->bwd_fb_idx;
|
|
|
|
cpi->bwd_fb_idx = cpi->alt_fb_idx;
|
|
cpi->alt_fb_idx = cpi->arf_map[0];
|
|
cpi->arf_map[0] = tmp;
|
|
}
|
|
break;
|
|
|
|
case LAST_BIPRED_UPDATE:
|
|
cpi->refresh_last_frame = 0;
|
|
cpi->refresh_golden_frame = 0;
|
|
cpi->refresh_bwd_ref_frame = 0;
|
|
cpi->refresh_alt_ref_frame = 0;
|
|
cpi->rc.is_last_bipred_frame = 1;
|
|
break;
|
|
|
|
case BIPRED_UPDATE:
|
|
cpi->refresh_last_frame = 1;
|
|
cpi->refresh_golden_frame = 0;
|
|
cpi->refresh_bwd_ref_frame = 0;
|
|
cpi->refresh_alt_ref_frame = 0;
|
|
cpi->rc.is_bipred_frame = 1;
|
|
break;
|
|
|
|
case INTNL_OVERLAY_UPDATE:
|
|
cpi->refresh_last_frame = 1;
|
|
cpi->refresh_golden_frame = 0;
|
|
cpi->refresh_bwd_ref_frame = 0;
|
|
cpi->refresh_alt_ref_frame = 0;
|
|
cpi->rc.is_src_frame_alt_ref = 1;
|
|
cpi->rc.is_src_frame_ext_arf = 1;
|
|
break;
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
default: assert(0); break;
|
|
}
|
|
}
|
|
|
|
static int is_skippable_frame(const AV1_COMP *cpi) {
|
|
// If the current frame does not have non-zero motion vector detected in the
|
|
// first pass, and so do its previous and forward frames, then this frame
|
|
// can be skipped for partition check, and the partition size is assigned
|
|
// according to the variance
|
|
const TWO_PASS *const twopass = &cpi->twopass;
|
|
|
|
return (!frame_is_intra_only(&cpi->common) &&
|
|
twopass->stats_in - 2 > twopass->stats_in_start &&
|
|
twopass->stats_in < twopass->stats_in_end &&
|
|
(twopass->stats_in - 1)->pcnt_inter -
|
|
(twopass->stats_in - 1)->pcnt_motion ==
|
|
1 &&
|
|
(twopass->stats_in - 2)->pcnt_inter -
|
|
(twopass->stats_in - 2)->pcnt_motion ==
|
|
1 &&
|
|
twopass->stats_in->pcnt_inter - twopass->stats_in->pcnt_motion == 1);
|
|
}
|
|
|
|
void av1_rc_get_second_pass_params(AV1_COMP *cpi) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
RATE_CONTROL *const rc = &cpi->rc;
|
|
TWO_PASS *const twopass = &cpi->twopass;
|
|
GF_GROUP *const gf_group = &twopass->gf_group;
|
|
int frames_left;
|
|
FIRSTPASS_STATS this_frame;
|
|
|
|
int target_rate;
|
|
|
|
frames_left = (int)(twopass->total_stats.count - cm->current_video_frame);
|
|
|
|
if (!twopass->stats_in) return;
|
|
|
|
// If this is an arf frame then we dont want to read the stats file or
|
|
// advance the input pointer as we already have what we need.
|
|
if (gf_group->update_type[gf_group->index] == ARF_UPDATE) {
|
|
configure_buffer_updates(cpi);
|
|
target_rate = gf_group->bit_allocation[gf_group->index];
|
|
target_rate = av1_rc_clamp_pframe_target_size(cpi, target_rate);
|
|
rc->base_frame_target = target_rate;
|
|
|
|
cm->frame_type = INTER_FRAME;
|
|
|
|
// Do the firstpass stats indicate that this frame is skippable for the
|
|
// partition search?
|
|
if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2) {
|
|
cpi->partition_search_skippable_frame = is_skippable_frame(cpi);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
aom_clear_system_state();
|
|
|
|
if (cpi->oxcf.rc_mode == AOM_Q) {
|
|
twopass->active_worst_quality = cpi->oxcf.cq_level;
|
|
} else if (cm->current_video_frame == 0) {
|
|
// Special case code for first frame.
|
|
const int section_target_bandwidth =
|
|
(int)(twopass->bits_left / frames_left);
|
|
const double section_length = twopass->total_left_stats.count;
|
|
const double section_error =
|
|
twopass->total_left_stats.coded_error / section_length;
|
|
const double section_intra_skip =
|
|
twopass->total_left_stats.intra_skip_pct / section_length;
|
|
const double section_inactive_zone =
|
|
(twopass->total_left_stats.inactive_zone_rows * 2) /
|
|
((double)cm->mb_rows * section_length);
|
|
const int tmp_q = get_twopass_worst_quality(
|
|
cpi, section_error, section_intra_skip + section_inactive_zone,
|
|
section_target_bandwidth, DEFAULT_GRP_WEIGHT);
|
|
|
|
twopass->active_worst_quality = tmp_q;
|
|
twopass->baseline_active_worst_quality = tmp_q;
|
|
rc->ni_av_qi = tmp_q;
|
|
rc->last_q[INTER_FRAME] = tmp_q;
|
|
rc->avg_q = av1_convert_qindex_to_q(tmp_q, cm->bit_depth);
|
|
rc->avg_frame_qindex[INTER_FRAME] = tmp_q;
|
|
rc->last_q[KEY_FRAME] = (tmp_q + cpi->oxcf.best_allowed_q) / 2;
|
|
rc->avg_frame_qindex[KEY_FRAME] = rc->last_q[KEY_FRAME];
|
|
}
|
|
|
|
av1_zero(this_frame);
|
|
if (EOF == input_stats(twopass, &this_frame)) return;
|
|
|
|
// Set the frame content type flag.
|
|
if (this_frame.intra_skip_pct >= FC_ANIMATION_THRESH)
|
|
twopass->fr_content_type = FC_GRAPHICS_ANIMATION;
|
|
else
|
|
twopass->fr_content_type = FC_NORMAL;
|
|
|
|
// Keyframe and section processing.
|
|
if (rc->frames_to_key == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY)) {
|
|
FIRSTPASS_STATS this_frame_copy;
|
|
this_frame_copy = this_frame;
|
|
// Define next KF group and assign bits to it.
|
|
find_next_key_frame(cpi, &this_frame);
|
|
this_frame = this_frame_copy;
|
|
} else {
|
|
cm->frame_type = INTER_FRAME;
|
|
}
|
|
|
|
// Define a new GF/ARF group. (Should always enter here for key frames).
|
|
if (rc->frames_till_gf_update_due == 0) {
|
|
define_gf_group(cpi, &this_frame);
|
|
|
|
rc->frames_till_gf_update_due = rc->baseline_gf_interval;
|
|
|
|
#if ARF_STATS_OUTPUT
|
|
{
|
|
FILE *fpfile;
|
|
fpfile = fopen("arf.stt", "a");
|
|
++arf_count;
|
|
fprintf(fpfile, "%10d %10ld %10d %10d %10ld\n", cm->current_video_frame,
|
|
rc->frames_till_gf_update_due, rc->kf_boost, arf_count,
|
|
rc->gfu_boost);
|
|
|
|
fclose(fpfile);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
configure_buffer_updates(cpi);
|
|
|
|
// Do the firstpass stats indicate that this frame is skippable for the
|
|
// partition search?
|
|
if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2) {
|
|
cpi->partition_search_skippable_frame = is_skippable_frame(cpi);
|
|
}
|
|
|
|
target_rate = gf_group->bit_allocation[gf_group->index];
|
|
|
|
if (cpi->common.frame_type == KEY_FRAME)
|
|
target_rate = av1_rc_clamp_iframe_target_size(cpi, target_rate);
|
|
else
|
|
target_rate = av1_rc_clamp_pframe_target_size(cpi, target_rate);
|
|
|
|
rc->base_frame_target = target_rate;
|
|
|
|
{
|
|
const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
|
|
? cpi->initial_mbs
|
|
: cpi->common.MBs;
|
|
// The multiplication by 256 reverses a scaling factor of (>> 8)
|
|
// applied when combining MB error values for the frame.
|
|
twopass->mb_av_energy =
|
|
log(((this_frame.intra_error * 256.0) / num_mbs) + 1.0);
|
|
}
|
|
|
|
// Update the total stats remaining structure.
|
|
subtract_stats(&twopass->total_left_stats, &this_frame);
|
|
}
|
|
|
|
#define MINQ_ADJ_LIMIT 48
|
|
#define MINQ_ADJ_LIMIT_CQ 20
|
|
#define HIGH_UNDERSHOOT_RATIO 2
|
|
void av1_twopass_postencode_update(AV1_COMP *cpi) {
|
|
TWO_PASS *const twopass = &cpi->twopass;
|
|
RATE_CONTROL *const rc = &cpi->rc;
|
|
const int bits_used = rc->base_frame_target;
|
|
|
|
// VBR correction is done through rc->vbr_bits_off_target. Based on the
|
|
// sign of this value, a limited % adjustment is made to the target rate
|
|
// of subsequent frames, to try and push it back towards 0. This method
|
|
// is designed to prevent extreme behaviour at the end of a clip
|
|
// or group of frames.
|
|
rc->vbr_bits_off_target += rc->base_frame_target - rc->projected_frame_size;
|
|
twopass->bits_left = AOMMAX(twopass->bits_left - bits_used, 0);
|
|
|
|
// Calculate the pct rc error.
|
|
if (rc->total_actual_bits) {
|
|
rc->rate_error_estimate =
|
|
(int)((rc->vbr_bits_off_target * 100) / rc->total_actual_bits);
|
|
rc->rate_error_estimate = clamp(rc->rate_error_estimate, -100, 100);
|
|
} else {
|
|
rc->rate_error_estimate = 0;
|
|
}
|
|
|
|
if (cpi->common.frame_type != KEY_FRAME) {
|
|
twopass->kf_group_bits -= bits_used;
|
|
twopass->last_kfgroup_zeromotion_pct = twopass->kf_zeromotion_pct;
|
|
}
|
|
twopass->kf_group_bits = AOMMAX(twopass->kf_group_bits, 0);
|
|
|
|
// Increment the gf group index ready for the next frame.
|
|
++twopass->gf_group.index;
|
|
|
|
// If the rate control is drifting consider adjustment to min or maxq.
|
|
if ((cpi->oxcf.rc_mode != AOM_Q) &&
|
|
(cpi->twopass.gf_zeromotion_pct < VLOW_MOTION_THRESHOLD) &&
|
|
!cpi->rc.is_src_frame_alt_ref) {
|
|
const int maxq_adj_limit =
|
|
rc->worst_quality - twopass->active_worst_quality;
|
|
const int minq_adj_limit =
|
|
(cpi->oxcf.rc_mode == AOM_CQ ? MINQ_ADJ_LIMIT_CQ : MINQ_ADJ_LIMIT);
|
|
|
|
// Undershoot.
|
|
if (rc->rate_error_estimate > cpi->oxcf.under_shoot_pct) {
|
|
--twopass->extend_maxq;
|
|
if (rc->rolling_target_bits >= rc->rolling_actual_bits)
|
|
++twopass->extend_minq;
|
|
// Overshoot.
|
|
} else if (rc->rate_error_estimate < -cpi->oxcf.over_shoot_pct) {
|
|
--twopass->extend_minq;
|
|
if (rc->rolling_target_bits < rc->rolling_actual_bits)
|
|
++twopass->extend_maxq;
|
|
} else {
|
|
// Adjustment for extreme local overshoot.
|
|
if (rc->projected_frame_size > (2 * rc->base_frame_target) &&
|
|
rc->projected_frame_size > (2 * rc->avg_frame_bandwidth))
|
|
++twopass->extend_maxq;
|
|
|
|
// Unwind undershoot or overshoot adjustment.
|
|
if (rc->rolling_target_bits < rc->rolling_actual_bits)
|
|
--twopass->extend_minq;
|
|
else if (rc->rolling_target_bits > rc->rolling_actual_bits)
|
|
--twopass->extend_maxq;
|
|
}
|
|
|
|
twopass->extend_minq = clamp(twopass->extend_minq, 0, minq_adj_limit);
|
|
twopass->extend_maxq = clamp(twopass->extend_maxq, 0, maxq_adj_limit);
|
|
|
|
// If there is a big and undexpected undershoot then feed the extra
|
|
// bits back in quickly. One situation where this may happen is if a
|
|
// frame is unexpectedly almost perfectly predicted by the ARF or GF
|
|
// but not very well predcited by the previous frame.
|
|
if (!frame_is_kf_gf_arf(cpi) && !cpi->rc.is_src_frame_alt_ref) {
|
|
int fast_extra_thresh = rc->base_frame_target / HIGH_UNDERSHOOT_RATIO;
|
|
if (rc->projected_frame_size < fast_extra_thresh) {
|
|
rc->vbr_bits_off_target_fast +=
|
|
fast_extra_thresh - rc->projected_frame_size;
|
|
rc->vbr_bits_off_target_fast =
|
|
AOMMIN(rc->vbr_bits_off_target_fast, (4 * rc->avg_frame_bandwidth));
|
|
|
|
// Fast adaptation of minQ if necessary to use up the extra bits.
|
|
if (rc->avg_frame_bandwidth) {
|
|
twopass->extend_minq_fast =
|
|
(int)(rc->vbr_bits_off_target_fast * 8 / rc->avg_frame_bandwidth);
|
|
}
|
|
twopass->extend_minq_fast = AOMMIN(
|
|
twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq);
|
|
} else if (rc->vbr_bits_off_target_fast) {
|
|
twopass->extend_minq_fast = AOMMIN(
|
|
twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq);
|
|
} else {
|
|
twopass->extend_minq_fast = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|