aom/test/dct32x32_test.cc

195 строки
5.9 KiB
C++

/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "third_party/googletest/src/include/gtest/gtest.h"
extern "C" {
#include "vp9/common/vp9_entropy.h"
#include "./vp9_rtcd.h"
void vp9_short_fdct32x32_c(int16_t *input, int16_t *out, int pitch);
void vp9_short_idct32x32_c(short *input, short *output, int pitch);
}
#include "test/acm_random.h"
#include "vpx/vpx_integer.h"
using libvpx_test::ACMRandom;
namespace {
#ifdef _MSC_VER
static int round(double x) {
if (x < 0)
return (int)ceil(x - 0.5);
else
return (int)floor(x + 0.5);
}
#endif
static const double kPi = 3.141592653589793238462643383279502884;
static void reference2_32x32_idct_2d(double *input, double *output) {
double x;
for (int l = 0; l < 32; ++l) {
for (int k = 0; k < 32; ++k) {
double s = 0;
for (int i = 0; i < 32; ++i) {
for (int j = 0; j < 32; ++j) {
x = cos(kPi * j * (l + 0.5) / 32.0) *
cos(kPi * i * (k + 0.5) / 32.0) * input[i * 32 + j] / 1024;
if (i != 0)
x *= sqrt(2.0);
if (j != 0)
x *= sqrt(2.0);
s += x;
}
}
output[k * 32 + l] = s / 4;
}
}
}
static void reference_32x32_dct_1d(double in[32], double out[32], int stride) {
const double kInvSqrt2 = 0.707106781186547524400844362104;
for (int k = 0; k < 32; k++) {
out[k] = 0.0;
for (int n = 0; n < 32; n++)
out[k] += in[n] * cos(kPi * (2 * n + 1) * k / 64.0);
if (k == 0)
out[k] = out[k] * kInvSqrt2;
}
}
static void reference_32x32_dct_2d(int16_t input[32*32], double output[32*32]) {
// First transform columns
for (int i = 0; i < 32; ++i) {
double temp_in[32], temp_out[32];
for (int j = 0; j < 32; ++j)
temp_in[j] = input[j*32 + i];
reference_32x32_dct_1d(temp_in, temp_out, 1);
for (int j = 0; j < 32; ++j)
output[j * 32 + i] = temp_out[j];
}
// Then transform rows
for (int i = 0; i < 32; ++i) {
double temp_in[32], temp_out[32];
for (int j = 0; j < 32; ++j)
temp_in[j] = output[j + i*32];
reference_32x32_dct_1d(temp_in, temp_out, 1);
// Scale by some magic number
for (int j = 0; j < 32; ++j)
output[j + i * 32] = temp_out[j] / 4;
}
}
TEST(VP9Idct32x32Test, AccuracyCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
for (int i = 0; i < count_test_block; ++i) {
int16_t in[1024], coeff[1024];
int16_t out_c[1024];
double out_r[1024];
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < 1024; ++j)
in[j] = rnd.Rand8() - rnd.Rand8();
reference_32x32_dct_2d(in, out_r);
for (int j = 0; j < 1024; j++)
coeff[j] = round(out_r[j]);
vp9_short_idct32x32_c(coeff, out_c, 64);
for (int j = 0; j < 1024; ++j) {
const int diff = out_c[j] - in[j];
const int error = diff * diff;
EXPECT_GE(1, error)
<< "Error: 3x32 IDCT has error " << error
<< " at index " << j;
}
vp9_short_fdct32x32_c(in, out_c, 64);
for (int j = 0; j < 1024; ++j) {
const double diff = coeff[j] - out_c[j];
const double error = diff * diff;
EXPECT_GE(1.0, error)
<< "Error: 32x32 FDCT has error " << error
<< " at index " << j;
}
}
}
TEST(VP9Fdct32x32Test, AccuracyCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
unsigned int max_error = 0;
int64_t total_error = 0;
const int count_test_block = 1000;
for (int i = 0; i < count_test_block; ++i) {
int16_t test_input_block[1024];
int16_t test_temp_block[1024];
int16_t test_output_block[1024];
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < 1024; ++j)
test_input_block[j] = rnd.Rand8() - rnd.Rand8();
const int pitch = 64;
vp9_short_fdct32x32_c(test_input_block, test_temp_block, pitch);
vp9_short_idct32x32_c(test_temp_block, test_output_block, pitch);
for (int j = 0; j < 1024; ++j) {
const unsigned diff = test_input_block[j] - test_output_block[j];
const unsigned error = diff * diff;
if (max_error < error)
max_error = error;
total_error += error;
}
}
EXPECT_GE(1u, max_error)
<< "Error: 32x32 FDCT/IDCT has an individual roundtrip error > 1";
EXPECT_GE(count_test_block/10, total_error)
<< "Error: 32x32 FDCT/IDCT has average roundtrip error > 1/10 per block";
}
TEST(VP9Fdct32x32Test, CoeffSizeCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
for (int i = 0; i < count_test_block; ++i) {
int16_t input_block[1024], input_extreme_block[1024];
int16_t output_block[1024], output_extreme_block[1024];
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < 1024; ++j) {
input_block[j] = rnd.Rand8() - rnd.Rand8();
input_extreme_block[j] = rnd.Rand8() % 2 ? 255 : -255;
}
if (i == 0)
for (int j = 0; j < 1024; ++j)
input_extreme_block[j] = 255;
const int pitch = 64;
vp9_short_fdct32x32_c(input_block, output_block, pitch);
vp9_short_fdct32x32_c(input_extreme_block, output_extreme_block, pitch);
// The minimum quant value is 4.
for (int j = 0; j < 1024; ++j) {
EXPECT_GE(4*DCT_MAX_VALUE, abs(output_block[j]))
<< "Error: 32x32 FDCT has coefficient larger than 4*DCT_MAX_VALUE";
EXPECT_GE(4*DCT_MAX_VALUE, abs(output_extreme_block[j]))
<< "Error: 32x32 FDCT extreme has coefficient larger than "
"4*DCT_MAX_VALUE";
}
}
}
} // namespace