6602 строки
246 KiB
C
6602 строки
246 KiB
C
/*
|
|
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
|
|
*
|
|
* This source code is subject to the terms of the BSD 2 Clause License and
|
|
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
|
|
* was not distributed with this source code in the LICENSE file, you can
|
|
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
|
|
* Media Patent License 1.0 was not distributed with this source code in the
|
|
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
|
|
*/
|
|
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
|
|
#include "./av1_rtcd.h"
|
|
#include "./aom_dsp_rtcd.h"
|
|
#include "./aom_config.h"
|
|
|
|
#include "aom_dsp/aom_dsp_common.h"
|
|
#include "aom_ports/mem.h"
|
|
#include "aom_ports/aom_timer.h"
|
|
#include "aom_ports/system_state.h"
|
|
|
|
#include "av1/common/common.h"
|
|
#include "av1/common/entropy.h"
|
|
#include "av1/common/entropymode.h"
|
|
#include "av1/common/idct.h"
|
|
#include "av1/common/mvref_common.h"
|
|
#include "av1/common/pred_common.h"
|
|
#include "av1/common/quant_common.h"
|
|
#include "av1/common/reconintra.h"
|
|
#include "av1/common/reconinter.h"
|
|
#include "av1/common/seg_common.h"
|
|
#include "av1/common/tile_common.h"
|
|
|
|
#include "av1/encoder/aq_complexity.h"
|
|
#include "av1/encoder/aq_cyclicrefresh.h"
|
|
#include "av1/encoder/aq_variance.h"
|
|
#if CONFIG_SUPERTX
|
|
#include "av1/encoder/cost.h"
|
|
#endif
|
|
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
|
|
#include "av1/common/warped_motion.h"
|
|
#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
|
|
#if CONFIG_GLOBAL_MOTION
|
|
#include "av1/encoder/global_motion.h"
|
|
#endif // CONFIG_GLOBAL_MOTION
|
|
#include "av1/encoder/encodeframe.h"
|
|
#include "av1/encoder/encodemb.h"
|
|
#include "av1/encoder/encodemv.h"
|
|
#include "av1/encoder/ethread.h"
|
|
#include "av1/encoder/extend.h"
|
|
#include "av1/encoder/rd.h"
|
|
#include "av1/encoder/rdopt.h"
|
|
#include "av1/encoder/segmentation.h"
|
|
#include "av1/encoder/tokenize.h"
|
|
#if CONFIG_PVQ
|
|
#include "av1/common/pvq.h"
|
|
#include "av1/encoder/pvq_encoder.h"
|
|
#endif
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
#define IF_HBD(...) __VA_ARGS__
|
|
#else
|
|
#define IF_HBD(...)
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
|
|
static void encode_superblock(const AV1_COMP *const cpi, ThreadData *td,
|
|
TOKENEXTRA **t, RUN_TYPE dry_run, int mi_row,
|
|
int mi_col, BLOCK_SIZE bsize,
|
|
PICK_MODE_CONTEXT *ctx, int *rate);
|
|
|
|
#if CONFIG_SUPERTX
|
|
static int check_intra_b(PICK_MODE_CONTEXT *ctx);
|
|
|
|
static int check_intra_sb(const AV1_COMP *cpi, const TileInfo *const tile,
|
|
int mi_row, int mi_col, BLOCK_SIZE bsize,
|
|
PC_TREE *pc_tree);
|
|
static void predict_superblock(const AV1_COMP *const cpi, ThreadData *td,
|
|
#if CONFIG_EXT_INTER
|
|
int mi_row_ori, int mi_col_ori,
|
|
#endif // CONFIG_EXT_INTER
|
|
int mi_row_pred, int mi_col_pred,
|
|
BLOCK_SIZE bsize_pred, int b_sub8x8, int block);
|
|
static int check_supertx_sb(BLOCK_SIZE bsize, TX_SIZE supertx_size,
|
|
PC_TREE *pc_tree);
|
|
static void predict_sb_complex(const AV1_COMP *const cpi, ThreadData *td,
|
|
const TileInfo *const tile, int mi_row,
|
|
int mi_col, int mi_row_ori, int mi_col_ori,
|
|
RUN_TYPE dry_run, BLOCK_SIZE bsize,
|
|
BLOCK_SIZE top_bsize, uint8_t *dst_buf[3],
|
|
int dst_stride[3], PC_TREE *pc_tree);
|
|
static void update_state_sb_supertx(const AV1_COMP *const cpi, ThreadData *td,
|
|
const TileInfo *const tile, int mi_row,
|
|
int mi_col, BLOCK_SIZE bsize,
|
|
RUN_TYPE dry_run, PC_TREE *pc_tree);
|
|
static void rd_supertx_sb(const AV1_COMP *const cpi, ThreadData *td,
|
|
const TileInfo *const tile, int mi_row, int mi_col,
|
|
BLOCK_SIZE bsize, int *tmp_rate, int64_t *tmp_dist,
|
|
TX_TYPE *best_tx, PC_TREE *pc_tree);
|
|
#endif // CONFIG_SUPERTX
|
|
|
|
// This is used as a reference when computing the source variance for the
|
|
// purposes of activity masking.
|
|
// Eventually this should be replaced by custom no-reference routines,
|
|
// which will be faster.
|
|
static const uint8_t AV1_VAR_OFFS[MAX_SB_SIZE] = {
|
|
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
|
|
#if CONFIG_EXT_PARTITION
|
|
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128
|
|
#endif // CONFIG_EXT_PARTITION
|
|
};
|
|
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
static const uint16_t AV1_HIGH_VAR_OFFS_8[MAX_SB_SIZE] = {
|
|
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
|
|
#if CONFIG_EXT_PARTITION
|
|
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128
|
|
#endif // CONFIG_EXT_PARTITION
|
|
};
|
|
|
|
static const uint16_t AV1_HIGH_VAR_OFFS_10[MAX_SB_SIZE] = {
|
|
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
|
|
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
|
|
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
|
|
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
|
|
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
|
|
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
|
|
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
|
|
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
|
|
#if CONFIG_EXT_PARTITION
|
|
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
|
|
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
|
|
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
|
|
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
|
|
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
|
|
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
|
|
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
|
|
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4
|
|
#endif // CONFIG_EXT_PARTITION
|
|
};
|
|
|
|
static const uint16_t AV1_HIGH_VAR_OFFS_12[MAX_SB_SIZE] = {
|
|
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
|
|
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
|
|
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
|
|
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
|
|
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
|
|
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
|
|
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
|
|
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
|
|
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
|
|
128 * 16,
|
|
#if CONFIG_EXT_PARTITION
|
|
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
|
|
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
|
|
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
|
|
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
|
|
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
|
|
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
|
|
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
|
|
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
|
|
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
|
|
128 * 16
|
|
#endif // CONFIG_EXT_PARTITION
|
|
};
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
|
|
unsigned int av1_get_sby_perpixel_variance(const AV1_COMP *cpi,
|
|
const struct buf_2d *ref,
|
|
BLOCK_SIZE bs) {
|
|
unsigned int sse;
|
|
const unsigned int var =
|
|
cpi->fn_ptr[bs].vf(ref->buf, ref->stride, AV1_VAR_OFFS, 0, &sse);
|
|
return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
|
|
}
|
|
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
unsigned int av1_high_get_sby_perpixel_variance(const AV1_COMP *cpi,
|
|
const struct buf_2d *ref,
|
|
BLOCK_SIZE bs, int bd) {
|
|
unsigned int var, sse;
|
|
switch (bd) {
|
|
case 10:
|
|
var =
|
|
cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
|
|
CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_10), 0, &sse);
|
|
break;
|
|
case 12:
|
|
var =
|
|
cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
|
|
CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_12), 0, &sse);
|
|
break;
|
|
case 8:
|
|
default:
|
|
var =
|
|
cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
|
|
CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_8), 0, &sse);
|
|
break;
|
|
}
|
|
return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
|
|
}
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
|
|
static unsigned int get_sby_perpixel_diff_variance(const AV1_COMP *const cpi,
|
|
const struct buf_2d *ref,
|
|
int mi_row, int mi_col,
|
|
BLOCK_SIZE bs) {
|
|
unsigned int sse, var;
|
|
uint8_t *last_y;
|
|
const YV12_BUFFER_CONFIG *last = get_ref_frame_buffer(cpi, LAST_FRAME);
|
|
|
|
assert(last != NULL);
|
|
last_y =
|
|
&last->y_buffer[mi_row * MI_SIZE * last->y_stride + mi_col * MI_SIZE];
|
|
var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, last_y, last->y_stride, &sse);
|
|
return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
|
|
}
|
|
|
|
static BLOCK_SIZE get_rd_var_based_fixed_partition(AV1_COMP *cpi, MACROBLOCK *x,
|
|
int mi_row, int mi_col) {
|
|
unsigned int var = get_sby_perpixel_diff_variance(
|
|
cpi, &x->plane[0].src, mi_row, mi_col, BLOCK_64X64);
|
|
if (var < 8)
|
|
return BLOCK_64X64;
|
|
else if (var < 128)
|
|
return BLOCK_32X32;
|
|
else if (var < 2048)
|
|
return BLOCK_16X16;
|
|
else
|
|
return BLOCK_8X8;
|
|
}
|
|
|
|
// Lighter version of set_offsets that only sets the mode info
|
|
// pointers.
|
|
static void set_mode_info_offsets(const AV1_COMP *const cpi,
|
|
MACROBLOCK *const x, MACROBLOCKD *const xd,
|
|
int mi_row, int mi_col) {
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
const int idx_str = xd->mi_stride * mi_row + mi_col;
|
|
xd->mi = cm->mi_grid_visible + idx_str;
|
|
xd->mi[0] = cm->mi + idx_str;
|
|
x->mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col);
|
|
}
|
|
|
|
static void set_offsets_without_segment_id(const AV1_COMP *const cpi,
|
|
const TileInfo *const tile,
|
|
MACROBLOCK *const x, int mi_row,
|
|
int mi_col, BLOCK_SIZE bsize) {
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
const int mi_width = mi_size_wide[bsize];
|
|
const int mi_height = mi_size_high[bsize];
|
|
|
|
set_skip_context(xd, mi_row, mi_col);
|
|
|
|
set_mode_info_offsets(cpi, x, xd, mi_row, mi_col);
|
|
|
|
#if CONFIG_VAR_TX
|
|
xd->above_txfm_context = cm->above_txfm_context + mi_col;
|
|
xd->left_txfm_context =
|
|
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
|
|
xd->max_tx_size = max_txsize_lookup[bsize];
|
|
#endif
|
|
|
|
// Set up destination pointers.
|
|
av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
|
|
|
|
// Set up limit values for MV components.
|
|
// Mv beyond the range do not produce new/different prediction block.
|
|
x->mv_row_min = -(((mi_row + mi_height) * MI_SIZE) + AOM_INTERP_EXTEND);
|
|
x->mv_col_min = -(((mi_col + mi_width) * MI_SIZE) + AOM_INTERP_EXTEND);
|
|
x->mv_row_max = (cm->mi_rows - mi_row) * MI_SIZE + AOM_INTERP_EXTEND;
|
|
x->mv_col_max = (cm->mi_cols - mi_col) * MI_SIZE + AOM_INTERP_EXTEND;
|
|
|
|
set_plane_n4(xd, mi_width, mi_height);
|
|
|
|
// Set up distance of MB to edge of frame in 1/8th pel units.
|
|
assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
|
|
set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, cm->mi_rows,
|
|
cm->mi_cols);
|
|
|
|
// Set up source buffers.
|
|
av1_setup_src_planes(x, cpi->Source, mi_row, mi_col);
|
|
|
|
// R/D setup.
|
|
x->rddiv = cpi->rd.RDDIV;
|
|
x->rdmult = cpi->rd.RDMULT;
|
|
|
|
// required by av1_append_sub8x8_mvs_for_idx() and av1_find_best_ref_mvs()
|
|
xd->tile = *tile;
|
|
}
|
|
|
|
static void set_offsets(const AV1_COMP *const cpi, const TileInfo *const tile,
|
|
MACROBLOCK *const x, int mi_row, int mi_col,
|
|
BLOCK_SIZE bsize) {
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *mbmi;
|
|
const struct segmentation *const seg = &cm->seg;
|
|
|
|
set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize);
|
|
|
|
mbmi = &xd->mi[0]->mbmi;
|
|
|
|
// Setup segment ID.
|
|
if (seg->enabled) {
|
|
if (!cpi->vaq_refresh) {
|
|
const uint8_t *const map =
|
|
seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
|
|
mbmi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
|
|
}
|
|
av1_init_plane_quantizers(cpi, x, mbmi->segment_id);
|
|
} else {
|
|
mbmi->segment_id = 0;
|
|
}
|
|
|
|
#if CONFIG_SUPERTX
|
|
mbmi->segment_id_supertx = MAX_SEGMENTS;
|
|
#endif // CONFIG_SUPERTX
|
|
}
|
|
|
|
#if CONFIG_SUPERTX
|
|
static void set_offsets_supertx(const AV1_COMP *const cpi, ThreadData *td,
|
|
const TileInfo *const tile, int mi_row,
|
|
int mi_col, BLOCK_SIZE bsize) {
|
|
MACROBLOCK *const x = &td->mb;
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
const int mi_width = mi_size_wide[bsize];
|
|
const int mi_height = mi_size_high[bsize];
|
|
|
|
set_mode_info_offsets(cpi, x, xd, mi_row, mi_col);
|
|
|
|
// Set up distance of MB to edge of frame in 1/8th pel units.
|
|
assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
|
|
set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, cm->mi_rows,
|
|
cm->mi_cols);
|
|
}
|
|
|
|
static void set_offsets_extend(const AV1_COMP *const cpi, ThreadData *td,
|
|
const TileInfo *const tile, int mi_row_pred,
|
|
int mi_col_pred, int mi_row_ori, int mi_col_ori,
|
|
BLOCK_SIZE bsize_pred) {
|
|
// Used in supertx
|
|
// (mi_row_ori, mi_col_ori, bsize_ori): region for mv
|
|
// (mi_row_pred, mi_col_pred, bsize_pred): region to predict
|
|
MACROBLOCK *const x = &td->mb;
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
const int mi_width = mi_size_wide[bsize_pred];
|
|
const int mi_height = mi_size_high[bsize_pred];
|
|
|
|
set_mode_info_offsets(cpi, x, xd, mi_row_ori, mi_col_ori);
|
|
|
|
// Set up limit values for MV components.
|
|
// Mv beyond the range do not produce new/different prediction block.
|
|
x->mv_row_min = -(((mi_row_pred + mi_height) * MI_SIZE) + AOM_INTERP_EXTEND);
|
|
x->mv_col_min = -(((mi_col_pred + mi_width) * MI_SIZE) + AOM_INTERP_EXTEND);
|
|
x->mv_row_max = (cm->mi_rows - mi_row_pred) * MI_SIZE + AOM_INTERP_EXTEND;
|
|
x->mv_col_max = (cm->mi_cols - mi_col_pred) * MI_SIZE + AOM_INTERP_EXTEND;
|
|
|
|
// Set up distance of MB to edge of frame in 1/8th pel units.
|
|
#if !CONFIG_CB4X4
|
|
assert(!(mi_col_pred & (mi_width - mi_size_wide[BLOCK_8X8])) &&
|
|
!(mi_row_pred & (mi_height - mi_size_high[BLOCK_8X8])));
|
|
#endif
|
|
set_mi_row_col(xd, tile, mi_row_pred, mi_height, mi_col_pred, mi_width,
|
|
cm->mi_rows, cm->mi_cols);
|
|
xd->up_available = (mi_row_ori > tile->mi_row_start);
|
|
xd->left_available = (mi_col_ori > tile->mi_col_start);
|
|
|
|
// R/D setup.
|
|
x->rddiv = cpi->rd.RDDIV;
|
|
x->rdmult = cpi->rd.RDMULT;
|
|
}
|
|
|
|
static void set_segment_id_supertx(const AV1_COMP *const cpi,
|
|
MACROBLOCK *const x, const int mi_row,
|
|
const int mi_col, const BLOCK_SIZE bsize) {
|
|
const AV1_COMMON *cm = &cpi->common;
|
|
const struct segmentation *seg = &cm->seg;
|
|
const int miw = AOMMIN(mi_size_wide[bsize], cm->mi_cols - mi_col);
|
|
const int mih = AOMMIN(mi_size_high[bsize], cm->mi_rows - mi_row);
|
|
const int mi_offset = mi_row * cm->mi_stride + mi_col;
|
|
MODE_INFO **const mip = cm->mi_grid_visible + mi_offset;
|
|
int r, c;
|
|
int seg_id_supertx = MAX_SEGMENTS;
|
|
|
|
if (!seg->enabled) {
|
|
seg_id_supertx = 0;
|
|
} else {
|
|
// Find the minimum segment_id
|
|
for (r = 0; r < mih; r++)
|
|
for (c = 0; c < miw; c++)
|
|
seg_id_supertx =
|
|
AOMMIN(mip[r * cm->mi_stride + c]->mbmi.segment_id, seg_id_supertx);
|
|
assert(0 <= seg_id_supertx && seg_id_supertx < MAX_SEGMENTS);
|
|
|
|
// Initialize plane quantisers
|
|
av1_init_plane_quantizers(cpi, x, seg_id_supertx);
|
|
}
|
|
|
|
// Assign the the segment_id back to segment_id_supertx
|
|
for (r = 0; r < mih; r++)
|
|
for (c = 0; c < miw; c++)
|
|
mip[r * cm->mi_stride + c]->mbmi.segment_id_supertx = seg_id_supertx;
|
|
}
|
|
#endif // CONFIG_SUPERTX
|
|
|
|
static void set_block_size(AV1_COMP *const cpi, MACROBLOCK *const x,
|
|
MACROBLOCKD *const xd, int mi_row, int mi_col,
|
|
BLOCK_SIZE bsize) {
|
|
if (cpi->common.mi_cols > mi_col && cpi->common.mi_rows > mi_row) {
|
|
set_mode_info_offsets(cpi, x, xd, mi_row, mi_col);
|
|
xd->mi[0]->mbmi.sb_type = bsize;
|
|
}
|
|
}
|
|
|
|
static void set_vt_partitioning(AV1_COMP *cpi, MACROBLOCK *const x,
|
|
MACROBLOCKD *const xd, VAR_TREE *vt, int mi_row,
|
|
int mi_col, const int64_t *const threshold,
|
|
const BLOCK_SIZE *const bsize_min) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
const int hbw = mi_size_wide[vt->bsize] / 2;
|
|
const int hbh = mi_size_high[vt->bsize] / 2;
|
|
const int has_cols = mi_col + hbw < cm->mi_cols;
|
|
const int has_rows = mi_row + hbh < cm->mi_rows;
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
|
|
|
|
assert(vt->bsize >= BLOCK_8X8);
|
|
|
|
assert(hbh == hbw);
|
|
|
|
if (vt->bsize == BLOCK_8X8 && cm->frame_type != KEY_FRAME) {
|
|
set_block_size(cpi, x, xd, mi_row, mi_col, BLOCK_8X8);
|
|
return;
|
|
}
|
|
|
|
if (vt->force_split || (!has_cols && !has_rows)) goto split;
|
|
|
|
// For bsize=bsize_min (16x16/8x8 for 8x8/4x4 downsampling), select if
|
|
// variance is below threshold, otherwise split will be selected.
|
|
// No check for vert/horiz split as too few samples for variance.
|
|
if (vt->bsize == bsize_min[0]) {
|
|
if (has_cols && has_rows && vt->variances.none.variance < threshold[0]) {
|
|
set_block_size(cpi, x, xd, mi_row, mi_col, vt->bsize);
|
|
return;
|
|
} else {
|
|
BLOCK_SIZE subsize = get_subsize(vt->bsize, PARTITION_SPLIT);
|
|
set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
|
|
if (vt->bsize > BLOCK_8X8) {
|
|
set_block_size(cpi, x, xd, mi_row, mi_col + hbw, subsize);
|
|
set_block_size(cpi, x, xd, mi_row + hbh, mi_col, subsize);
|
|
set_block_size(cpi, x, xd, mi_row + hbh, mi_col + hbw, subsize);
|
|
}
|
|
return;
|
|
}
|
|
} else if (vt->bsize > bsize_min[0]) {
|
|
// For key frame: take split for bsize above 32X32 or very high variance.
|
|
if (cm->frame_type == KEY_FRAME &&
|
|
(vt->bsize > BLOCK_32X32 ||
|
|
vt->variances.none.variance > (threshold[0] << 4))) {
|
|
goto split;
|
|
}
|
|
// If variance is low, take the bsize (no split).
|
|
if (has_cols && has_rows && vt->variances.none.variance < threshold[0]) {
|
|
set_block_size(cpi, x, xd, mi_row, mi_col, vt->bsize);
|
|
return;
|
|
}
|
|
|
|
// Check vertical split.
|
|
if (has_rows) {
|
|
BLOCK_SIZE subsize = get_subsize(vt->bsize, PARTITION_VERT);
|
|
if (vt->variances.vert[0].variance < threshold[0] &&
|
|
vt->variances.vert[1].variance < threshold[0] &&
|
|
get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) {
|
|
set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
|
|
set_block_size(cpi, x, xd, mi_row, mi_col + hbw, subsize);
|
|
return;
|
|
}
|
|
}
|
|
// Check horizontal split.
|
|
if (has_cols) {
|
|
BLOCK_SIZE subsize = get_subsize(vt->bsize, PARTITION_HORZ);
|
|
if (vt->variances.horz[0].variance < threshold[0] &&
|
|
vt->variances.horz[1].variance < threshold[0] &&
|
|
get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) {
|
|
set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
|
|
set_block_size(cpi, x, xd, mi_row + hbh, mi_col, subsize);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
split : {
|
|
set_vt_partitioning(cpi, x, xd, vt->split[0], mi_row, mi_col, threshold + 1,
|
|
bsize_min + 1);
|
|
set_vt_partitioning(cpi, x, xd, vt->split[1], mi_row, mi_col + hbw,
|
|
threshold + 1, bsize_min + 1);
|
|
set_vt_partitioning(cpi, x, xd, vt->split[2], mi_row + hbh, mi_col,
|
|
threshold + 1, bsize_min + 1);
|
|
set_vt_partitioning(cpi, x, xd, vt->split[3], mi_row + hbh, mi_col + hbw,
|
|
threshold + 1, bsize_min + 1);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Set the variance split thresholds for following the block sizes:
|
|
// 0 - threshold_64x64, 1 - threshold_32x32, 2 - threshold_16x16,
|
|
// 3 - vbp_threshold_8x8. vbp_threshold_8x8 (to split to 4x4 partition) is
|
|
// currently only used on key frame.
|
|
static void set_vbp_thresholds(AV1_COMP *cpi, int64_t thresholds[], int q) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
const int is_key_frame = (cm->frame_type == KEY_FRAME);
|
|
const int threshold_multiplier = is_key_frame ? 20 : 1;
|
|
const int64_t threshold_base =
|
|
(int64_t)(threshold_multiplier * cpi->y_dequant[q][1]);
|
|
if (is_key_frame) {
|
|
thresholds[1] = threshold_base;
|
|
thresholds[2] = threshold_base >> 2;
|
|
thresholds[3] = threshold_base >> 2;
|
|
thresholds[4] = threshold_base << 2;
|
|
} else {
|
|
thresholds[2] = threshold_base;
|
|
if (cm->width <= 352 && cm->height <= 288) {
|
|
thresholds[1] = threshold_base >> 2;
|
|
thresholds[3] = threshold_base << 3;
|
|
} else {
|
|
thresholds[1] = threshold_base;
|
|
thresholds[2] = (5 * threshold_base) >> 2;
|
|
if (cm->width >= 1920 && cm->height >= 1080)
|
|
thresholds[2] = (7 * threshold_base) >> 2;
|
|
thresholds[3] = threshold_base << cpi->oxcf.speed;
|
|
}
|
|
}
|
|
thresholds[0] = INT64_MIN;
|
|
}
|
|
|
|
void av1_set_variance_partition_thresholds(AV1_COMP *cpi, int q) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
SPEED_FEATURES *const sf = &cpi->sf;
|
|
const int is_key_frame = (cm->frame_type == KEY_FRAME);
|
|
if (sf->partition_search_type != VAR_BASED_PARTITION &&
|
|
sf->partition_search_type != REFERENCE_PARTITION) {
|
|
return;
|
|
} else {
|
|
set_vbp_thresholds(cpi, cpi->vbp_thresholds, q);
|
|
// The thresholds below are not changed locally.
|
|
if (is_key_frame) {
|
|
cpi->vbp_threshold_sad = 0;
|
|
cpi->vbp_bsize_min = BLOCK_8X8;
|
|
} else {
|
|
if (cm->width <= 352 && cm->height <= 288)
|
|
cpi->vbp_threshold_sad = 100;
|
|
else
|
|
cpi->vbp_threshold_sad = (cpi->y_dequant[q][1] << 1) > 1000
|
|
? (cpi->y_dequant[q][1] << 1)
|
|
: 1000;
|
|
cpi->vbp_bsize_min = BLOCK_16X16;
|
|
}
|
|
cpi->vbp_threshold_minmax = 15 + (q >> 3);
|
|
}
|
|
}
|
|
|
|
// Compute the minmax over the 8x8 subblocks.
|
|
static int compute_minmax_8x8(const uint8_t *src, int src_stride,
|
|
const uint8_t *ref, int ref_stride,
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
int highbd,
|
|
#endif
|
|
int pixels_wide, int pixels_high) {
|
|
int k;
|
|
int minmax_max = 0;
|
|
int minmax_min = 255;
|
|
// Loop over the 4 8x8 subblocks.
|
|
for (k = 0; k < 4; k++) {
|
|
const int x8_idx = ((k & 1) << 3);
|
|
const int y8_idx = ((k >> 1) << 3);
|
|
int min = 0;
|
|
int max = 0;
|
|
if (x8_idx < pixels_wide && y8_idx < pixels_high) {
|
|
const int src_offset = y8_idx * src_stride + x8_idx;
|
|
const int ref_offset = y8_idx * ref_stride + x8_idx;
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (highbd) {
|
|
aom_highbd_minmax_8x8(src + src_offset, src_stride, ref + ref_offset,
|
|
ref_stride, &min, &max);
|
|
} else {
|
|
aom_minmax_8x8(src + src_offset, src_stride, ref + ref_offset,
|
|
ref_stride, &min, &max);
|
|
}
|
|
#else
|
|
aom_minmax_8x8(src + src_offset, src_stride, ref + ref_offset, ref_stride,
|
|
&min, &max);
|
|
#endif
|
|
if ((max - min) > minmax_max) minmax_max = (max - min);
|
|
if ((max - min) < minmax_min) minmax_min = (max - min);
|
|
}
|
|
}
|
|
return (minmax_max - minmax_min);
|
|
}
|
|
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
static INLINE int avg_4x4(const uint8_t *const src, const int stride,
|
|
const int highbd) {
|
|
if (highbd) {
|
|
return aom_highbd_avg_4x4(src, stride);
|
|
} else {
|
|
return aom_avg_4x4(src, stride);
|
|
}
|
|
}
|
|
#else
|
|
static INLINE int avg_4x4(const uint8_t *const src, const int stride) {
|
|
return aom_avg_4x4(src, stride);
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
static INLINE int avg_8x8(const uint8_t *const src, const int stride,
|
|
const int highbd) {
|
|
if (highbd) {
|
|
return aom_highbd_avg_8x8(src, stride);
|
|
} else {
|
|
return aom_avg_8x8(src, stride);
|
|
}
|
|
}
|
|
#else
|
|
static INLINE int avg_8x8(const uint8_t *const src, const int stride) {
|
|
return aom_avg_8x8(src, stride);
|
|
}
|
|
#endif
|
|
|
|
static void init_variance_tree(VAR_TREE *const vt,
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
const int highbd,
|
|
#endif
|
|
BLOCK_SIZE bsize, BLOCK_SIZE leaf_size,
|
|
const int width, const int height,
|
|
const uint8_t *const src, const int src_stride,
|
|
const uint8_t *const ref, const int ref_stride) {
|
|
assert(bsize >= leaf_size);
|
|
|
|
vt->bsize = bsize;
|
|
|
|
vt->force_split = 0;
|
|
|
|
vt->src = src;
|
|
vt->src_stride = src_stride;
|
|
vt->ref = ref;
|
|
vt->ref_stride = ref_stride;
|
|
|
|
vt->width = width;
|
|
vt->height = height;
|
|
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
vt->highbd = highbd;
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
|
|
if (bsize > leaf_size) {
|
|
const BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_SPLIT);
|
|
const int px = block_size_wide[subsize];
|
|
|
|
init_variance_tree(vt->split[0],
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
highbd,
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
subsize, leaf_size, AOMMIN(px, width),
|
|
AOMMIN(px, height), src, src_stride, ref, ref_stride);
|
|
init_variance_tree(vt->split[1],
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
highbd,
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
subsize, leaf_size, width - px, AOMMIN(px, height),
|
|
src + px, src_stride, ref + px, ref_stride);
|
|
init_variance_tree(vt->split[2],
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
highbd,
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
subsize, leaf_size, AOMMIN(px, width), height - px,
|
|
src + px * src_stride, src_stride, ref + px * ref_stride,
|
|
ref_stride);
|
|
init_variance_tree(vt->split[3],
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
highbd,
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
subsize, leaf_size, width - px, height - px,
|
|
src + px * src_stride + px, src_stride,
|
|
ref + px * ref_stride + px, ref_stride);
|
|
}
|
|
}
|
|
|
|
// Fill the variance tree based on averaging pixel values (sub-sampling), at
|
|
// the leaf node size.
|
|
static void fill_variance_tree(VAR_TREE *const vt, const BLOCK_SIZE leaf_size) {
|
|
if (vt->bsize > leaf_size) {
|
|
fill_variance_tree(vt->split[0], leaf_size);
|
|
fill_variance_tree(vt->split[1], leaf_size);
|
|
fill_variance_tree(vt->split[2], leaf_size);
|
|
fill_variance_tree(vt->split[3], leaf_size);
|
|
fill_variance_node(vt);
|
|
} else if (vt->width <= 0 || vt->height <= 0) {
|
|
fill_variance(0, 0, 0, &vt->variances.none);
|
|
} else {
|
|
unsigned int sse = 0;
|
|
int sum = 0;
|
|
int src_avg;
|
|
int ref_avg;
|
|
assert(leaf_size == BLOCK_4X4 || leaf_size == BLOCK_8X8);
|
|
if (leaf_size == BLOCK_4X4) {
|
|
src_avg = avg_4x4(vt->src, vt->src_stride IF_HBD(, vt->highbd));
|
|
ref_avg = avg_4x4(vt->ref, vt->ref_stride IF_HBD(, vt->highbd));
|
|
} else {
|
|
src_avg = avg_8x8(vt->src, vt->src_stride IF_HBD(, vt->highbd));
|
|
ref_avg = avg_8x8(vt->ref, vt->ref_stride IF_HBD(, vt->highbd));
|
|
}
|
|
sum = src_avg - ref_avg;
|
|
sse = sum * sum;
|
|
fill_variance(sse, sum, 0, &vt->variances.none);
|
|
}
|
|
}
|
|
|
|
static void refine_variance_tree(VAR_TREE *const vt, const int64_t threshold) {
|
|
if (vt->bsize >= BLOCK_8X8) {
|
|
if (vt->bsize == BLOCK_16X16) {
|
|
if (vt->variances.none.variance <= threshold)
|
|
return;
|
|
else
|
|
vt->force_split = 0;
|
|
}
|
|
|
|
refine_variance_tree(vt->split[0], threshold);
|
|
refine_variance_tree(vt->split[1], threshold);
|
|
refine_variance_tree(vt->split[2], threshold);
|
|
refine_variance_tree(vt->split[3], threshold);
|
|
|
|
if (vt->bsize <= BLOCK_16X16) fill_variance_node(vt);
|
|
} else if (vt->width <= 0 || vt->height <= 0) {
|
|
fill_variance(0, 0, 0, &vt->variances.none);
|
|
} else {
|
|
const int src_avg = avg_4x4(vt->src, vt->src_stride IF_HBD(, vt->highbd));
|
|
const int ref_avg = avg_4x4(vt->ref, vt->ref_stride IF_HBD(, vt->highbd));
|
|
const int sum = src_avg - ref_avg;
|
|
const unsigned int sse = sum * sum;
|
|
assert(vt->bsize == BLOCK_4X4);
|
|
fill_variance(sse, sum, 0, &vt->variances.none);
|
|
}
|
|
}
|
|
|
|
static int check_split_key_frame(VAR_TREE *const vt, const int64_t threshold) {
|
|
if (vt->bsize == BLOCK_32X32) {
|
|
vt->force_split = vt->variances.none.variance > threshold;
|
|
} else {
|
|
vt->force_split |= check_split_key_frame(vt->split[0], threshold);
|
|
vt->force_split |= check_split_key_frame(vt->split[1], threshold);
|
|
vt->force_split |= check_split_key_frame(vt->split[2], threshold);
|
|
vt->force_split |= check_split_key_frame(vt->split[3], threshold);
|
|
}
|
|
return vt->force_split;
|
|
}
|
|
|
|
static int check_split(AV1_COMP *const cpi, VAR_TREE *const vt,
|
|
const int segment_id, const int64_t *const thresholds) {
|
|
if (vt->bsize == BLOCK_16X16) {
|
|
vt->force_split = vt->variances.none.variance > thresholds[0];
|
|
if (!vt->force_split && vt->variances.none.variance > thresholds[-1] &&
|
|
!cyclic_refresh_segment_id_boosted(segment_id)) {
|
|
// We have some nominal amount of 16x16 variance (based on average),
|
|
// compute the minmax over the 8x8 sub-blocks, and if above threshold,
|
|
// force split to 8x8 block for this 16x16 block.
|
|
int minmax =
|
|
compute_minmax_8x8(vt->src, vt->src_stride, vt->ref, vt->ref_stride,
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
vt->highbd,
|
|
#endif
|
|
vt->width, vt->height);
|
|
vt->force_split = minmax > cpi->vbp_threshold_minmax;
|
|
}
|
|
} else {
|
|
vt->force_split |=
|
|
check_split(cpi, vt->split[0], segment_id, thresholds + 1);
|
|
vt->force_split |=
|
|
check_split(cpi, vt->split[1], segment_id, thresholds + 1);
|
|
vt->force_split |=
|
|
check_split(cpi, vt->split[2], segment_id, thresholds + 1);
|
|
vt->force_split |=
|
|
check_split(cpi, vt->split[3], segment_id, thresholds + 1);
|
|
|
|
if (vt->bsize == BLOCK_32X32 && !vt->force_split) {
|
|
vt->force_split = vt->variances.none.variance > thresholds[0];
|
|
}
|
|
}
|
|
|
|
return vt->force_split;
|
|
}
|
|
|
|
// This function chooses partitioning based on the variance between source and
|
|
// reconstructed last (or golden), where variance is computed for down-sampled
|
|
// inputs.
|
|
static void choose_partitioning(AV1_COMP *const cpi, ThreadData *const td,
|
|
const TileInfo *const tile, MACROBLOCK *const x,
|
|
const int mi_row, const int mi_col) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
VAR_TREE *const vt = td->var_root[cm->mib_size_log2 - MIN_MIB_SIZE_LOG2];
|
|
#if CONFIG_DUAL_FILTER
|
|
int i;
|
|
#endif
|
|
const uint8_t *src;
|
|
const uint8_t *ref;
|
|
int src_stride;
|
|
int ref_stride;
|
|
int pixels_wide = MI_SIZE * mi_size_wide[cm->sb_size];
|
|
int pixels_high = MI_SIZE * mi_size_high[cm->sb_size];
|
|
int64_t thresholds[5] = {
|
|
cpi->vbp_thresholds[0], cpi->vbp_thresholds[1], cpi->vbp_thresholds[2],
|
|
cpi->vbp_thresholds[3], cpi->vbp_thresholds[4],
|
|
};
|
|
BLOCK_SIZE bsize_min[5] = { BLOCK_16X16, BLOCK_16X16, BLOCK_16X16,
|
|
cpi->vbp_bsize_min, BLOCK_8X8 };
|
|
const int start_level = cm->sb_size == BLOCK_64X64 ? 1 : 0;
|
|
const int64_t *const thre = thresholds + start_level;
|
|
const BLOCK_SIZE *const bmin = bsize_min + start_level;
|
|
|
|
const int is_key_frame = (cm->frame_type == KEY_FRAME);
|
|
const int low_res = (cm->width <= 352 && cm->height <= 288);
|
|
|
|
int segment_id = CR_SEGMENT_ID_BASE;
|
|
|
|
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) {
|
|
const uint8_t *const map =
|
|
cm->seg.update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
|
|
segment_id = get_segment_id(cm, map, cm->sb_size, mi_row, mi_col);
|
|
|
|
if (cyclic_refresh_segment_id_boosted(segment_id)) {
|
|
int q = av1_get_qindex(&cm->seg, segment_id, cm->base_qindex);
|
|
set_vbp_thresholds(cpi, thresholds, q);
|
|
}
|
|
}
|
|
|
|
set_offsets(cpi, tile, x, mi_row, mi_col, cm->sb_size);
|
|
|
|
if (xd->mb_to_right_edge < 0) pixels_wide += (xd->mb_to_right_edge >> 3);
|
|
if (xd->mb_to_bottom_edge < 0) pixels_high += (xd->mb_to_bottom_edge >> 3);
|
|
|
|
src = x->plane[0].src.buf;
|
|
src_stride = x->plane[0].src.stride;
|
|
|
|
if (!is_key_frame) {
|
|
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
|
|
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
|
|
const YV12_BUFFER_CONFIG *yv12_g = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
|
|
unsigned int y_sad, y_sad_g;
|
|
|
|
const int hbs = cm->mib_size / 2;
|
|
const int split_vert = mi_col + hbs >= cm->mi_cols;
|
|
const int split_horz = mi_row + hbs >= cm->mi_rows;
|
|
BLOCK_SIZE bsize;
|
|
|
|
if (split_vert && split_horz)
|
|
bsize = get_subsize(cm->sb_size, PARTITION_SPLIT);
|
|
else if (split_vert)
|
|
bsize = get_subsize(cm->sb_size, PARTITION_VERT);
|
|
else if (split_horz)
|
|
bsize = get_subsize(cm->sb_size, PARTITION_HORZ);
|
|
else
|
|
bsize = cm->sb_size;
|
|
|
|
assert(yv12 != NULL);
|
|
|
|
if (yv12_g && yv12_g != yv12) {
|
|
av1_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
|
|
&cm->frame_refs[GOLDEN_FRAME - 1].sf);
|
|
y_sad_g = cpi->fn_ptr[bsize].sdf(
|
|
x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf,
|
|
xd->plane[0].pre[0].stride);
|
|
} else {
|
|
y_sad_g = UINT_MAX;
|
|
}
|
|
|
|
av1_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
|
|
&cm->frame_refs[LAST_FRAME - 1].sf);
|
|
mbmi->ref_frame[0] = LAST_FRAME;
|
|
mbmi->ref_frame[1] = NONE;
|
|
mbmi->sb_type = cm->sb_size;
|
|
mbmi->mv[0].as_int = 0;
|
|
#if CONFIG_DUAL_FILTER
|
|
for (i = 0; i < 4; ++i) mbmi->interp_filter[i] = BILINEAR;
|
|
#else
|
|
mbmi->interp_filter = BILINEAR;
|
|
#endif
|
|
|
|
y_sad = av1_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col);
|
|
|
|
if (y_sad_g < y_sad) {
|
|
av1_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
|
|
&cm->frame_refs[GOLDEN_FRAME - 1].sf);
|
|
mbmi->ref_frame[0] = GOLDEN_FRAME;
|
|
mbmi->mv[0].as_int = 0;
|
|
y_sad = y_sad_g;
|
|
} else {
|
|
x->pred_mv[LAST_FRAME] = mbmi->mv[0].as_mv;
|
|
}
|
|
|
|
av1_build_inter_predictors_sb(xd, mi_row, mi_col, NULL, cm->sb_size);
|
|
|
|
ref = xd->plane[0].dst.buf;
|
|
ref_stride = xd->plane[0].dst.stride;
|
|
|
|
// If the y_sad is very small, take the largest partition and exit.
|
|
// Don't check on boosted segment for now, as largest is suppressed there.
|
|
if (segment_id == CR_SEGMENT_ID_BASE && y_sad < cpi->vbp_threshold_sad) {
|
|
if (!split_vert && !split_horz) {
|
|
set_block_size(cpi, x, xd, mi_row, mi_col, cm->sb_size);
|
|
return;
|
|
}
|
|
}
|
|
} else {
|
|
ref = AV1_VAR_OFFS;
|
|
ref_stride = 0;
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
switch (xd->bd) {
|
|
case 10: ref = CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_10); break;
|
|
case 12: ref = CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_12); break;
|
|
case 8:
|
|
default: ref = CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_8); break;
|
|
}
|
|
}
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
}
|
|
|
|
init_variance_tree(
|
|
vt,
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH,
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
cm->sb_size, (is_key_frame || low_res) ? BLOCK_4X4 : BLOCK_8X8,
|
|
pixels_wide, pixels_high, src, src_stride, ref, ref_stride);
|
|
|
|
// Fill in the entire tree of variances and compute splits.
|
|
if (is_key_frame) {
|
|
fill_variance_tree(vt, BLOCK_4X4);
|
|
check_split_key_frame(vt, thre[1]);
|
|
} else {
|
|
fill_variance_tree(vt, BLOCK_8X8);
|
|
check_split(cpi, vt, segment_id, thre);
|
|
if (low_res) {
|
|
refine_variance_tree(vt, thre[1] << 1);
|
|
}
|
|
}
|
|
|
|
vt->force_split |= mi_col + cm->mib_size > cm->mi_cols ||
|
|
mi_row + cm->mib_size > cm->mi_rows;
|
|
|
|
// Now go through the entire structure, splitting every block size until
|
|
// we get to one that's got a variance lower than our threshold.
|
|
set_vt_partitioning(cpi, x, xd, vt, mi_row, mi_col, thre, bmin);
|
|
}
|
|
|
|
#if CONFIG_DUAL_FILTER
|
|
static void reset_intmv_filter_type(const AV1_COMMON *const cm, MACROBLOCKD *xd,
|
|
MB_MODE_INFO *mbmi) {
|
|
int dir;
|
|
for (dir = 0; dir < 2; ++dir) {
|
|
if (!has_subpel_mv_component(xd->mi[0], xd, dir) &&
|
|
(mbmi->ref_frame[1] == NONE ||
|
|
!has_subpel_mv_component(xd->mi[0], xd, dir + 2)))
|
|
mbmi->interp_filter[dir] = (cm->interp_filter == SWITCHABLE)
|
|
? EIGHTTAP_REGULAR
|
|
: cm->interp_filter;
|
|
mbmi->interp_filter[dir + 2] = mbmi->interp_filter[dir];
|
|
}
|
|
}
|
|
|
|
static void update_filter_type_count(FRAME_COUNTS *counts,
|
|
const MACROBLOCKD *xd,
|
|
const MB_MODE_INFO *mbmi) {
|
|
int dir;
|
|
for (dir = 0; dir < 2; ++dir) {
|
|
if (has_subpel_mv_component(xd->mi[0], xd, dir) ||
|
|
(mbmi->ref_frame[1] > INTRA_FRAME &&
|
|
has_subpel_mv_component(xd->mi[0], xd, dir + 2))) {
|
|
const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
|
|
++counts->switchable_interp[ctx][mbmi->interp_filter[dir]];
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
#if CONFIG_GLOBAL_MOTION
|
|
static void update_global_motion_used(PREDICTION_MODE mode, BLOCK_SIZE bsize,
|
|
const MB_MODE_INFO *mbmi, AV1_COMP *cpi) {
|
|
if (mode == ZEROMV) {
|
|
const int num_4x4s = bsize >= BLOCK_8X8
|
|
? num_4x4_blocks_wide_lookup[bsize] *
|
|
num_4x4_blocks_high_lookup[bsize]
|
|
: 1;
|
|
++cpi->global_motion_used[mbmi->ref_frame[0]][0];
|
|
cpi->global_motion_used[mbmi->ref_frame[0]][1] += num_4x4s;
|
|
if (has_second_ref(mbmi)) {
|
|
++cpi->global_motion_used[mbmi->ref_frame[1]][0];
|
|
cpi->global_motion_used[mbmi->ref_frame[1]][1] += num_4x4s;
|
|
}
|
|
}
|
|
}
|
|
#endif // CONFIG_GLOBAL_MOTION
|
|
|
|
static void update_state(const AV1_COMP *const cpi, ThreadData *td,
|
|
PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col,
|
|
BLOCK_SIZE bsize, RUN_TYPE dry_run) {
|
|
int i, x_idx, y;
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
RD_COUNTS *const rdc = &td->rd_counts;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
struct macroblock_plane *const p = x->plane;
|
|
struct macroblockd_plane *const pd = xd->plane;
|
|
MODE_INFO *mi = &ctx->mic;
|
|
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
|
|
MODE_INFO *mi_addr = xd->mi[0];
|
|
const struct segmentation *const seg = &cm->seg;
|
|
const int bw = mi_size_wide[mi->mbmi.sb_type];
|
|
const int bh = mi_size_high[mi->mbmi.sb_type];
|
|
const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col);
|
|
const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row);
|
|
MV_REF *const frame_mvs = cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col;
|
|
int w, h;
|
|
|
|
const int mis = cm->mi_stride;
|
|
const int mi_width = mi_size_wide[bsize];
|
|
const int mi_height = mi_size_high[bsize];
|
|
const int unify_bsize = CONFIG_CB4X4;
|
|
|
|
#if CONFIG_REF_MV
|
|
int8_t rf_type;
|
|
#endif
|
|
|
|
#if !CONFIG_SUPERTX
|
|
assert(mi->mbmi.sb_type == bsize);
|
|
#endif
|
|
|
|
*mi_addr = *mi;
|
|
*x->mbmi_ext = ctx->mbmi_ext;
|
|
|
|
#if CONFIG_DUAL_FILTER
|
|
reset_intmv_filter_type(cm, xd, mbmi);
|
|
#endif
|
|
|
|
#if CONFIG_REF_MV
|
|
rf_type = av1_ref_frame_type(mbmi->ref_frame);
|
|
if (x->mbmi_ext->ref_mv_count[rf_type] > 1 &&
|
|
(mbmi->sb_type >= BLOCK_8X8 || unify_bsize) && mbmi->mode == NEWMV) {
|
|
for (i = 0; i < 1 + has_second_ref(mbmi); ++i) {
|
|
int_mv this_mv =
|
|
(i == 0)
|
|
? x->mbmi_ext->ref_mv_stack[rf_type][mbmi->ref_mv_idx].this_mv
|
|
: x->mbmi_ext->ref_mv_stack[rf_type][mbmi->ref_mv_idx].comp_mv;
|
|
clamp_mv_ref(&this_mv.as_mv, xd->n8_w << MI_SIZE_LOG2,
|
|
xd->n8_h << MI_SIZE_LOG2, xd);
|
|
x->mbmi_ext->ref_mvs[mbmi->ref_frame[i]][0] = this_mv;
|
|
mbmi->pred_mv[i] = this_mv;
|
|
mi->mbmi.pred_mv[i] = this_mv;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// If segmentation in use
|
|
if (seg->enabled) {
|
|
// For in frame complexity AQ copy the segment id from the segment map.
|
|
if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
|
|
const uint8_t *const map =
|
|
seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
|
|
mi_addr->mbmi.segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
|
|
}
|
|
// Else for cyclic refresh mode update the segment map, set the segment id
|
|
// and then update the quantizer.
|
|
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
|
|
av1_cyclic_refresh_update_segment(cpi, &xd->mi[0]->mbmi, mi_row, mi_col,
|
|
bsize, ctx->rate, ctx->dist, x->skip);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < MAX_MB_PLANE; ++i) {
|
|
p[i].coeff = ctx->coeff[i];
|
|
p[i].qcoeff = ctx->qcoeff[i];
|
|
pd[i].dqcoeff = ctx->dqcoeff[i];
|
|
#if CONFIG_PVQ
|
|
pd[i].pvq_ref_coeff = ctx->pvq_ref_coeff[i];
|
|
#endif
|
|
p[i].eobs = ctx->eobs[i];
|
|
}
|
|
#if CONFIG_PALETTE
|
|
for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
|
|
#endif // CONFIG_PALETTE
|
|
|
|
// Restore the coding context of the MB to that that was in place
|
|
// when the mode was picked for it
|
|
for (y = 0; y < mi_height; y++)
|
|
for (x_idx = 0; x_idx < mi_width; x_idx++)
|
|
if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx &&
|
|
(xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
|
|
xd->mi[x_idx + y * mis] = mi_addr;
|
|
}
|
|
|
|
#if CONFIG_DELTA_Q
|
|
if (cpi->oxcf.aq_mode > NO_AQ && cpi->oxcf.aq_mode < DELTA_AQ)
|
|
av1_init_plane_quantizers(cpi, x, xd->mi[0]->mbmi.segment_id);
|
|
#else
|
|
if (cpi->oxcf.aq_mode)
|
|
av1_init_plane_quantizers(cpi, x, xd->mi[0]->mbmi.segment_id);
|
|
#endif
|
|
|
|
if (is_inter_block(mbmi) && mbmi->sb_type < BLOCK_8X8 && !unify_bsize) {
|
|
mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
|
|
mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
|
|
}
|
|
|
|
x->skip = ctx->skip;
|
|
|
|
#if CONFIG_VAR_TX
|
|
for (i = 0; i < 1; ++i)
|
|
memcpy(x->blk_skip[i], ctx->blk_skip[i],
|
|
sizeof(uint8_t) * ctx->num_4x4_blk);
|
|
#endif
|
|
|
|
if (dry_run) return;
|
|
|
|
#if CONFIG_INTERNAL_STATS
|
|
{
|
|
unsigned int *const mode_chosen_counts =
|
|
(unsigned int *)cpi->mode_chosen_counts; // Cast const away.
|
|
if (frame_is_intra_only(cm)) {
|
|
static const int kf_mode_index[] = {
|
|
THR_DC /*DC_PRED*/,
|
|
THR_V_PRED /*V_PRED*/,
|
|
THR_H_PRED /*H_PRED*/,
|
|
THR_D45_PRED /*D45_PRED*/,
|
|
THR_D135_PRED /*D135_PRED*/,
|
|
THR_D117_PRED /*D117_PRED*/,
|
|
THR_D153_PRED /*D153_PRED*/,
|
|
THR_D207_PRED /*D207_PRED*/,
|
|
THR_D63_PRED /*D63_PRED*/,
|
|
#if CONFIG_ALT_INTRA
|
|
THR_SMOOTH, /*SMOOTH_PRED*/
|
|
#endif // CONFIG_ALT_INTRA
|
|
THR_TM /*TM_PRED*/,
|
|
};
|
|
++mode_chosen_counts[kf_mode_index[mbmi->mode]];
|
|
} else {
|
|
// Note how often each mode chosen as best
|
|
++mode_chosen_counts[ctx->best_mode_index];
|
|
}
|
|
}
|
|
#endif
|
|
if (!frame_is_intra_only(cm)) {
|
|
if (is_inter_block(mbmi)) {
|
|
av1_update_mv_count(td);
|
|
#if CONFIG_GLOBAL_MOTION
|
|
if (bsize >= BLOCK_8X8) {
|
|
// TODO(sarahparker): global motion stats need to be handled per-tile
|
|
// to be compatible with tile-based threading.
|
|
update_global_motion_used(mbmi->mode, bsize, mbmi, (AV1_COMP *)cpi);
|
|
} else {
|
|
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
|
|
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
|
|
int idx, idy;
|
|
for (idy = 0; idy < 2; idy += num_4x4_h) {
|
|
for (idx = 0; idx < 2; idx += num_4x4_w) {
|
|
const int j = idy * 2 + idx;
|
|
update_global_motion_used(mi->bmi[j].as_mode, bsize, mbmi,
|
|
(AV1_COMP *)cpi);
|
|
}
|
|
}
|
|
}
|
|
#endif // CONFIG_GLOBAL_MOTION
|
|
if (cm->interp_filter == SWITCHABLE
|
|
#if CONFIG_DUAL_FILTER
|
|
&& av1_is_interp_needed(xd)
|
|
#endif
|
|
#if CONFIG_WARPED_MOTION
|
|
&& mbmi->motion_mode != WARPED_CAUSAL
|
|
#endif // CONFIG_WARPED_MOTION
|
|
) {
|
|
#if CONFIG_DUAL_FILTER
|
|
update_filter_type_count(td->counts, xd, mbmi);
|
|
#else
|
|
const int switchable_ctx = av1_get_pred_context_switchable_interp(xd);
|
|
++td->counts->switchable_interp[switchable_ctx][mbmi->interp_filter];
|
|
#endif
|
|
}
|
|
}
|
|
|
|
rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
|
|
rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
|
|
rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
|
|
}
|
|
|
|
for (h = 0; h < y_mis; ++h) {
|
|
MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols;
|
|
for (w = 0; w < x_mis; ++w) {
|
|
MV_REF *const mv = frame_mv + w;
|
|
mv->ref_frame[0] = mi->mbmi.ref_frame[0];
|
|
mv->ref_frame[1] = mi->mbmi.ref_frame[1];
|
|
mv->mv[0].as_int = mi->mbmi.mv[0].as_int;
|
|
mv->mv[1].as_int = mi->mbmi.mv[1].as_int;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if CONFIG_SUPERTX
|
|
static void update_state_supertx(const AV1_COMP *const cpi, ThreadData *td,
|
|
PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col,
|
|
BLOCK_SIZE bsize, RUN_TYPE dry_run) {
|
|
int y, x_idx;
|
|
#if CONFIG_VAR_TX || CONFIG_REF_MV
|
|
int i;
|
|
#endif
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
RD_COUNTS *const rdc = &td->rd_counts;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *mi = &ctx->mic;
|
|
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
|
|
MODE_INFO *mi_addr = xd->mi[0];
|
|
const struct segmentation *const seg = &cm->seg;
|
|
const int mis = cm->mi_stride;
|
|
const int mi_width = mi_size_wide[bsize];
|
|
const int mi_height = mi_size_high[bsize];
|
|
const int x_mis = AOMMIN(mi_width, cm->mi_cols - mi_col);
|
|
const int y_mis = AOMMIN(mi_height, cm->mi_rows - mi_row);
|
|
MV_REF *const frame_mvs = cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col;
|
|
int w, h;
|
|
|
|
#if CONFIG_REF_MV
|
|
int8_t rf_type;
|
|
#endif
|
|
|
|
*mi_addr = *mi;
|
|
*x->mbmi_ext = ctx->mbmi_ext;
|
|
assert(is_inter_block(mbmi));
|
|
assert(mbmi->tx_size == ctx->mic.mbmi.tx_size);
|
|
|
|
#if CONFIG_DUAL_FILTER
|
|
reset_intmv_filter_type(cm, xd, mbmi);
|
|
#endif
|
|
|
|
#if CONFIG_REF_MV
|
|
rf_type = av1_ref_frame_type(mbmi->ref_frame);
|
|
if (x->mbmi_ext->ref_mv_count[rf_type] > 1 &&
|
|
#if !CONFIG_CB4X4
|
|
mbmi->sb_type >= BLOCK_8X8 &&
|
|
#endif // !CONFIG_CB4X4
|
|
mbmi->mode == NEWMV) {
|
|
for (i = 0; i < 1 + has_second_ref(mbmi); ++i) {
|
|
int_mv this_mv =
|
|
(i == 0)
|
|
? x->mbmi_ext->ref_mv_stack[rf_type][mbmi->ref_mv_idx].this_mv
|
|
: x->mbmi_ext->ref_mv_stack[rf_type][mbmi->ref_mv_idx].comp_mv;
|
|
clamp_mv_ref(&this_mv.as_mv, xd->n8_w << MI_SIZE_LOG2,
|
|
xd->n8_h << MI_SIZE_LOG2, xd);
|
|
lower_mv_precision(&this_mv.as_mv, cm->allow_high_precision_mv);
|
|
x->mbmi_ext->ref_mvs[mbmi->ref_frame[i]][0] = this_mv;
|
|
mbmi->pred_mv[i] = this_mv;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// If segmentation in use
|
|
if (seg->enabled) {
|
|
if (cpi->vaq_refresh) {
|
|
const int energy =
|
|
bsize <= BLOCK_16X16 ? x->mb_energy : av1_block_energy(cpi, x, bsize);
|
|
mi_addr->mbmi.segment_id = av1_vaq_segment_id(energy);
|
|
} else if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
|
|
// For cyclic refresh mode, now update the segment map
|
|
// and set the segment id.
|
|
av1_cyclic_refresh_update_segment(cpi, &xd->mi[0]->mbmi, mi_row, mi_col,
|
|
bsize, ctx->rate, ctx->dist, 1);
|
|
} else {
|
|
// Otherwise just set the segment id based on the current segment map
|
|
const uint8_t *const map =
|
|
seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
|
|
mi_addr->mbmi.segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
|
|
}
|
|
mi_addr->mbmi.segment_id_supertx = MAX_SEGMENTS;
|
|
}
|
|
|
|
// Restore the coding context of the MB to that that was in place
|
|
// when the mode was picked for it
|
|
for (y = 0; y < mi_height; y++)
|
|
for (x_idx = 0; x_idx < mi_width; x_idx++)
|
|
if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx &&
|
|
(xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
|
|
xd->mi[x_idx + y * mis] = mi_addr;
|
|
}
|
|
|
|
#if !CONFIG_CB4X4
|
|
if (is_inter_block(mbmi) && mbmi->sb_type < BLOCK_8X8) {
|
|
mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
|
|
mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
|
|
}
|
|
#endif
|
|
|
|
x->skip = ctx->skip;
|
|
|
|
#if CONFIG_VAR_TX
|
|
for (i = 0; i < 1; ++i)
|
|
memcpy(x->blk_skip[i], ctx->blk_skip[i],
|
|
sizeof(uint8_t) * ctx->num_4x4_blk);
|
|
|
|
if (!is_inter_block(mbmi) || mbmi->skip)
|
|
mbmi->min_tx_size = get_min_tx_size(mbmi->tx_size);
|
|
#endif // CONFIG_VAR_TX
|
|
|
|
#if CONFIG_VAR_TX
|
|
{
|
|
const TX_SIZE mtx = mbmi->tx_size;
|
|
const int num_4x4_blocks_wide = tx_size_wide_unit[mtx] >> 1;
|
|
const int num_4x4_blocks_high = tx_size_high_unit[mtx] >> 1;
|
|
int idy, idx;
|
|
mbmi->inter_tx_size[0][0] = mtx;
|
|
for (idy = 0; idy < num_4x4_blocks_high; ++idy)
|
|
for (idx = 0; idx < num_4x4_blocks_wide; ++idx)
|
|
mbmi->inter_tx_size[idy][idx] = mtx;
|
|
}
|
|
#endif // CONFIG_VAR_TX
|
|
// Turn motion variation off for supertx
|
|
mbmi->motion_mode = SIMPLE_TRANSLATION;
|
|
|
|
if (dry_run) return;
|
|
|
|
if (!frame_is_intra_only(cm)) {
|
|
av1_update_mv_count(td);
|
|
|
|
#if CONFIG_GLOBAL_MOTION
|
|
if (is_inter_block(mbmi)) {
|
|
if (bsize >= BLOCK_8X8) {
|
|
// TODO(sarahparker): global motion stats need to be handled per-tile
|
|
// to be compatible with tile-based threading.
|
|
update_global_motion_used(mbmi->mode, bsize, mbmi, (AV1_COMP *)cpi);
|
|
} else {
|
|
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
|
|
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
|
|
int idx, idy;
|
|
for (idy = 0; idy < 2; idy += num_4x4_h) {
|
|
for (idx = 0; idx < 2; idx += num_4x4_w) {
|
|
const int j = idy * 2 + idx;
|
|
update_global_motion_used(mi->bmi[j].as_mode, bsize, mbmi,
|
|
(AV1_COMP *)cpi);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif // CONFIG_GLOBAL_MOTION
|
|
|
|
if (cm->interp_filter == SWITCHABLE
|
|
#if CONFIG_DUAL_FILTER
|
|
&& av1_is_interp_needed(xd)
|
|
#endif
|
|
) {
|
|
#if CONFIG_DUAL_FILTER
|
|
update_filter_type_count(td->counts, xd, mbmi);
|
|
#else
|
|
const int pred_ctx = av1_get_pred_context_switchable_interp(xd);
|
|
++td->counts->switchable_interp[pred_ctx][mbmi->interp_filter];
|
|
#endif
|
|
}
|
|
|
|
rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
|
|
rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
|
|
rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
|
|
}
|
|
|
|
for (h = 0; h < y_mis; ++h) {
|
|
MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols;
|
|
for (w = 0; w < x_mis; ++w) {
|
|
MV_REF *const mv = frame_mv + w;
|
|
mv->ref_frame[0] = mi->mbmi.ref_frame[0];
|
|
mv->ref_frame[1] = mi->mbmi.ref_frame[1];
|
|
mv->mv[0].as_int = mi->mbmi.mv[0].as_int;
|
|
mv->mv[1].as_int = mi->mbmi.mv[1].as_int;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void update_state_sb_supertx(const AV1_COMP *const cpi, ThreadData *td,
|
|
const TileInfo *const tile, int mi_row,
|
|
int mi_col, BLOCK_SIZE bsize,
|
|
RUN_TYPE dry_run, PC_TREE *pc_tree) {
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
struct macroblock_plane *const p = x->plane;
|
|
struct macroblockd_plane *const pd = xd->plane;
|
|
int hbs = mi_size_wide[bsize] / 2;
|
|
#if CONFIG_CB4X4
|
|
const int unify_bsize = 1;
|
|
#else
|
|
const int unify_bsize = 0;
|
|
#endif
|
|
PARTITION_TYPE partition = pc_tree->partitioning;
|
|
BLOCK_SIZE subsize = get_subsize(bsize, partition);
|
|
int i;
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
|
|
#endif
|
|
PICK_MODE_CONTEXT *pmc = NULL;
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
|
|
|
|
if (bsize == BLOCK_16X16 && cpi->vaq_refresh)
|
|
x->mb_energy = av1_block_energy(cpi, x, bsize);
|
|
|
|
switch (partition) {
|
|
case PARTITION_NONE:
|
|
set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize);
|
|
update_state_supertx(cpi, td, &pc_tree->none, mi_row, mi_col, subsize,
|
|
dry_run);
|
|
break;
|
|
case PARTITION_VERT:
|
|
set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize);
|
|
update_state_supertx(cpi, td, &pc_tree->vertical[0], mi_row, mi_col,
|
|
subsize, dry_run);
|
|
if (mi_col + hbs < cm->mi_cols && (bsize > BLOCK_8X8 || unify_bsize)) {
|
|
set_offsets_supertx(cpi, td, tile, mi_row, mi_col + hbs, subsize);
|
|
update_state_supertx(cpi, td, &pc_tree->vertical[1], mi_row,
|
|
mi_col + hbs, subsize, dry_run);
|
|
}
|
|
pmc = &pc_tree->vertical_supertx;
|
|
break;
|
|
case PARTITION_HORZ:
|
|
set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize);
|
|
update_state_supertx(cpi, td, &pc_tree->horizontal[0], mi_row, mi_col,
|
|
subsize, dry_run);
|
|
if (mi_row + hbs < cm->mi_rows && (bsize > BLOCK_8X8 || unify_bsize)) {
|
|
set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col, subsize);
|
|
update_state_supertx(cpi, td, &pc_tree->horizontal[1], mi_row + hbs,
|
|
mi_col, subsize, dry_run);
|
|
}
|
|
pmc = &pc_tree->horizontal_supertx;
|
|
break;
|
|
case PARTITION_SPLIT:
|
|
if (bsize == BLOCK_8X8 && !unify_bsize) {
|
|
set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize);
|
|
update_state_supertx(cpi, td, pc_tree->leaf_split[0], mi_row, mi_col,
|
|
subsize, dry_run);
|
|
} else {
|
|
set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize);
|
|
update_state_sb_supertx(cpi, td, tile, mi_row, mi_col, subsize, dry_run,
|
|
pc_tree->split[0]);
|
|
set_offsets_supertx(cpi, td, tile, mi_row, mi_col + hbs, subsize);
|
|
update_state_sb_supertx(cpi, td, tile, mi_row, mi_col + hbs, subsize,
|
|
dry_run, pc_tree->split[1]);
|
|
set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col, subsize);
|
|
update_state_sb_supertx(cpi, td, tile, mi_row + hbs, mi_col, subsize,
|
|
dry_run, pc_tree->split[2]);
|
|
set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col + hbs, subsize);
|
|
update_state_sb_supertx(cpi, td, tile, mi_row + hbs, mi_col + hbs,
|
|
subsize, dry_run, pc_tree->split[3]);
|
|
}
|
|
pmc = &pc_tree->split_supertx;
|
|
break;
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
case PARTITION_HORZ_A:
|
|
set_offsets_supertx(cpi, td, tile, mi_row, mi_col, bsize2);
|
|
update_state_supertx(cpi, td, &pc_tree->horizontala[0], mi_row, mi_col,
|
|
bsize2, dry_run);
|
|
set_offsets_supertx(cpi, td, tile, mi_row, mi_col + hbs, bsize2);
|
|
update_state_supertx(cpi, td, &pc_tree->horizontala[1], mi_row,
|
|
mi_col + hbs, bsize2, dry_run);
|
|
set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col, subsize);
|
|
update_state_supertx(cpi, td, &pc_tree->horizontala[2], mi_row + hbs,
|
|
mi_col, subsize, dry_run);
|
|
pmc = &pc_tree->horizontala_supertx;
|
|
break;
|
|
case PARTITION_HORZ_B:
|
|
set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize);
|
|
update_state_supertx(cpi, td, &pc_tree->horizontalb[0], mi_row, mi_col,
|
|
subsize, dry_run);
|
|
set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col, bsize2);
|
|
update_state_supertx(cpi, td, &pc_tree->horizontalb[1], mi_row + hbs,
|
|
mi_col, bsize2, dry_run);
|
|
set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col + hbs, bsize2);
|
|
update_state_supertx(cpi, td, &pc_tree->horizontalb[2], mi_row + hbs,
|
|
mi_col + hbs, bsize2, dry_run);
|
|
pmc = &pc_tree->horizontalb_supertx;
|
|
break;
|
|
case PARTITION_VERT_A:
|
|
set_offsets_supertx(cpi, td, tile, mi_row, mi_col, bsize2);
|
|
update_state_supertx(cpi, td, &pc_tree->verticala[0], mi_row, mi_col,
|
|
bsize2, dry_run);
|
|
set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col, bsize2);
|
|
update_state_supertx(cpi, td, &pc_tree->verticala[1], mi_row + hbs,
|
|
mi_col, bsize2, dry_run);
|
|
set_offsets_supertx(cpi, td, tile, mi_row, mi_col + hbs, subsize);
|
|
update_state_supertx(cpi, td, &pc_tree->verticala[2], mi_row,
|
|
mi_col + hbs, subsize, dry_run);
|
|
pmc = &pc_tree->verticala_supertx;
|
|
break;
|
|
case PARTITION_VERT_B:
|
|
set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize);
|
|
update_state_supertx(cpi, td, &pc_tree->verticalb[0], mi_row, mi_col,
|
|
subsize, dry_run);
|
|
set_offsets_supertx(cpi, td, tile, mi_row, mi_col + hbs, bsize2);
|
|
update_state_supertx(cpi, td, &pc_tree->verticalb[1], mi_row,
|
|
mi_col + hbs, bsize2, dry_run);
|
|
set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col + hbs, bsize2);
|
|
update_state_supertx(cpi, td, &pc_tree->verticalb[2], mi_row + hbs,
|
|
mi_col + hbs, bsize2, dry_run);
|
|
pmc = &pc_tree->verticalb_supertx;
|
|
break;
|
|
#endif // CONFIG_EXT_PARTITION_TYPES
|
|
default: assert(0);
|
|
}
|
|
|
|
for (i = 0; i < MAX_MB_PLANE; ++i) {
|
|
if (pmc != NULL) {
|
|
p[i].coeff = pmc->coeff[i];
|
|
p[i].qcoeff = pmc->qcoeff[i];
|
|
pd[i].dqcoeff = pmc->dqcoeff[i];
|
|
p[i].eobs = pmc->eobs[i];
|
|
} else {
|
|
// These should never be used
|
|
p[i].coeff = NULL;
|
|
p[i].qcoeff = NULL;
|
|
pd[i].dqcoeff = NULL;
|
|
p[i].eobs = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void update_supertx_param(ThreadData *td, PICK_MODE_CONTEXT *ctx,
|
|
int best_tx, TX_SIZE supertx_size) {
|
|
MACROBLOCK *const x = &td->mb;
|
|
#if CONFIG_VAR_TX
|
|
int i;
|
|
|
|
for (i = 0; i < 1; ++i)
|
|
memcpy(ctx->blk_skip[i], x->blk_skip[i],
|
|
sizeof(uint8_t) * ctx->num_4x4_blk);
|
|
ctx->mic.mbmi.min_tx_size = get_min_tx_size(supertx_size);
|
|
#endif // CONFIG_VAR_TX
|
|
ctx->mic.mbmi.tx_size = supertx_size;
|
|
ctx->skip = x->skip;
|
|
ctx->mic.mbmi.tx_type = best_tx;
|
|
}
|
|
|
|
static void update_supertx_param_sb(const AV1_COMP *const cpi, ThreadData *td,
|
|
int mi_row, int mi_col, BLOCK_SIZE bsize,
|
|
int best_tx, TX_SIZE supertx_size,
|
|
PC_TREE *pc_tree) {
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
const int hbs = mi_size_wide[bsize] / 2;
|
|
PARTITION_TYPE partition = pc_tree->partitioning;
|
|
BLOCK_SIZE subsize = get_subsize(bsize, partition);
|
|
#if CONFIG_CB4X4
|
|
const int unify_bsize = 1;
|
|
#else
|
|
const int unify_bsize = 0;
|
|
#endif
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
int i;
|
|
#endif
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
|
|
|
|
switch (partition) {
|
|
case PARTITION_NONE:
|
|
update_supertx_param(td, &pc_tree->none, best_tx, supertx_size);
|
|
break;
|
|
case PARTITION_VERT:
|
|
update_supertx_param(td, &pc_tree->vertical[0], best_tx, supertx_size);
|
|
if (mi_col + hbs < cm->mi_cols && (bsize > BLOCK_8X8 || unify_bsize))
|
|
update_supertx_param(td, &pc_tree->vertical[1], best_tx, supertx_size);
|
|
break;
|
|
case PARTITION_HORZ:
|
|
update_supertx_param(td, &pc_tree->horizontal[0], best_tx, supertx_size);
|
|
if (mi_row + hbs < cm->mi_rows && (bsize > BLOCK_8X8 || unify_bsize))
|
|
update_supertx_param(td, &pc_tree->horizontal[1], best_tx,
|
|
supertx_size);
|
|
break;
|
|
case PARTITION_SPLIT:
|
|
if (bsize == BLOCK_8X8 && !unify_bsize) {
|
|
update_supertx_param(td, pc_tree->leaf_split[0], best_tx, supertx_size);
|
|
} else {
|
|
update_supertx_param_sb(cpi, td, mi_row, mi_col, subsize, best_tx,
|
|
supertx_size, pc_tree->split[0]);
|
|
update_supertx_param_sb(cpi, td, mi_row, mi_col + hbs, subsize, best_tx,
|
|
supertx_size, pc_tree->split[1]);
|
|
update_supertx_param_sb(cpi, td, mi_row + hbs, mi_col, subsize, best_tx,
|
|
supertx_size, pc_tree->split[2]);
|
|
update_supertx_param_sb(cpi, td, mi_row + hbs, mi_col + hbs, subsize,
|
|
best_tx, supertx_size, pc_tree->split[3]);
|
|
}
|
|
break;
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
case PARTITION_HORZ_A:
|
|
for (i = 0; i < 3; i++)
|
|
update_supertx_param(td, &pc_tree->horizontala[i], best_tx,
|
|
supertx_size);
|
|
break;
|
|
case PARTITION_HORZ_B:
|
|
for (i = 0; i < 3; i++)
|
|
update_supertx_param(td, &pc_tree->horizontalb[i], best_tx,
|
|
supertx_size);
|
|
break;
|
|
case PARTITION_VERT_A:
|
|
for (i = 0; i < 3; i++)
|
|
update_supertx_param(td, &pc_tree->verticala[i], best_tx, supertx_size);
|
|
break;
|
|
case PARTITION_VERT_B:
|
|
for (i = 0; i < 3; i++)
|
|
update_supertx_param(td, &pc_tree->verticalb[i], best_tx, supertx_size);
|
|
break;
|
|
#endif // CONFIG_EXT_PARTITION_TYPES
|
|
default: assert(0);
|
|
}
|
|
}
|
|
#endif // CONFIG_SUPERTX
|
|
|
|
void av1_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src,
|
|
int mi_row, int mi_col) {
|
|
uint8_t *const buffers[3] = { src->y_buffer, src->u_buffer, src->v_buffer };
|
|
const int widths[3] = { src->y_crop_width, src->uv_crop_width,
|
|
src->uv_crop_width };
|
|
const int heights[3] = { src->y_crop_height, src->uv_crop_height,
|
|
src->uv_crop_height };
|
|
const int strides[3] = { src->y_stride, src->uv_stride, src->uv_stride };
|
|
int i;
|
|
|
|
// Set current frame pointer.
|
|
x->e_mbd.cur_buf = src;
|
|
|
|
for (i = 0; i < MAX_MB_PLANE; i++)
|
|
setup_pred_plane(&x->plane[i].src, buffers[i], widths[i], heights[i],
|
|
strides[i], mi_row, mi_col, NULL,
|
|
x->e_mbd.plane[i].subsampling_x,
|
|
x->e_mbd.plane[i].subsampling_y);
|
|
}
|
|
|
|
static int set_segment_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x,
|
|
int8_t segment_id) {
|
|
int segment_qindex;
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
av1_init_plane_quantizers(cpi, x, segment_id);
|
|
aom_clear_system_state();
|
|
segment_qindex = av1_get_qindex(&cm->seg, segment_id, cm->base_qindex);
|
|
return av1_compute_rd_mult(cpi, segment_qindex + cm->y_dc_delta_q);
|
|
}
|
|
|
|
static void rd_pick_sb_modes(const AV1_COMP *const cpi, TileDataEnc *tile_data,
|
|
MACROBLOCK *const x, int mi_row, int mi_col,
|
|
RD_COST *rd_cost,
|
|
#if CONFIG_SUPERTX
|
|
int *totalrate_nocoef,
|
|
#endif
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
PARTITION_TYPE partition,
|
|
#endif
|
|
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
|
|
int64_t best_rd) {
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
TileInfo *const tile_info = &tile_data->tile_info;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *mbmi;
|
|
struct macroblock_plane *const p = x->plane;
|
|
struct macroblockd_plane *const pd = xd->plane;
|
|
const AQ_MODE aq_mode = cpi->oxcf.aq_mode;
|
|
int i, orig_rdmult;
|
|
const int unify_bsize = CONFIG_CB4X4;
|
|
|
|
aom_clear_system_state();
|
|
|
|
#if CONFIG_PVQ
|
|
x->pvq_speed = 1;
|
|
x->pvq_coded = 0;
|
|
#endif
|
|
|
|
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
|
|
mbmi = &xd->mi[0]->mbmi;
|
|
mbmi->sb_type = bsize;
|
|
#if CONFIG_RD_DEBUG
|
|
mbmi->mi_row = mi_row;
|
|
mbmi->mi_col = mi_col;
|
|
#endif
|
|
#if CONFIG_SUPERTX
|
|
// We set tx_size here as skip blocks would otherwise not set it.
|
|
// tx_size needs to be set at this point as supertx_enable in
|
|
// write_modes_sb is computed based on this, and if the garbage in memory
|
|
// just happens to be the supertx_size, then the packer will code this
|
|
// block as a supertx block, even if rdopt did not pick it as such.
|
|
mbmi->tx_size = max_txsize_lookup[bsize];
|
|
#endif
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
mbmi->partition = partition;
|
|
#endif
|
|
|
|
for (i = 0; i < MAX_MB_PLANE; ++i) {
|
|
p[i].coeff = ctx->coeff[i];
|
|
p[i].qcoeff = ctx->qcoeff[i];
|
|
pd[i].dqcoeff = ctx->dqcoeff[i];
|
|
#if CONFIG_PVQ
|
|
pd[i].pvq_ref_coeff = ctx->pvq_ref_coeff[i];
|
|
#endif
|
|
p[i].eobs = ctx->eobs[i];
|
|
}
|
|
|
|
#if CONFIG_PALETTE
|
|
for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
|
|
#endif // CONFIG_PALETTE
|
|
|
|
ctx->skippable = 0;
|
|
ctx->pred_pixel_ready = 0;
|
|
|
|
// Set to zero to make sure we do not use the previous encoded frame stats
|
|
mbmi->skip = 0;
|
|
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
x->source_variance = av1_high_get_sby_perpixel_variance(
|
|
cpi, &x->plane[0].src, bsize, xd->bd);
|
|
} else {
|
|
x->source_variance =
|
|
av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
|
|
}
|
|
#else
|
|
x->source_variance =
|
|
av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
|
|
// Save rdmult before it might be changed, so it can be restored later.
|
|
orig_rdmult = x->rdmult;
|
|
|
|
if (aq_mode == VARIANCE_AQ) {
|
|
if (cpi->vaq_refresh) {
|
|
const int energy =
|
|
bsize <= BLOCK_16X16 ? x->mb_energy : av1_block_energy(cpi, x, bsize);
|
|
mbmi->segment_id = av1_vaq_segment_id(energy);
|
|
// Re-initialise quantiser
|
|
av1_init_plane_quantizers(cpi, x, mbmi->segment_id);
|
|
}
|
|
x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id);
|
|
} else if (aq_mode == COMPLEXITY_AQ) {
|
|
x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id);
|
|
} else if (aq_mode == CYCLIC_REFRESH_AQ) {
|
|
// If segment is boosted, use rdmult for that segment.
|
|
if (cyclic_refresh_segment_id_boosted(mbmi->segment_id))
|
|
x->rdmult = av1_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
|
|
}
|
|
|
|
// Find best coding mode & reconstruct the MB so it is available
|
|
// as a predictor for MBs that follow in the SB
|
|
if (frame_is_intra_only(cm)) {
|
|
av1_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd);
|
|
#if CONFIG_SUPERTX
|
|
*totalrate_nocoef = 0;
|
|
#endif // CONFIG_SUPERTX
|
|
} else {
|
|
if (bsize >= BLOCK_8X8 || unify_bsize) {
|
|
if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
|
|
av1_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, rd_cost, bsize,
|
|
ctx, best_rd);
|
|
#if CONFIG_SUPERTX
|
|
*totalrate_nocoef = rd_cost->rate;
|
|
#endif // CONFIG_SUPERTX
|
|
} else {
|
|
av1_rd_pick_inter_mode_sb(cpi, tile_data, x, mi_row, mi_col, rd_cost,
|
|
#if CONFIG_SUPERTX
|
|
totalrate_nocoef,
|
|
#endif // CONFIG_SUPERTX
|
|
bsize, ctx, best_rd);
|
|
#if CONFIG_SUPERTX
|
|
assert(*totalrate_nocoef >= 0);
|
|
#endif // CONFIG_SUPERTX
|
|
}
|
|
} else {
|
|
if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
|
|
// The decoder rejects sub8x8 partitions when SEG_LVL_SKIP is set.
|
|
rd_cost->rate = INT_MAX;
|
|
} else {
|
|
av1_rd_pick_inter_mode_sub8x8(cpi, tile_data, x, mi_row, mi_col,
|
|
rd_cost,
|
|
#if CONFIG_SUPERTX
|
|
totalrate_nocoef,
|
|
#endif // CONFIG_SUPERTX
|
|
bsize, ctx, best_rd);
|
|
#if CONFIG_SUPERTX
|
|
assert(*totalrate_nocoef >= 0);
|
|
#endif // CONFIG_SUPERTX
|
|
}
|
|
}
|
|
}
|
|
|
|
// Examine the resulting rate and for AQ mode 2 make a segment choice.
|
|
if ((rd_cost->rate != INT_MAX) && (aq_mode == COMPLEXITY_AQ) &&
|
|
(bsize >= BLOCK_16X16) &&
|
|
(cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame ||
|
|
(cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref))) {
|
|
av1_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate);
|
|
}
|
|
|
|
x->rdmult = orig_rdmult;
|
|
|
|
// TODO(jingning) The rate-distortion optimization flow needs to be
|
|
// refactored to provide proper exit/return handle.
|
|
if (rd_cost->rate == INT_MAX) rd_cost->rdcost = INT64_MAX;
|
|
|
|
ctx->rate = rd_cost->rate;
|
|
ctx->dist = rd_cost->dist;
|
|
}
|
|
|
|
#if CONFIG_REF_MV
|
|
static void update_inter_mode_stats(FRAME_COUNTS *counts, PREDICTION_MODE mode,
|
|
#if CONFIG_EXT_INTER
|
|
int is_compound,
|
|
#endif // CONFIG_EXT_INTER
|
|
int16_t mode_context) {
|
|
int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;
|
|
#if CONFIG_EXT_INTER
|
|
if (mode == NEWMV || mode == NEWFROMNEARMV) {
|
|
if (!is_compound) ++counts->new2mv_mode[mode == NEWFROMNEARMV];
|
|
#else
|
|
if (mode == NEWMV) {
|
|
#endif // CONFIG_EXT_INTER
|
|
++counts->newmv_mode[mode_ctx][0];
|
|
return;
|
|
} else {
|
|
++counts->newmv_mode[mode_ctx][1];
|
|
|
|
if (mode_context & (1 << ALL_ZERO_FLAG_OFFSET)) {
|
|
return;
|
|
}
|
|
|
|
mode_ctx = (mode_context >> ZEROMV_OFFSET) & ZEROMV_CTX_MASK;
|
|
if (mode == ZEROMV) {
|
|
++counts->zeromv_mode[mode_ctx][0];
|
|
return;
|
|
} else {
|
|
++counts->zeromv_mode[mode_ctx][1];
|
|
mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
|
|
|
|
if (mode_context & (1 << SKIP_NEARESTMV_OFFSET)) mode_ctx = 6;
|
|
if (mode_context & (1 << SKIP_NEARMV_OFFSET)) mode_ctx = 7;
|
|
if (mode_context & (1 << SKIP_NEARESTMV_SUB8X8_OFFSET)) mode_ctx = 8;
|
|
|
|
++counts->refmv_mode[mode_ctx][mode != NEARESTMV];
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void update_stats(const AV1_COMMON *const cm, ThreadData *td, int mi_row,
|
|
int mi_col
|
|
#if CONFIG_SUPERTX
|
|
,
|
|
int supertx_enabled
|
|
#endif
|
|
) {
|
|
#if CONFIG_DELTA_Q
|
|
MACROBLOCK *x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
#else
|
|
const MACROBLOCK *x = &td->mb;
|
|
const MACROBLOCKD *const xd = &x->e_mbd;
|
|
#endif
|
|
const MODE_INFO *const mi = xd->mi[0];
|
|
const MB_MODE_INFO *const mbmi = &mi->mbmi;
|
|
const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
|
|
const BLOCK_SIZE bsize = mbmi->sb_type;
|
|
const int unify_bsize = CONFIG_CB4X4;
|
|
|
|
#if CONFIG_DELTA_Q
|
|
// delta quant applies to both intra and inter
|
|
const int super_block_upper_left = ((mi_row & 7) == 0) && ((mi_col & 7) == 0);
|
|
|
|
if (cm->delta_q_present_flag && (bsize != BLOCK_64X64 || !mbmi->skip) &&
|
|
super_block_upper_left) {
|
|
const int dq = (mbmi->current_q_index - xd->prev_qindex) / cm->delta_q_res;
|
|
const int absdq = abs(dq);
|
|
int i;
|
|
for (i = 0; i < absdq; ++i) {
|
|
td->counts->delta_q[i][1]++;
|
|
}
|
|
if (absdq < DELTA_Q_SMALL) td->counts->delta_q[absdq][0]++;
|
|
xd->prev_qindex = mbmi->current_q_index;
|
|
}
|
|
#else
|
|
(void)mi_row;
|
|
(void)mi_col;
|
|
#endif
|
|
if (!frame_is_intra_only(cm)) {
|
|
FRAME_COUNTS *const counts = td->counts;
|
|
const int inter_block = is_inter_block(mbmi);
|
|
const int seg_ref_active =
|
|
segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME);
|
|
if (!seg_ref_active) {
|
|
#if CONFIG_SUPERTX
|
|
if (!supertx_enabled)
|
|
#endif
|
|
counts->intra_inter[av1_get_intra_inter_context(xd)][inter_block]++;
|
|
// If the segment reference feature is enabled we have only a single
|
|
// reference frame allowed for the segment so exclude it from
|
|
// the reference frame counts used to work out probabilities.
|
|
if (inter_block) {
|
|
const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0];
|
|
#if CONFIG_EXT_REFS
|
|
const MV_REFERENCE_FRAME ref1 = mbmi->ref_frame[1];
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
if (cm->reference_mode == REFERENCE_MODE_SELECT)
|
|
counts->comp_inter[av1_get_reference_mode_context(cm, xd)]
|
|
[has_second_ref(mbmi)]++;
|
|
|
|
if (has_second_ref(mbmi)) {
|
|
#if CONFIG_EXT_REFS
|
|
const int bit = (ref0 == GOLDEN_FRAME || ref0 == LAST3_FRAME);
|
|
|
|
counts->comp_ref[av1_get_pred_context_comp_ref_p(cm, xd)][0][bit]++;
|
|
if (!bit) {
|
|
counts->comp_ref[av1_get_pred_context_comp_ref_p1(cm, xd)][1]
|
|
[ref0 == LAST_FRAME]++;
|
|
} else {
|
|
counts->comp_ref[av1_get_pred_context_comp_ref_p2(cm, xd)][2]
|
|
[ref0 == GOLDEN_FRAME]++;
|
|
}
|
|
|
|
counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p(cm, xd)][0]
|
|
[ref1 == ALTREF_FRAME]++;
|
|
#else
|
|
counts->comp_ref[av1_get_pred_context_comp_ref_p(cm, xd)][0]
|
|
[ref0 == GOLDEN_FRAME]++;
|
|
#endif // CONFIG_EXT_REFS
|
|
} else {
|
|
#if CONFIG_EXT_REFS
|
|
const int bit = (ref0 == ALTREF_FRAME || ref0 == BWDREF_FRAME);
|
|
|
|
counts->single_ref[av1_get_pred_context_single_ref_p1(xd)][0][bit]++;
|
|
if (bit) {
|
|
counts->single_ref[av1_get_pred_context_single_ref_p2(xd)][1]
|
|
[ref0 != BWDREF_FRAME]++;
|
|
} else {
|
|
const int bit1 = !(ref0 == LAST2_FRAME || ref0 == LAST_FRAME);
|
|
counts->single_ref[av1_get_pred_context_single_ref_p3(xd)][2]
|
|
[bit1]++;
|
|
if (!bit1) {
|
|
counts->single_ref[av1_get_pred_context_single_ref_p4(xd)][3]
|
|
[ref0 != LAST_FRAME]++;
|
|
} else {
|
|
counts->single_ref[av1_get_pred_context_single_ref_p5(xd)][4]
|
|
[ref0 != LAST3_FRAME]++;
|
|
}
|
|
}
|
|
#else
|
|
counts->single_ref[av1_get_pred_context_single_ref_p1(xd)][0]
|
|
[ref0 != LAST_FRAME]++;
|
|
if (ref0 != LAST_FRAME) {
|
|
counts->single_ref[av1_get_pred_context_single_ref_p2(xd)][1]
|
|
[ref0 != GOLDEN_FRAME]++;
|
|
}
|
|
#endif // CONFIG_EXT_REFS
|
|
}
|
|
|
|
#if CONFIG_EXT_INTER
|
|
if (cm->reference_mode != COMPOUND_REFERENCE &&
|
|
#if CONFIG_SUPERTX
|
|
!supertx_enabled &&
|
|
#endif
|
|
is_interintra_allowed(mbmi)) {
|
|
const int bsize_group = size_group_lookup[bsize];
|
|
if (mbmi->ref_frame[1] == INTRA_FRAME) {
|
|
counts->interintra[bsize_group][1]++;
|
|
counts->interintra_mode[bsize_group][mbmi->interintra_mode]++;
|
|
if (is_interintra_wedge_used(bsize))
|
|
counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++;
|
|
} else {
|
|
counts->interintra[bsize_group][0]++;
|
|
}
|
|
}
|
|
#endif // CONFIG_EXT_INTER
|
|
|
|
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
#if CONFIG_SUPERTX
|
|
if (!supertx_enabled)
|
|
#endif // CONFIG_SUPERTX
|
|
#if CONFIG_EXT_INTER
|
|
if (mbmi->ref_frame[1] != INTRA_FRAME)
|
|
#endif // CONFIG_EXT_INTER
|
|
#if CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION
|
|
{
|
|
if (motion_mode_allowed(mbmi) == WARPED_CAUSAL)
|
|
counts->motion_mode[mbmi->sb_type][mbmi->motion_mode]++;
|
|
else if (motion_mode_allowed(mbmi) == OBMC_CAUSAL)
|
|
counts->obmc[mbmi->sb_type][mbmi->motion_mode == OBMC_CAUSAL]++;
|
|
}
|
|
#else
|
|
if (motion_mode_allowed(mbmi) > SIMPLE_TRANSLATION)
|
|
counts->motion_mode[mbmi->sb_type][mbmi->motion_mode]++;
|
|
#endif // CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION
|
|
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
|
|
#if CONFIG_EXT_INTER
|
|
if (cm->reference_mode != SINGLE_REFERENCE &&
|
|
is_inter_compound_mode(mbmi->mode)
|
|
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
&& mbmi->motion_mode == SIMPLE_TRANSLATION
|
|
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
) {
|
|
counts->compound_interinter[bsize]
|
|
[mbmi->interinter_compound_data.type]++;
|
|
}
|
|
#endif // CONFIG_EXT_INTER
|
|
}
|
|
}
|
|
|
|
if (inter_block &&
|
|
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
|
|
int16_t mode_ctx;
|
|
#if !CONFIG_REF_MV
|
|
mode_ctx = mbmi_ext->mode_context[mbmi->ref_frame[0]];
|
|
#endif
|
|
if (bsize >= BLOCK_8X8 || unify_bsize) {
|
|
const PREDICTION_MODE mode = mbmi->mode;
|
|
#if CONFIG_REF_MV
|
|
#if CONFIG_EXT_INTER
|
|
if (has_second_ref(mbmi)) {
|
|
mode_ctx = mbmi_ext->compound_mode_context[mbmi->ref_frame[0]];
|
|
++counts->inter_compound_mode[mode_ctx][INTER_COMPOUND_OFFSET(mode)];
|
|
} else {
|
|
#endif // CONFIG_EXT_INTER
|
|
mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context,
|
|
mbmi->ref_frame, bsize, -1);
|
|
update_inter_mode_stats(counts, mode,
|
|
#if CONFIG_EXT_INTER
|
|
has_second_ref(mbmi),
|
|
#endif // CONFIG_EXT_INTER
|
|
mode_ctx);
|
|
|
|
if (mode == NEWMV) {
|
|
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
|
|
int idx;
|
|
|
|
for (idx = 0; idx < 2; ++idx) {
|
|
if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
|
|
uint8_t drl_ctx =
|
|
av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx);
|
|
++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx];
|
|
|
|
if (mbmi->ref_mv_idx == idx) break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (mode == NEARMV) {
|
|
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
|
|
int idx;
|
|
|
|
for (idx = 1; idx < 3; ++idx) {
|
|
if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
|
|
uint8_t drl_ctx =
|
|
av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx);
|
|
++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx - 1];
|
|
|
|
if (mbmi->ref_mv_idx == idx - 1) break;
|
|
}
|
|
}
|
|
}
|
|
#if CONFIG_EXT_INTER
|
|
}
|
|
#endif // CONFIG_EXT_INTER
|
|
#else
|
|
#if CONFIG_EXT_INTER
|
|
if (is_inter_compound_mode(mode))
|
|
++counts->inter_compound_mode[mode_ctx][INTER_COMPOUND_OFFSET(mode)];
|
|
else
|
|
#endif // CONFIG_EXT_INTER
|
|
++counts->inter_mode[mode_ctx][INTER_OFFSET(mode)];
|
|
#endif
|
|
} else {
|
|
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
|
|
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
|
|
int idx, idy;
|
|
for (idy = 0; idy < 2; idy += num_4x4_h) {
|
|
for (idx = 0; idx < 2; idx += num_4x4_w) {
|
|
const int j = idy * 2 + idx;
|
|
const PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
|
|
#if CONFIG_REF_MV
|
|
#if CONFIG_EXT_INTER
|
|
if (has_second_ref(mbmi)) {
|
|
mode_ctx = mbmi_ext->compound_mode_context[mbmi->ref_frame[0]];
|
|
++counts->inter_compound_mode[mode_ctx]
|
|
[INTER_COMPOUND_OFFSET(b_mode)];
|
|
} else {
|
|
#endif // CONFIG_EXT_INTER
|
|
mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context,
|
|
mbmi->ref_frame, bsize, j);
|
|
update_inter_mode_stats(counts, b_mode,
|
|
#if CONFIG_EXT_INTER
|
|
has_second_ref(mbmi),
|
|
#endif // CONFIG_EXT_INTER
|
|
mode_ctx);
|
|
#if CONFIG_EXT_INTER
|
|
}
|
|
#endif // CONFIG_EXT_INTER
|
|
#else
|
|
#if CONFIG_EXT_INTER
|
|
if (is_inter_compound_mode(b_mode))
|
|
++counts->inter_compound_mode[mode_ctx]
|
|
[INTER_COMPOUND_OFFSET(b_mode)];
|
|
else
|
|
#endif // CONFIG_EXT_INTER
|
|
++counts->inter_mode[mode_ctx][INTER_OFFSET(b_mode)];
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
typedef struct {
|
|
ENTROPY_CONTEXT a[2 * MAX_MIB_SIZE * MAX_MB_PLANE];
|
|
ENTROPY_CONTEXT l[2 * MAX_MIB_SIZE * MAX_MB_PLANE];
|
|
PARTITION_CONTEXT sa[MAX_MIB_SIZE];
|
|
PARTITION_CONTEXT sl[MAX_MIB_SIZE];
|
|
#if CONFIG_VAR_TX
|
|
TXFM_CONTEXT *p_ta;
|
|
TXFM_CONTEXT *p_tl;
|
|
TXFM_CONTEXT ta[MAX_MIB_SIZE];
|
|
TXFM_CONTEXT tl[MAX_MIB_SIZE];
|
|
#endif
|
|
} RD_SEARCH_MACROBLOCK_CONTEXT;
|
|
|
|
static void restore_context(MACROBLOCK *x,
|
|
const RD_SEARCH_MACROBLOCK_CONTEXT *ctx, int mi_row,
|
|
int mi_col,
|
|
#if CONFIG_PVQ
|
|
od_rollback_buffer *rdo_buf,
|
|
#endif
|
|
BLOCK_SIZE bsize) {
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
int p;
|
|
const int num_4x4_blocks_wide =
|
|
block_size_wide[bsize] >> tx_size_wide_log2[0];
|
|
const int num_4x4_blocks_high =
|
|
block_size_high[bsize] >> tx_size_high_log2[0];
|
|
int mi_width = mi_size_wide[bsize];
|
|
int mi_height = mi_size_high[bsize];
|
|
for (p = 0; p < MAX_MB_PLANE; p++) {
|
|
memcpy(xd->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x),
|
|
ctx->a + num_4x4_blocks_wide * p,
|
|
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
|
|
xd->plane[p].subsampling_x);
|
|
memcpy(xd->left_context[p] +
|
|
((mi_row & MAX_MIB_MASK) * 2 >> xd->plane[p].subsampling_y),
|
|
ctx->l + num_4x4_blocks_high * p,
|
|
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
|
|
xd->plane[p].subsampling_y);
|
|
}
|
|
memcpy(xd->above_seg_context + mi_col, ctx->sa,
|
|
sizeof(*xd->above_seg_context) * mi_width);
|
|
memcpy(xd->left_seg_context + (mi_row & MAX_MIB_MASK), ctx->sl,
|
|
sizeof(xd->left_seg_context[0]) * mi_height);
|
|
#if CONFIG_VAR_TX
|
|
xd->above_txfm_context = ctx->p_ta;
|
|
xd->left_txfm_context = ctx->p_tl;
|
|
memcpy(xd->above_txfm_context, ctx->ta,
|
|
sizeof(*xd->above_txfm_context) * mi_width);
|
|
memcpy(xd->left_txfm_context, ctx->tl,
|
|
sizeof(*xd->left_txfm_context) * mi_height);
|
|
#endif
|
|
#if CONFIG_PVQ
|
|
od_encode_rollback(&x->daala_enc, rdo_buf);
|
|
#endif
|
|
}
|
|
|
|
static void save_context(const MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *ctx,
|
|
int mi_row, int mi_col,
|
|
#if CONFIG_PVQ
|
|
od_rollback_buffer *rdo_buf,
|
|
#endif
|
|
BLOCK_SIZE bsize) {
|
|
const MACROBLOCKD *xd = &x->e_mbd;
|
|
int p;
|
|
const int num_4x4_blocks_wide =
|
|
block_size_wide[bsize] >> tx_size_wide_log2[0];
|
|
const int num_4x4_blocks_high =
|
|
block_size_high[bsize] >> tx_size_high_log2[0];
|
|
int mi_width = mi_size_wide[bsize];
|
|
int mi_height = mi_size_high[bsize];
|
|
|
|
// buffer the above/left context information of the block in search.
|
|
for (p = 0; p < MAX_MB_PLANE; ++p) {
|
|
memcpy(ctx->a + num_4x4_blocks_wide * p,
|
|
xd->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x),
|
|
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
|
|
xd->plane[p].subsampling_x);
|
|
memcpy(ctx->l + num_4x4_blocks_high * p,
|
|
xd->left_context[p] +
|
|
((mi_row & MAX_MIB_MASK) * 2 >> xd->plane[p].subsampling_y),
|
|
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
|
|
xd->plane[p].subsampling_y);
|
|
}
|
|
memcpy(ctx->sa, xd->above_seg_context + mi_col,
|
|
sizeof(*xd->above_seg_context) * mi_width);
|
|
memcpy(ctx->sl, xd->left_seg_context + (mi_row & MAX_MIB_MASK),
|
|
sizeof(xd->left_seg_context[0]) * mi_height);
|
|
#if CONFIG_VAR_TX
|
|
memcpy(ctx->ta, xd->above_txfm_context,
|
|
sizeof(*xd->above_txfm_context) * mi_width);
|
|
memcpy(ctx->tl, xd->left_txfm_context,
|
|
sizeof(*xd->left_txfm_context) * mi_height);
|
|
ctx->p_ta = xd->above_txfm_context;
|
|
ctx->p_tl = xd->left_txfm_context;
|
|
#endif
|
|
#if CONFIG_PVQ
|
|
od_encode_checkpoint(&x->daala_enc, rdo_buf);
|
|
#endif
|
|
}
|
|
|
|
static void encode_b(const AV1_COMP *const cpi, const TileInfo *const tile,
|
|
ThreadData *td, TOKENEXTRA **tp, int mi_row, int mi_col,
|
|
RUN_TYPE dry_run, BLOCK_SIZE bsize,
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
PARTITION_TYPE partition,
|
|
#endif
|
|
PICK_MODE_CONTEXT *ctx, int *rate) {
|
|
MACROBLOCK *const x = &td->mb;
|
|
set_offsets(cpi, tile, x, mi_row, mi_col, bsize);
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
x->e_mbd.mi[0]->mbmi.partition = partition;
|
|
#endif
|
|
update_state(cpi, td, ctx, mi_row, mi_col, bsize, dry_run);
|
|
encode_superblock(cpi, td, tp, dry_run, mi_row, mi_col, bsize, ctx, rate);
|
|
|
|
if (!dry_run) {
|
|
#if CONFIG_SUPERTX
|
|
update_stats(&cpi->common, td, mi_row, mi_col, 0);
|
|
#else
|
|
update_stats(&cpi->common, td, mi_row, mi_col);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void encode_sb(const AV1_COMP *const cpi, ThreadData *td,
|
|
const TileInfo *const tile, TOKENEXTRA **tp, int mi_row,
|
|
int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize,
|
|
PC_TREE *pc_tree, int *rate) {
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
const int is_partition_root = bsize >= BLOCK_8X8;
|
|
const int ctx = is_partition_root
|
|
? partition_plane_context(xd, mi_row, mi_col, bsize)
|
|
: 0;
|
|
const int hbs = mi_size_wide[bsize] / 2;
|
|
const PARTITION_TYPE partition = pc_tree->partitioning;
|
|
const BLOCK_SIZE subsize = get_subsize(bsize, partition);
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
const BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
|
|
#endif
|
|
|
|
#if CONFIG_CB4X4
|
|
const int unify_bsize = 1;
|
|
#else
|
|
const int unify_bsize = 0;
|
|
assert(bsize >= BLOCK_8X8);
|
|
#endif
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
|
|
|
|
if (!dry_run && is_partition_root) td->counts->partition[ctx][partition]++;
|
|
|
|
#if CONFIG_SUPERTX
|
|
if (!frame_is_intra_only(cm) && bsize <= MAX_SUPERTX_BLOCK_SIZE &&
|
|
partition != PARTITION_NONE && !xd->lossless[0]) {
|
|
int supertx_enabled;
|
|
TX_SIZE supertx_size = max_txsize_lookup[bsize];
|
|
supertx_enabled = check_supertx_sb(bsize, supertx_size, pc_tree);
|
|
if (supertx_enabled) {
|
|
const int mi_width = mi_size_wide[bsize];
|
|
const int mi_height = mi_size_high[bsize];
|
|
int x_idx, y_idx, i;
|
|
uint8_t *dst_buf[3];
|
|
int dst_stride[3];
|
|
set_skip_context(xd, mi_row, mi_col);
|
|
set_mode_info_offsets(cpi, x, xd, mi_row, mi_col);
|
|
update_state_sb_supertx(cpi, td, tile, mi_row, mi_col, bsize, dry_run,
|
|
pc_tree);
|
|
|
|
av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
|
|
for (i = 0; i < MAX_MB_PLANE; i++) {
|
|
dst_buf[i] = xd->plane[i].dst.buf;
|
|
dst_stride[i] = xd->plane[i].dst.stride;
|
|
}
|
|
predict_sb_complex(cpi, td, tile, mi_row, mi_col, mi_row, mi_col, dry_run,
|
|
bsize, bsize, dst_buf, dst_stride, pc_tree);
|
|
|
|
set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize);
|
|
set_segment_id_supertx(cpi, x, mi_row, mi_col, bsize);
|
|
|
|
if (!x->skip) {
|
|
int this_rate = 0;
|
|
av1_encode_sb_supertx((AV1_COMMON *)cm, x, bsize);
|
|
av1_tokenize_sb_supertx(cpi, td, tp, dry_run, bsize, rate);
|
|
if (rate) *rate += this_rate;
|
|
} else {
|
|
xd->mi[0]->mbmi.skip = 1;
|
|
if (!dry_run) td->counts->skip[av1_get_skip_context(xd)][1]++;
|
|
reset_skip_context(xd, bsize);
|
|
}
|
|
if (!dry_run) {
|
|
for (y_idx = 0; y_idx < mi_height; y_idx++)
|
|
for (x_idx = 0; x_idx < mi_width; x_idx++) {
|
|
if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width >
|
|
x_idx &&
|
|
(xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height >
|
|
y_idx) {
|
|
xd->mi[x_idx + y_idx * cm->mi_stride]->mbmi.skip =
|
|
xd->mi[0]->mbmi.skip;
|
|
}
|
|
}
|
|
td->counts->supertx[partition_supertx_context_lookup[partition]]
|
|
[supertx_size][1]++;
|
|
td->counts->supertx_size[supertx_size]++;
|
|
#if CONFIG_EXT_TX
|
|
if (get_ext_tx_types(supertx_size, bsize, 1) > 1 &&
|
|
!xd->mi[0]->mbmi.skip) {
|
|
int eset = get_ext_tx_set(supertx_size, bsize, 1);
|
|
if (eset > 0) {
|
|
++td->counts->inter_ext_tx[eset][supertx_size]
|
|
[xd->mi[0]->mbmi.tx_type];
|
|
}
|
|
}
|
|
#else
|
|
if (supertx_size < TX_32X32 && !xd->mi[0]->mbmi.skip) {
|
|
++td->counts->inter_ext_tx[supertx_size][xd->mi[0]->mbmi.tx_type];
|
|
}
|
|
#endif // CONFIG_EXT_TX
|
|
}
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize,
|
|
partition);
|
|
#else
|
|
if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
|
|
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
|
|
#endif
|
|
#if CONFIG_VAR_TX
|
|
set_txfm_ctxs(supertx_size, mi_width, mi_height, xd->mi[0]->mbmi.skip,
|
|
xd);
|
|
#endif // CONFIG_VAR_TX
|
|
return;
|
|
} else {
|
|
if (!dry_run) {
|
|
td->counts->supertx[partition_supertx_context_lookup[partition]]
|
|
[supertx_size][0]++;
|
|
}
|
|
}
|
|
}
|
|
#endif // CONFIG_SUPERTX
|
|
|
|
switch (partition) {
|
|
case PARTITION_NONE:
|
|
encode_b(cpi, tile, td, tp, mi_row, mi_col, dry_run, subsize,
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
partition,
|
|
#endif
|
|
&pc_tree->none, rate);
|
|
break;
|
|
case PARTITION_VERT:
|
|
encode_b(cpi, tile, td, tp, mi_row, mi_col, dry_run, subsize,
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
partition,
|
|
#endif
|
|
&pc_tree->vertical[0], rate);
|
|
if (mi_col + hbs < cm->mi_cols && (bsize > BLOCK_8X8 || unify_bsize)) {
|
|
encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, dry_run, subsize,
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
partition,
|
|
#endif
|
|
&pc_tree->vertical[1], rate);
|
|
}
|
|
break;
|
|
case PARTITION_HORZ:
|
|
encode_b(cpi, tile, td, tp, mi_row, mi_col, dry_run, subsize,
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
partition,
|
|
#endif
|
|
&pc_tree->horizontal[0], rate);
|
|
if (mi_row + hbs < cm->mi_rows && (bsize > BLOCK_8X8 || unify_bsize)) {
|
|
encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, dry_run, subsize,
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
partition,
|
|
#endif
|
|
&pc_tree->horizontal[1], rate);
|
|
}
|
|
break;
|
|
case PARTITION_SPLIT:
|
|
if (bsize == BLOCK_8X8 && !unify_bsize) {
|
|
encode_b(cpi, tile, td, tp, mi_row, mi_col, dry_run, subsize,
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
partition,
|
|
#endif
|
|
pc_tree->leaf_split[0], rate);
|
|
} else {
|
|
encode_sb(cpi, td, tile, tp, mi_row, mi_col, dry_run, subsize,
|
|
pc_tree->split[0], rate);
|
|
encode_sb(cpi, td, tile, tp, mi_row, mi_col + hbs, dry_run, subsize,
|
|
pc_tree->split[1], rate);
|
|
encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col, dry_run, subsize,
|
|
pc_tree->split[2], rate);
|
|
encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs, dry_run,
|
|
subsize, pc_tree->split[3], rate);
|
|
}
|
|
break;
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
case PARTITION_HORZ_A:
|
|
encode_b(cpi, tile, td, tp, mi_row, mi_col, dry_run, bsize2, partition,
|
|
&pc_tree->horizontala[0], rate);
|
|
encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, dry_run, bsize2,
|
|
partition, &pc_tree->horizontala[1], rate);
|
|
encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, dry_run, subsize,
|
|
partition, &pc_tree->horizontala[2], rate);
|
|
break;
|
|
case PARTITION_HORZ_B:
|
|
encode_b(cpi, tile, td, tp, mi_row, mi_col, dry_run, subsize, partition,
|
|
&pc_tree->horizontalb[0], rate);
|
|
encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, dry_run, bsize2,
|
|
partition, &pc_tree->horizontalb[1], rate);
|
|
encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col + hbs, dry_run, bsize2,
|
|
partition, &pc_tree->horizontalb[2], rate);
|
|
break;
|
|
case PARTITION_VERT_A:
|
|
encode_b(cpi, tile, td, tp, mi_row, mi_col, dry_run, bsize2, partition,
|
|
&pc_tree->verticala[0], rate);
|
|
encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, dry_run, bsize2,
|
|
partition, &pc_tree->verticala[1], rate);
|
|
encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, dry_run, subsize,
|
|
partition, &pc_tree->verticala[2], rate);
|
|
|
|
break;
|
|
case PARTITION_VERT_B:
|
|
encode_b(cpi, tile, td, tp, mi_row, mi_col, dry_run, subsize, partition,
|
|
&pc_tree->verticalb[0], rate);
|
|
encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, dry_run, bsize2,
|
|
partition, &pc_tree->verticalb[1], rate);
|
|
encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col + hbs, dry_run, bsize2,
|
|
partition, &pc_tree->verticalb[2], rate);
|
|
break;
|
|
#endif // CONFIG_EXT_PARTITION_TYPES
|
|
default: assert(0 && "Invalid partition type."); break;
|
|
}
|
|
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
|
|
#else
|
|
if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
|
|
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
|
|
#endif // CONFIG_EXT_PARTITION_TYPES
|
|
}
|
|
|
|
// Check to see if the given partition size is allowed for a specified number
|
|
// of mi block rows and columns remaining in the image.
|
|
// If not then return the largest allowed partition size
|
|
static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize, int rows_left,
|
|
int cols_left, int *bh, int *bw) {
|
|
if (rows_left <= 0 || cols_left <= 0) {
|
|
return AOMMIN(bsize, BLOCK_8X8);
|
|
} else {
|
|
for (; bsize > 0; bsize -= 3) {
|
|
*bh = mi_size_high[bsize];
|
|
*bw = mi_size_wide[bsize];
|
|
if ((*bh <= rows_left) && (*bw <= cols_left)) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return bsize;
|
|
}
|
|
|
|
static void set_partial_sb_partition(const AV1_COMMON *const cm, MODE_INFO *mi,
|
|
int bh_in, int bw_in,
|
|
int mi_rows_remaining,
|
|
int mi_cols_remaining, BLOCK_SIZE bsize,
|
|
MODE_INFO **mib) {
|
|
int bh = bh_in;
|
|
int r, c;
|
|
for (r = 0; r < cm->mib_size; r += bh) {
|
|
int bw = bw_in;
|
|
for (c = 0; c < cm->mib_size; c += bw) {
|
|
const int index = r * cm->mi_stride + c;
|
|
mib[index] = mi + index;
|
|
mib[index]->mbmi.sb_type = find_partition_size(
|
|
bsize, mi_rows_remaining - r, mi_cols_remaining - c, &bh, &bw);
|
|
}
|
|
}
|
|
}
|
|
|
|
// This function attempts to set all mode info entries in a given superblock
|
|
// to the same block partition size.
|
|
// However, at the bottom and right borders of the image the requested size
|
|
// may not be allowed in which case this code attempts to choose the largest
|
|
// allowable partition.
|
|
static void set_fixed_partitioning(AV1_COMP *cpi, const TileInfo *const tile,
|
|
MODE_INFO **mib, int mi_row, int mi_col,
|
|
BLOCK_SIZE bsize) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
const int mi_rows_remaining = tile->mi_row_end - mi_row;
|
|
const int mi_cols_remaining = tile->mi_col_end - mi_col;
|
|
int block_row, block_col;
|
|
MODE_INFO *const mi_upper_left = cm->mi + mi_row * cm->mi_stride + mi_col;
|
|
int bh = mi_size_high[bsize];
|
|
int bw = mi_size_wide[bsize];
|
|
|
|
assert((mi_rows_remaining > 0) && (mi_cols_remaining > 0));
|
|
|
|
// Apply the requested partition size to the SB if it is all "in image"
|
|
if ((mi_cols_remaining >= cm->mib_size) &&
|
|
(mi_rows_remaining >= cm->mib_size)) {
|
|
for (block_row = 0; block_row < cm->mib_size; block_row += bh) {
|
|
for (block_col = 0; block_col < cm->mib_size; block_col += bw) {
|
|
int index = block_row * cm->mi_stride + block_col;
|
|
mib[index] = mi_upper_left + index;
|
|
mib[index]->mbmi.sb_type = bsize;
|
|
}
|
|
}
|
|
} else {
|
|
// Else this is a partial SB.
|
|
set_partial_sb_partition(cm, mi_upper_left, bh, bw, mi_rows_remaining,
|
|
mi_cols_remaining, bsize, mib);
|
|
}
|
|
}
|
|
|
|
static void rd_use_partition(AV1_COMP *cpi, ThreadData *td,
|
|
TileDataEnc *tile_data, MODE_INFO **mib,
|
|
TOKENEXTRA **tp, int mi_row, int mi_col,
|
|
BLOCK_SIZE bsize, int *rate, int64_t *dist,
|
|
#if CONFIG_SUPERTX
|
|
int *rate_nocoef,
|
|
#endif
|
|
int do_recon, PC_TREE *pc_tree) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
TileInfo *const tile_info = &tile_data->tile_info;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
const int bs = mi_size_wide[bsize];
|
|
const int hbs = bs / 2;
|
|
int i;
|
|
const int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
|
|
const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize);
|
|
const BLOCK_SIZE subsize = get_subsize(bsize, partition);
|
|
RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
|
|
RD_COST last_part_rdc, none_rdc, chosen_rdc;
|
|
BLOCK_SIZE sub_subsize = BLOCK_4X4;
|
|
int splits_below = 0;
|
|
BLOCK_SIZE bs_type = mib[0]->mbmi.sb_type;
|
|
int do_partition_search = 1;
|
|
PICK_MODE_CONTEXT *ctx_none = &pc_tree->none;
|
|
#if CONFIG_SUPERTX
|
|
int last_part_rate_nocoef = INT_MAX;
|
|
int none_rate_nocoef = INT_MAX;
|
|
int chosen_rate_nocoef = INT_MAX;
|
|
#endif
|
|
#if CONFIG_PVQ
|
|
od_rollback_buffer pre_rdo_buf;
|
|
#endif
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
|
|
|
|
assert(num_4x4_blocks_wide_lookup[bsize] ==
|
|
num_4x4_blocks_high_lookup[bsize]);
|
|
|
|
av1_rd_cost_reset(&last_part_rdc);
|
|
av1_rd_cost_reset(&none_rdc);
|
|
av1_rd_cost_reset(&chosen_rdc);
|
|
|
|
pc_tree->partitioning = partition;
|
|
|
|
#if CONFIG_VAR_TX
|
|
xd->above_txfm_context = cm->above_txfm_context + mi_col;
|
|
xd->left_txfm_context =
|
|
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
|
|
#endif
|
|
#if !CONFIG_PVQ
|
|
save_context(x, &x_ctx, mi_row, mi_col, bsize);
|
|
#else
|
|
save_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize);
|
|
#endif
|
|
|
|
if (bsize == BLOCK_16X16 && cpi->vaq_refresh) {
|
|
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
|
|
x->mb_energy = av1_block_energy(cpi, x, bsize);
|
|
}
|
|
|
|
if (do_partition_search &&
|
|
cpi->sf.partition_search_type == SEARCH_PARTITION &&
|
|
cpi->sf.adjust_partitioning_from_last_frame) {
|
|
// Check if any of the sub blocks are further split.
|
|
if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) {
|
|
sub_subsize = get_subsize(subsize, PARTITION_SPLIT);
|
|
splits_below = 1;
|
|
for (i = 0; i < 4; i++) {
|
|
int jj = i >> 1, ii = i & 0x01;
|
|
MODE_INFO *this_mi = mib[jj * hbs * cm->mi_stride + ii * hbs];
|
|
if (this_mi && this_mi->mbmi.sb_type >= sub_subsize) {
|
|
splits_below = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If partition is not none try none unless each of the 4 splits are split
|
|
// even further..
|
|
if (partition != PARTITION_NONE && !splits_below &&
|
|
mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols) {
|
|
pc_tree->partitioning = PARTITION_NONE;
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc,
|
|
#if CONFIG_SUPERTX
|
|
&none_rate_nocoef,
|
|
#endif
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
PARTITION_NONE,
|
|
#endif
|
|
bsize, ctx_none, INT64_MAX);
|
|
|
|
if (none_rdc.rate < INT_MAX) {
|
|
none_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
|
|
none_rdc.rdcost =
|
|
RDCOST(x->rdmult, x->rddiv, none_rdc.rate, none_rdc.dist);
|
|
#if CONFIG_SUPERTX
|
|
none_rate_nocoef += cpi->partition_cost[pl][PARTITION_NONE];
|
|
#endif
|
|
}
|
|
|
|
#if !CONFIG_PVQ
|
|
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
|
|
#else
|
|
restore_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize);
|
|
#endif
|
|
mib[0]->mbmi.sb_type = bs_type;
|
|
pc_tree->partitioning = partition;
|
|
}
|
|
}
|
|
|
|
switch (partition) {
|
|
case PARTITION_NONE:
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
|
|
#if CONFIG_SUPERTX
|
|
&last_part_rate_nocoef,
|
|
#endif
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
PARTITION_NONE,
|
|
#endif
|
|
bsize, ctx_none, INT64_MAX);
|
|
break;
|
|
case PARTITION_HORZ:
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
|
|
#if CONFIG_SUPERTX
|
|
&last_part_rate_nocoef,
|
|
#endif
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
PARTITION_HORZ,
|
|
#endif
|
|
subsize, &pc_tree->horizontal[0], INT64_MAX);
|
|
if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
|
|
mi_row + hbs < cm->mi_rows) {
|
|
RD_COST tmp_rdc;
|
|
#if CONFIG_SUPERTX
|
|
int rt_nocoef = 0;
|
|
#endif
|
|
PICK_MODE_CONTEXT *ctx_h = &pc_tree->horizontal[0];
|
|
av1_rd_cost_init(&tmp_rdc);
|
|
update_state(cpi, td, ctx_h, mi_row, mi_col, subsize, 1);
|
|
encode_superblock(cpi, td, tp, DRY_RUN_NORMAL, mi_row, mi_col, subsize,
|
|
ctx_h, NULL);
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, &tmp_rdc,
|
|
#if CONFIG_SUPERTX
|
|
&rt_nocoef,
|
|
#endif
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
PARTITION_HORZ,
|
|
#endif
|
|
subsize, &pc_tree->horizontal[1], INT64_MAX);
|
|
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
|
|
av1_rd_cost_reset(&last_part_rdc);
|
|
#if CONFIG_SUPERTX
|
|
last_part_rate_nocoef = INT_MAX;
|
|
#endif
|
|
break;
|
|
}
|
|
last_part_rdc.rate += tmp_rdc.rate;
|
|
last_part_rdc.dist += tmp_rdc.dist;
|
|
last_part_rdc.rdcost += tmp_rdc.rdcost;
|
|
#if CONFIG_SUPERTX
|
|
last_part_rate_nocoef += rt_nocoef;
|
|
#endif
|
|
}
|
|
break;
|
|
case PARTITION_VERT:
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
|
|
#if CONFIG_SUPERTX
|
|
&last_part_rate_nocoef,
|
|
#endif
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
PARTITION_VERT,
|
|
#endif
|
|
subsize, &pc_tree->vertical[0], INT64_MAX);
|
|
if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
|
|
mi_col + hbs < cm->mi_cols) {
|
|
RD_COST tmp_rdc;
|
|
#if CONFIG_SUPERTX
|
|
int rt_nocoef = 0;
|
|
#endif
|
|
PICK_MODE_CONTEXT *ctx_v = &pc_tree->vertical[0];
|
|
av1_rd_cost_init(&tmp_rdc);
|
|
update_state(cpi, td, ctx_v, mi_row, mi_col, subsize, 1);
|
|
encode_superblock(cpi, td, tp, DRY_RUN_NORMAL, mi_row, mi_col, subsize,
|
|
ctx_v, NULL);
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, &tmp_rdc,
|
|
#if CONFIG_SUPERTX
|
|
&rt_nocoef,
|
|
#endif
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
PARTITION_VERT,
|
|
#endif
|
|
subsize, &pc_tree->vertical[bsize > BLOCK_8X8],
|
|
INT64_MAX);
|
|
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
|
|
av1_rd_cost_reset(&last_part_rdc);
|
|
#if CONFIG_SUPERTX
|
|
last_part_rate_nocoef = INT_MAX;
|
|
#endif
|
|
break;
|
|
}
|
|
last_part_rdc.rate += tmp_rdc.rate;
|
|
last_part_rdc.dist += tmp_rdc.dist;
|
|
last_part_rdc.rdcost += tmp_rdc.rdcost;
|
|
#if CONFIG_SUPERTX
|
|
last_part_rate_nocoef += rt_nocoef;
|
|
#endif
|
|
}
|
|
break;
|
|
case PARTITION_SPLIT:
|
|
if (bsize == BLOCK_8X8) {
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
|
|
#if CONFIG_SUPERTX
|
|
&last_part_rate_nocoef,
|
|
#endif
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
PARTITION_SPLIT,
|
|
#endif
|
|
subsize, pc_tree->leaf_split[0], INT64_MAX);
|
|
break;
|
|
}
|
|
last_part_rdc.rate = 0;
|
|
last_part_rdc.dist = 0;
|
|
last_part_rdc.rdcost = 0;
|
|
#if CONFIG_SUPERTX
|
|
last_part_rate_nocoef = 0;
|
|
#endif
|
|
for (i = 0; i < 4; i++) {
|
|
int x_idx = (i & 1) * hbs;
|
|
int y_idx = (i >> 1) * hbs;
|
|
int jj = i >> 1, ii = i & 0x01;
|
|
RD_COST tmp_rdc;
|
|
#if CONFIG_SUPERTX
|
|
int rt_nocoef;
|
|
#endif
|
|
if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
|
|
continue;
|
|
|
|
av1_rd_cost_init(&tmp_rdc);
|
|
rd_use_partition(cpi, td, tile_data,
|
|
mib + jj * hbs * cm->mi_stride + ii * hbs, tp,
|
|
mi_row + y_idx, mi_col + x_idx, subsize, &tmp_rdc.rate,
|
|
&tmp_rdc.dist,
|
|
#if CONFIG_SUPERTX
|
|
&rt_nocoef,
|
|
#endif
|
|
i != 3, pc_tree->split[i]);
|
|
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
|
|
av1_rd_cost_reset(&last_part_rdc);
|
|
#if CONFIG_SUPERTX
|
|
last_part_rate_nocoef = INT_MAX;
|
|
#endif
|
|
break;
|
|
}
|
|
last_part_rdc.rate += tmp_rdc.rate;
|
|
last_part_rdc.dist += tmp_rdc.dist;
|
|
#if CONFIG_SUPERTX
|
|
last_part_rate_nocoef += rt_nocoef;
|
|
#endif
|
|
}
|
|
break;
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
case PARTITION_VERT_A:
|
|
case PARTITION_VERT_B:
|
|
case PARTITION_HORZ_A:
|
|
case PARTITION_HORZ_B: assert(0 && "Cannot handle extended partiton types");
|
|
#endif // CONFIG_EXT_PARTITION_TYPES
|
|
default: assert(0); break;
|
|
}
|
|
|
|
if (last_part_rdc.rate < INT_MAX) {
|
|
last_part_rdc.rate += cpi->partition_cost[pl][partition];
|
|
last_part_rdc.rdcost =
|
|
RDCOST(x->rdmult, x->rddiv, last_part_rdc.rate, last_part_rdc.dist);
|
|
#if CONFIG_SUPERTX
|
|
last_part_rate_nocoef += cpi->partition_cost[pl][partition];
|
|
#endif
|
|
}
|
|
|
|
if (do_partition_search && cpi->sf.adjust_partitioning_from_last_frame &&
|
|
cpi->sf.partition_search_type == SEARCH_PARTITION &&
|
|
partition != PARTITION_SPLIT && bsize > BLOCK_8X8 &&
|
|
(mi_row + bs < cm->mi_rows || mi_row + hbs == cm->mi_rows) &&
|
|
(mi_col + bs < cm->mi_cols || mi_col + hbs == cm->mi_cols)) {
|
|
BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT);
|
|
chosen_rdc.rate = 0;
|
|
chosen_rdc.dist = 0;
|
|
#if CONFIG_SUPERTX
|
|
chosen_rate_nocoef = 0;
|
|
#endif
|
|
#if !CONFIG_PVQ
|
|
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
|
|
#else
|
|
restore_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize);
|
|
#endif
|
|
pc_tree->partitioning = PARTITION_SPLIT;
|
|
|
|
// Split partition.
|
|
for (i = 0; i < 4; i++) {
|
|
int x_idx = (i & 1) * hbs;
|
|
int y_idx = (i >> 1) * hbs;
|
|
RD_COST tmp_rdc;
|
|
#if CONFIG_SUPERTX
|
|
int rt_nocoef = 0;
|
|
#endif
|
|
#if CONFIG_PVQ
|
|
od_rollback_buffer buf;
|
|
#endif
|
|
if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
|
|
continue;
|
|
|
|
#if !CONFIG_PVQ
|
|
save_context(x, &x_ctx, mi_row, mi_col, bsize);
|
|
#else
|
|
save_context(x, &x_ctx, mi_row, mi_col, &buf, bsize);
|
|
#endif
|
|
pc_tree->split[i]->partitioning = PARTITION_NONE;
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx,
|
|
&tmp_rdc,
|
|
#if CONFIG_SUPERTX
|
|
&rt_nocoef,
|
|
#endif
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
PARTITION_SPLIT,
|
|
#endif
|
|
split_subsize, &pc_tree->split[i]->none, INT64_MAX);
|
|
|
|
#if !CONFIG_PVQ
|
|
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
|
|
#else
|
|
restore_context(x, &x_ctx, mi_row, mi_col, &buf, bsize);
|
|
#endif
|
|
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
|
|
av1_rd_cost_reset(&chosen_rdc);
|
|
#if CONFIG_SUPERTX
|
|
chosen_rate_nocoef = INT_MAX;
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
chosen_rdc.rate += tmp_rdc.rate;
|
|
chosen_rdc.dist += tmp_rdc.dist;
|
|
#if CONFIG_SUPERTX
|
|
chosen_rate_nocoef += rt_nocoef;
|
|
#endif
|
|
|
|
if (i != 3)
|
|
encode_sb(cpi, td, tile_info, tp, mi_row + y_idx, mi_col + x_idx,
|
|
OUTPUT_ENABLED, split_subsize, pc_tree->split[i], NULL);
|
|
|
|
chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
|
|
#if CONFIG_SUPERTX
|
|
chosen_rate_nocoef += cpi->partition_cost[pl][PARTITION_SPLIT];
|
|
#endif
|
|
}
|
|
if (chosen_rdc.rate < INT_MAX) {
|
|
chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
|
|
chosen_rdc.rdcost =
|
|
RDCOST(x->rdmult, x->rddiv, chosen_rdc.rate, chosen_rdc.dist);
|
|
#if CONFIG_SUPERTX
|
|
chosen_rate_nocoef += cpi->partition_cost[pl][PARTITION_NONE];
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// If last_part is better set the partitioning to that.
|
|
if (last_part_rdc.rdcost < chosen_rdc.rdcost) {
|
|
mib[0]->mbmi.sb_type = bsize;
|
|
if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition;
|
|
chosen_rdc = last_part_rdc;
|
|
#if CONFIG_SUPERTX
|
|
chosen_rate_nocoef = last_part_rate_nocoef;
|
|
#endif
|
|
}
|
|
// If none was better set the partitioning to that.
|
|
if (none_rdc.rdcost < chosen_rdc.rdcost) {
|
|
if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
|
|
chosen_rdc = none_rdc;
|
|
#if CONFIG_SUPERTX
|
|
chosen_rate_nocoef = none_rate_nocoef;
|
|
#endif
|
|
}
|
|
|
|
#if !CONFIG_PVQ
|
|
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
|
|
#else
|
|
restore_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize);
|
|
#endif
|
|
|
|
// We must have chosen a partitioning and encoding or we'll fail later on.
|
|
// No other opportunities for success.
|
|
if (bsize == cm->sb_size)
|
|
assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX);
|
|
|
|
if (do_recon) {
|
|
if (bsize == cm->sb_size) {
|
|
// NOTE: To get estimate for rate due to the tokens, use:
|
|
// int rate_coeffs = 0;
|
|
// encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, DRY_RUN_COSTCOEFFS,
|
|
// bsize, pc_tree, &rate_coeffs);
|
|
encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize,
|
|
pc_tree, NULL);
|
|
} else {
|
|
encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
|
|
pc_tree, NULL);
|
|
}
|
|
}
|
|
|
|
*rate = chosen_rdc.rate;
|
|
*dist = chosen_rdc.dist;
|
|
#if CONFIG_SUPERTX
|
|
*rate_nocoef = chosen_rate_nocoef;
|
|
#endif
|
|
}
|
|
|
|
/* clang-format off */
|
|
static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = {
|
|
#if CONFIG_CB4X4
|
|
BLOCK_2X2, BLOCK_2X2, BLOCK_2X2, // 2x2, 2x4, 4x2
|
|
#endif
|
|
BLOCK_4X4, // 4x4
|
|
BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, // 4x8, 8x4, 8x8
|
|
BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, // 8x16, 16x8, 16x16
|
|
BLOCK_8X8, BLOCK_8X8, BLOCK_16X16, // 16x32, 32x16, 32x32
|
|
BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, // 32x64, 64x32, 64x64
|
|
#if CONFIG_EXT_PARTITION
|
|
BLOCK_16X16, BLOCK_16X16, BLOCK_16X16 // 64x128, 128x64, 128x128
|
|
#endif // CONFIG_EXT_PARTITION
|
|
};
|
|
|
|
static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = {
|
|
#if CONFIG_CB4X4
|
|
BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, // 2x2, 2x4, 4x2
|
|
#endif
|
|
BLOCK_8X8, // 4x4
|
|
BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, // 4x8, 8x4, 8x8
|
|
BLOCK_32X32, BLOCK_32X32, BLOCK_32X32, // 8x16, 16x8, 16x16
|
|
BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, // 16x32, 32x16, 32x32
|
|
BLOCK_LARGEST, BLOCK_LARGEST, BLOCK_LARGEST, // 32x64, 64x32, 64x64
|
|
#if CONFIG_EXT_PARTITION
|
|
BLOCK_LARGEST, BLOCK_LARGEST, BLOCK_LARGEST // 64x128, 128x64, 128x128
|
|
#endif // CONFIG_EXT_PARTITION
|
|
};
|
|
|
|
// Next square block size less or equal than current block size.
|
|
static const BLOCK_SIZE next_square_size[BLOCK_SIZES] = {
|
|
#if CONFIG_CB4X4
|
|
BLOCK_2X2, BLOCK_2X2, BLOCK_2X2, // 2x2, 2x4, 4x2
|
|
#endif
|
|
BLOCK_4X4, // 4x4
|
|
BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, // 4x8, 8x4, 8x8
|
|
BLOCK_8X8, BLOCK_8X8, BLOCK_16X16, // 8x16, 16x8, 16x16
|
|
BLOCK_16X16, BLOCK_16X16, BLOCK_32X32, // 16x32, 32x16, 32x32
|
|
BLOCK_32X32, BLOCK_32X32, BLOCK_64X64, // 32x64, 64x32, 64x64
|
|
#if CONFIG_EXT_PARTITION
|
|
BLOCK_64X64, BLOCK_64X64, BLOCK_128X128 // 64x128, 128x64, 128x128
|
|
#endif // CONFIG_EXT_PARTITION
|
|
};
|
|
/* clang-format on */
|
|
|
|
// Look at all the mode_info entries for blocks that are part of this
|
|
// partition and find the min and max values for sb_type.
|
|
// At the moment this is designed to work on a superblock but could be
|
|
// adjusted to use a size parameter.
|
|
//
|
|
// The min and max are assumed to have been initialized prior to calling this
|
|
// function so repeat calls can accumulate a min and max of more than one
|
|
// superblock.
|
|
static void get_sb_partition_size_range(const AV1_COMMON *const cm,
|
|
MACROBLOCKD *xd, MODE_INFO **mib,
|
|
BLOCK_SIZE *min_block_size,
|
|
BLOCK_SIZE *max_block_size) {
|
|
int i, j;
|
|
int index = 0;
|
|
|
|
// Check the sb_type for each block that belongs to this region.
|
|
for (i = 0; i < cm->mib_size; ++i) {
|
|
for (j = 0; j < cm->mib_size; ++j) {
|
|
MODE_INFO *mi = mib[index + j];
|
|
BLOCK_SIZE sb_type = mi ? mi->mbmi.sb_type : BLOCK_4X4;
|
|
*min_block_size = AOMMIN(*min_block_size, sb_type);
|
|
*max_block_size = AOMMAX(*max_block_size, sb_type);
|
|
}
|
|
index += xd->mi_stride;
|
|
}
|
|
}
|
|
|
|
// Look at neighboring blocks and set a min and max partition size based on
|
|
// what they chose.
|
|
static void rd_auto_partition_range(AV1_COMP *cpi, const TileInfo *const tile,
|
|
MACROBLOCKD *const xd, int mi_row,
|
|
int mi_col, BLOCK_SIZE *min_block_size,
|
|
BLOCK_SIZE *max_block_size) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
MODE_INFO **mi = xd->mi;
|
|
const int left_in_image = xd->left_available && mi[-1];
|
|
const int above_in_image = xd->up_available && mi[-xd->mi_stride];
|
|
const int mi_rows_remaining = tile->mi_row_end - mi_row;
|
|
const int mi_cols_remaining = tile->mi_col_end - mi_col;
|
|
int bh, bw;
|
|
BLOCK_SIZE min_size = BLOCK_4X4;
|
|
BLOCK_SIZE max_size = BLOCK_LARGEST;
|
|
|
|
// Trap case where we do not have a prediction.
|
|
if (left_in_image || above_in_image || cm->frame_type != KEY_FRAME) {
|
|
// Default "min to max" and "max to min"
|
|
min_size = BLOCK_LARGEST;
|
|
max_size = BLOCK_4X4;
|
|
|
|
// NOTE: each call to get_sb_partition_size_range() uses the previous
|
|
// passed in values for min and max as a starting point.
|
|
// Find the min and max partition used in previous frame at this location
|
|
if (cm->frame_type != KEY_FRAME) {
|
|
MODE_INFO **prev_mi =
|
|
&cm->prev_mi_grid_visible[mi_row * xd->mi_stride + mi_col];
|
|
get_sb_partition_size_range(cm, xd, prev_mi, &min_size, &max_size);
|
|
}
|
|
// Find the min and max partition sizes used in the left superblock
|
|
if (left_in_image) {
|
|
MODE_INFO **left_sb_mi = &mi[-cm->mib_size];
|
|
get_sb_partition_size_range(cm, xd, left_sb_mi, &min_size, &max_size);
|
|
}
|
|
// Find the min and max partition sizes used in the above suprblock.
|
|
if (above_in_image) {
|
|
MODE_INFO **above_sb_mi = &mi[-xd->mi_stride * cm->mib_size];
|
|
get_sb_partition_size_range(cm, xd, above_sb_mi, &min_size, &max_size);
|
|
}
|
|
|
|
// Adjust observed min and max for "relaxed" auto partition case.
|
|
if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) {
|
|
min_size = min_partition_size[min_size];
|
|
max_size = max_partition_size[max_size];
|
|
}
|
|
}
|
|
|
|
// Check border cases where max and min from neighbors may not be legal.
|
|
max_size = find_partition_size(max_size, mi_rows_remaining, mi_cols_remaining,
|
|
&bh, &bw);
|
|
min_size = AOMMIN(min_size, max_size);
|
|
|
|
// Test for blocks at the edge of the active image.
|
|
// This may be the actual edge of the image or where there are formatting
|
|
// bars.
|
|
if (av1_active_edge_sb(cpi, mi_row, mi_col)) {
|
|
min_size = BLOCK_4X4;
|
|
} else {
|
|
min_size = AOMMIN(cpi->sf.rd_auto_partition_min_limit, min_size);
|
|
}
|
|
|
|
// When use_square_partition_only is true, make sure at least one square
|
|
// partition is allowed by selecting the next smaller square size as
|
|
// *min_block_size.
|
|
if (cpi->sf.use_square_partition_only) {
|
|
min_size = AOMMIN(min_size, next_square_size[max_size]);
|
|
}
|
|
|
|
*min_block_size = AOMMIN(min_size, cm->sb_size);
|
|
*max_block_size = AOMMIN(max_size, cm->sb_size);
|
|
}
|
|
|
|
// TODO(jingning) refactor functions setting partition search range
|
|
static void set_partition_range(const AV1_COMMON *const cm,
|
|
const MACROBLOCKD *const xd, int mi_row,
|
|
int mi_col, BLOCK_SIZE bsize,
|
|
BLOCK_SIZE *const min_bs,
|
|
BLOCK_SIZE *const max_bs) {
|
|
const int mi_width = mi_size_wide[bsize];
|
|
const int mi_height = mi_size_high[bsize];
|
|
int idx, idy;
|
|
|
|
const int idx_str = cm->mi_stride * mi_row + mi_col;
|
|
MODE_INFO **const prev_mi = &cm->prev_mi_grid_visible[idx_str];
|
|
BLOCK_SIZE min_size = BLOCK_64X64; // default values
|
|
BLOCK_SIZE max_size = BLOCK_4X4;
|
|
|
|
if (prev_mi) {
|
|
for (idy = 0; idy < mi_height; ++idy) {
|
|
for (idx = 0; idx < mi_width; ++idx) {
|
|
const MODE_INFO *const mi = prev_mi[idy * cm->mi_stride + idx];
|
|
const BLOCK_SIZE bs = mi ? mi->mbmi.sb_type : bsize;
|
|
min_size = AOMMIN(min_size, bs);
|
|
max_size = AOMMAX(max_size, bs);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (xd->left_available) {
|
|
for (idy = 0; idy < mi_height; ++idy) {
|
|
const MODE_INFO *const mi = xd->mi[idy * cm->mi_stride - 1];
|
|
const BLOCK_SIZE bs = mi ? mi->mbmi.sb_type : bsize;
|
|
min_size = AOMMIN(min_size, bs);
|
|
max_size = AOMMAX(max_size, bs);
|
|
}
|
|
}
|
|
|
|
if (xd->up_available) {
|
|
for (idx = 0; idx < mi_width; ++idx) {
|
|
const MODE_INFO *const mi = xd->mi[idx - cm->mi_stride];
|
|
const BLOCK_SIZE bs = mi ? mi->mbmi.sb_type : bsize;
|
|
min_size = AOMMIN(min_size, bs);
|
|
max_size = AOMMAX(max_size, bs);
|
|
}
|
|
}
|
|
|
|
if (min_size == max_size) {
|
|
min_size = min_partition_size[min_size];
|
|
max_size = max_partition_size[max_size];
|
|
}
|
|
|
|
*min_bs = AOMMIN(min_size, cm->sb_size);
|
|
*max_bs = AOMMIN(max_size, cm->sb_size);
|
|
}
|
|
|
|
static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
|
|
memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv));
|
|
}
|
|
|
|
static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
|
|
memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv));
|
|
}
|
|
|
|
#if CONFIG_FP_MB_STATS
|
|
const int qindex_skip_threshold_lookup[BLOCK_SIZES] = {
|
|
0,
|
|
10,
|
|
10,
|
|
30,
|
|
40,
|
|
40,
|
|
60,
|
|
80,
|
|
80,
|
|
90,
|
|
100,
|
|
100,
|
|
120,
|
|
#if CONFIG_EXT_PARTITION
|
|
// TODO(debargha): What are the correct numbers here?
|
|
130,
|
|
130,
|
|
150
|
|
#endif // CONFIG_EXT_PARTITION
|
|
};
|
|
const int qindex_split_threshold_lookup[BLOCK_SIZES] = {
|
|
0,
|
|
3,
|
|
3,
|
|
7,
|
|
15,
|
|
15,
|
|
30,
|
|
40,
|
|
40,
|
|
60,
|
|
80,
|
|
80,
|
|
120,
|
|
#if CONFIG_EXT_PARTITION
|
|
// TODO(debargha): What are the correct numbers here?
|
|
160,
|
|
160,
|
|
240
|
|
#endif // CONFIG_EXT_PARTITION
|
|
};
|
|
const int complexity_16x16_blocks_threshold[BLOCK_SIZES] = {
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
4,
|
|
4,
|
|
6,
|
|
#if CONFIG_EXT_PARTITION
|
|
// TODO(debargha): What are the correct numbers here?
|
|
8,
|
|
8,
|
|
10
|
|
#endif // CONFIG_EXT_PARTITION
|
|
};
|
|
|
|
typedef enum {
|
|
MV_ZERO = 0,
|
|
MV_LEFT = 1,
|
|
MV_UP = 2,
|
|
MV_RIGHT = 3,
|
|
MV_DOWN = 4,
|
|
MV_INVALID
|
|
} MOTION_DIRECTION;
|
|
|
|
static INLINE MOTION_DIRECTION get_motion_direction_fp(uint8_t fp_byte) {
|
|
if (fp_byte & FPMB_MOTION_ZERO_MASK) {
|
|
return MV_ZERO;
|
|
} else if (fp_byte & FPMB_MOTION_LEFT_MASK) {
|
|
return MV_LEFT;
|
|
} else if (fp_byte & FPMB_MOTION_RIGHT_MASK) {
|
|
return MV_RIGHT;
|
|
} else if (fp_byte & FPMB_MOTION_UP_MASK) {
|
|
return MV_UP;
|
|
} else {
|
|
return MV_DOWN;
|
|
}
|
|
}
|
|
|
|
static INLINE int get_motion_inconsistency(MOTION_DIRECTION this_mv,
|
|
MOTION_DIRECTION that_mv) {
|
|
if (this_mv == that_mv) {
|
|
return 0;
|
|
} else {
|
|
return abs(this_mv - that_mv) == 2 ? 2 : 1;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
static void rd_test_partition3(
|
|
const AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
|
|
TOKENEXTRA **tp, PC_TREE *pc_tree, RD_COST *best_rdc,
|
|
PICK_MODE_CONTEXT ctxs[3], PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col,
|
|
BLOCK_SIZE bsize, PARTITION_TYPE partition,
|
|
#if CONFIG_SUPERTX
|
|
int64_t best_rd, int *best_rate_nocoef, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
|
|
#endif
|
|
int mi_row0, int mi_col0, BLOCK_SIZE subsize0, int mi_row1, int mi_col1,
|
|
BLOCK_SIZE subsize1, int mi_row2, int mi_col2, BLOCK_SIZE subsize2) {
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
RD_COST this_rdc, sum_rdc;
|
|
#if CONFIG_SUPERTX
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
TileInfo *const tile_info = &tile_data->tile_info;
|
|
int this_rate_nocoef, sum_rate_nocoef;
|
|
int abort_flag;
|
|
const int supertx_allowed = !frame_is_intra_only(cm) &&
|
|
bsize <= MAX_SUPERTX_BLOCK_SIZE &&
|
|
!xd->lossless[0];
|
|
#endif
|
|
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx);
|
|
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row0, mi_col0, &sum_rdc,
|
|
#if CONFIG_SUPERTX
|
|
&sum_rate_nocoef,
|
|
#endif
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
partition,
|
|
#endif
|
|
subsize0, &ctxs[0], best_rdc->rdcost);
|
|
#if CONFIG_SUPERTX
|
|
abort_flag = sum_rdc.rdcost >= best_rd;
|
|
#endif
|
|
|
|
#if CONFIG_SUPERTX
|
|
if (sum_rdc.rdcost < INT64_MAX) {
|
|
#else
|
|
if (sum_rdc.rdcost < best_rdc->rdcost) {
|
|
#endif
|
|
PICK_MODE_CONTEXT *ctx_0 = &ctxs[0];
|
|
update_state(cpi, td, ctx_0, mi_row0, mi_col0, subsize0, 1);
|
|
encode_superblock(cpi, td, tp, DRY_RUN_NORMAL, mi_row0, mi_col0, subsize0,
|
|
ctx_0, NULL);
|
|
|
|
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_0);
|
|
|
|
#if CONFIG_SUPERTX
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row1, mi_col1, &this_rdc,
|
|
&this_rate_nocoef,
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
partition,
|
|
#endif
|
|
subsize1, &ctxs[1], INT64_MAX - sum_rdc.rdcost);
|
|
#else
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row1, mi_col1, &this_rdc,
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
partition,
|
|
#endif
|
|
subsize1, &ctxs[1], best_rdc->rdcost - sum_rdc.rdcost);
|
|
#endif // CONFIG_SUPERTX
|
|
|
|
if (this_rdc.rate == INT_MAX) {
|
|
sum_rdc.rdcost = INT64_MAX;
|
|
#if CONFIG_SUPERTX
|
|
sum_rate_nocoef = INT_MAX;
|
|
#endif
|
|
} else {
|
|
sum_rdc.rate += this_rdc.rate;
|
|
sum_rdc.dist += this_rdc.dist;
|
|
sum_rdc.rdcost += this_rdc.rdcost;
|
|
#if CONFIG_SUPERTX
|
|
sum_rate_nocoef += this_rate_nocoef;
|
|
#endif
|
|
}
|
|
|
|
#if CONFIG_SUPERTX
|
|
if (sum_rdc.rdcost < INT64_MAX) {
|
|
#else
|
|
if (sum_rdc.rdcost < best_rdc->rdcost) {
|
|
#endif
|
|
PICK_MODE_CONTEXT *ctx_1 = &ctxs[1];
|
|
update_state(cpi, td, ctx_1, mi_row1, mi_col1, subsize1, 1);
|
|
encode_superblock(cpi, td, tp, DRY_RUN_NORMAL, mi_row1, mi_col1, subsize1,
|
|
ctx_1, NULL);
|
|
|
|
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_1);
|
|
|
|
#if CONFIG_SUPERTX
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row2, mi_col2, &this_rdc,
|
|
&this_rate_nocoef,
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
partition,
|
|
#endif
|
|
subsize2, &ctxs[2], INT64_MAX - sum_rdc.rdcost);
|
|
#else
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row2, mi_col2, &this_rdc,
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
partition,
|
|
#endif
|
|
subsize2, &ctxs[2], best_rdc->rdcost - sum_rdc.rdcost);
|
|
#endif // CONFIG_SUPERTX
|
|
|
|
if (this_rdc.rate == INT_MAX) {
|
|
sum_rdc.rdcost = INT64_MAX;
|
|
#if CONFIG_SUPERTX
|
|
sum_rate_nocoef = INT_MAX;
|
|
#endif
|
|
} else {
|
|
sum_rdc.rate += this_rdc.rate;
|
|
sum_rdc.dist += this_rdc.dist;
|
|
sum_rdc.rdcost += this_rdc.rdcost;
|
|
#if CONFIG_SUPERTX
|
|
sum_rate_nocoef += this_rate_nocoef;
|
|
#endif
|
|
}
|
|
|
|
#if CONFIG_SUPERTX
|
|
if (supertx_allowed && !abort_flag && sum_rdc.rdcost < INT64_MAX) {
|
|
TX_SIZE supertx_size = max_txsize_lookup[bsize];
|
|
const PARTITION_TYPE best_partition = pc_tree->partitioning;
|
|
pc_tree->partitioning = partition;
|
|
sum_rdc.rate += av1_cost_bit(
|
|
cm->fc->supertx_prob[partition_supertx_context_lookup[partition]]
|
|
[supertx_size],
|
|
0);
|
|
sum_rdc.rdcost =
|
|
RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
|
|
|
|
if (!check_intra_sb(cpi, tile_info, mi_row, mi_col, bsize, pc_tree)) {
|
|
TX_TYPE best_tx = DCT_DCT;
|
|
RD_COST tmp_rdc = { sum_rate_nocoef, 0, 0 };
|
|
|
|
restore_context(x, x_ctx, mi_row, mi_col, bsize);
|
|
|
|
rd_supertx_sb(cpi, td, tile_info, mi_row, mi_col, bsize,
|
|
&tmp_rdc.rate, &tmp_rdc.dist, &best_tx, pc_tree);
|
|
|
|
tmp_rdc.rate += av1_cost_bit(
|
|
cm->fc->supertx_prob[partition_supertx_context_lookup[partition]]
|
|
[supertx_size],
|
|
1);
|
|
tmp_rdc.rdcost =
|
|
RDCOST(x->rdmult, x->rddiv, tmp_rdc.rate, tmp_rdc.dist);
|
|
if (tmp_rdc.rdcost < sum_rdc.rdcost) {
|
|
sum_rdc = tmp_rdc;
|
|
update_supertx_param_sb(cpi, td, mi_row, mi_col, bsize, best_tx,
|
|
supertx_size, pc_tree);
|
|
}
|
|
}
|
|
|
|
pc_tree->partitioning = best_partition;
|
|
}
|
|
#endif // CONFIG_SUPERTX
|
|
|
|
if (sum_rdc.rdcost < best_rdc->rdcost) {
|
|
int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
|
|
sum_rdc.rate += cpi->partition_cost[pl][partition];
|
|
sum_rdc.rdcost =
|
|
RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
|
|
#if CONFIG_SUPERTX
|
|
sum_rate_nocoef += cpi->partition_cost[pl][partition];
|
|
#endif
|
|
if (sum_rdc.rdcost < best_rdc->rdcost) {
|
|
#if CONFIG_SUPERTX
|
|
*best_rate_nocoef = sum_rate_nocoef;
|
|
assert(*best_rate_nocoef >= 0);
|
|
#endif
|
|
*best_rdc = sum_rdc;
|
|
pc_tree->partitioning = partition;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif // CONFIG_EXT_PARTITION_TYPES
|
|
|
|
// TODO(jingning,jimbankoski,rbultje): properly skip partition types that are
|
|
// unlikely to be selected depending on previous rate-distortion optimization
|
|
// results, for encoding speed-up.
|
|
static void rd_pick_partition(const AV1_COMP *const cpi, ThreadData *td,
|
|
TileDataEnc *tile_data, TOKENEXTRA **tp,
|
|
int mi_row, int mi_col, BLOCK_SIZE bsize,
|
|
RD_COST *rd_cost,
|
|
#if CONFIG_SUPERTX
|
|
int *rate_nocoef,
|
|
#endif
|
|
int64_t best_rd, PC_TREE *pc_tree) {
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
TileInfo *const tile_info = &tile_data->tile_info;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
const int mi_step = mi_size_wide[bsize] / 2;
|
|
RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
|
|
const TOKENEXTRA *const tp_orig = *tp;
|
|
PICK_MODE_CONTEXT *ctx_none = &pc_tree->none;
|
|
|
|
int tmp_partition_cost[PARTITION_TYPES];
|
|
BLOCK_SIZE subsize;
|
|
RD_COST this_rdc, sum_rdc, best_rdc;
|
|
const int bsize_at_least_8x8 = (bsize >= BLOCK_8X8);
|
|
int do_square_split = bsize_at_least_8x8;
|
|
|
|
#if CONFIG_CB4X4
|
|
const int unify_bsize = 1;
|
|
const int pl = bsize_at_least_8x8
|
|
? partition_plane_context(xd, mi_row, mi_col, bsize)
|
|
: 0;
|
|
#else
|
|
const int unify_bsize = 0;
|
|
const int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
|
|
#endif // CONFIG_CB4X4
|
|
const int *partition_cost = cpi->partition_cost[pl];
|
|
#if CONFIG_SUPERTX
|
|
int this_rate_nocoef, sum_rate_nocoef = 0, best_rate_nocoef = INT_MAX;
|
|
int abort_flag;
|
|
const int supertx_allowed = !frame_is_intra_only(cm) &&
|
|
bsize <= MAX_SUPERTX_BLOCK_SIZE &&
|
|
!xd->lossless[0];
|
|
#endif // CONFIG_SUPERTX
|
|
|
|
int do_rectangular_split = 1;
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
|
|
#endif
|
|
|
|
// Override skipping rectangular partition operations for edge blocks
|
|
const int force_horz_split = (mi_row + mi_step >= cm->mi_rows);
|
|
const int force_vert_split = (mi_col + mi_step >= cm->mi_cols);
|
|
const int xss = x->e_mbd.plane[1].subsampling_x;
|
|
const int yss = x->e_mbd.plane[1].subsampling_y;
|
|
|
|
BLOCK_SIZE min_size = x->min_partition_size;
|
|
BLOCK_SIZE max_size = x->max_partition_size;
|
|
|
|
#if CONFIG_FP_MB_STATS
|
|
unsigned int src_diff_var = UINT_MAX;
|
|
int none_complexity = 0;
|
|
#endif
|
|
|
|
int partition_none_allowed = !force_horz_split && !force_vert_split;
|
|
int partition_horz_allowed =
|
|
!force_vert_split && yss <= xss && bsize_at_least_8x8;
|
|
int partition_vert_allowed =
|
|
!force_horz_split && xss <= yss && bsize_at_least_8x8;
|
|
|
|
#if CONFIG_PVQ
|
|
od_rollback_buffer pre_rdo_buf;
|
|
#endif
|
|
|
|
(void)*tp_orig;
|
|
|
|
if (force_horz_split || force_vert_split) {
|
|
tmp_partition_cost[PARTITION_NONE] = INT_MAX;
|
|
|
|
if (!force_vert_split) { // force_horz_split only
|
|
tmp_partition_cost[PARTITION_VERT] = INT_MAX;
|
|
tmp_partition_cost[PARTITION_HORZ] =
|
|
av1_cost_bit(cm->fc->partition_prob[pl][PARTITION_HORZ], 0);
|
|
tmp_partition_cost[PARTITION_SPLIT] =
|
|
av1_cost_bit(cm->fc->partition_prob[pl][PARTITION_HORZ], 1);
|
|
} else if (!force_horz_split) { // force_vert_split only
|
|
tmp_partition_cost[PARTITION_HORZ] = INT_MAX;
|
|
tmp_partition_cost[PARTITION_VERT] =
|
|
av1_cost_bit(cm->fc->partition_prob[pl][PARTITION_VERT], 0);
|
|
tmp_partition_cost[PARTITION_SPLIT] =
|
|
av1_cost_bit(cm->fc->partition_prob[pl][PARTITION_VERT], 1);
|
|
} else { // force_ horz_split && force_vert_split horz_split
|
|
tmp_partition_cost[PARTITION_HORZ] = INT_MAX;
|
|
tmp_partition_cost[PARTITION_VERT] = INT_MAX;
|
|
tmp_partition_cost[PARTITION_SPLIT] = 0;
|
|
}
|
|
|
|
partition_cost = tmp_partition_cost;
|
|
}
|
|
|
|
#if CONFIG_VAR_TX
|
|
#ifndef NDEBUG
|
|
// Nothing should rely on the default value of this array (which is just
|
|
// leftover from encoding the previous block. Setting it to magic number
|
|
// when debugging.
|
|
memset(x->blk_skip[0], 234, sizeof(x->blk_skip[0]));
|
|
#endif // NDEBUG
|
|
#endif // CONFIG_VAR_TX
|
|
|
|
assert(mi_size_wide[bsize] == mi_size_high[bsize]);
|
|
|
|
av1_rd_cost_init(&this_rdc);
|
|
av1_rd_cost_init(&sum_rdc);
|
|
av1_rd_cost_reset(&best_rdc);
|
|
best_rdc.rdcost = best_rd;
|
|
|
|
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
|
|
|
|
if (bsize == BLOCK_16X16 && cpi->vaq_refresh)
|
|
x->mb_energy = av1_block_energy(cpi, x, bsize);
|
|
|
|
if (cpi->sf.cb_partition_search && bsize == BLOCK_16X16) {
|
|
const int cb_partition_search_ctrl =
|
|
((pc_tree->index == 0 || pc_tree->index == 3) +
|
|
get_chessboard_index(cm->current_video_frame)) &
|
|
0x1;
|
|
|
|
if (cb_partition_search_ctrl && bsize > min_size && bsize < max_size)
|
|
set_partition_range(cm, xd, mi_row, mi_col, bsize, &min_size, &max_size);
|
|
}
|
|
|
|
// Determine partition types in search according to the speed features.
|
|
// The threshold set here has to be of square block size.
|
|
if (cpi->sf.auto_min_max_partition_size) {
|
|
const int no_partition_allowed = (bsize <= max_size && bsize >= min_size);
|
|
// Note: Further partitioning is NOT allowed when bsize == min_size already.
|
|
const int partition_allowed = (bsize <= max_size && bsize > min_size);
|
|
partition_none_allowed &= no_partition_allowed;
|
|
partition_horz_allowed &= partition_allowed || force_horz_split;
|
|
partition_vert_allowed &= partition_allowed || force_vert_split;
|
|
do_square_split &= bsize > min_size;
|
|
}
|
|
if (cpi->sf.use_square_partition_only) {
|
|
partition_horz_allowed &= force_horz_split;
|
|
partition_vert_allowed &= force_vert_split;
|
|
}
|
|
|
|
#if CONFIG_VAR_TX
|
|
xd->above_txfm_context = cm->above_txfm_context + mi_col;
|
|
xd->left_txfm_context =
|
|
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
|
|
#endif
|
|
#if !CONFIG_PVQ
|
|
save_context(x, &x_ctx, mi_row, mi_col, bsize);
|
|
#else
|
|
save_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize);
|
|
#endif
|
|
|
|
#if CONFIG_FP_MB_STATS
|
|
if (cpi->use_fp_mb_stats) {
|
|
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
|
|
src_diff_var = get_sby_perpixel_diff_variance(cpi, &x->plane[0].src, mi_row,
|
|
mi_col, bsize);
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_FP_MB_STATS
|
|
// Decide whether we shall split directly and skip searching NONE by using
|
|
// the first pass block statistics
|
|
if (cpi->use_fp_mb_stats && bsize >= BLOCK_32X32 && do_square_split &&
|
|
partition_none_allowed && src_diff_var > 4 &&
|
|
cm->base_qindex < qindex_split_threshold_lookup[bsize]) {
|
|
int mb_row = mi_row >> 1;
|
|
int mb_col = mi_col >> 1;
|
|
int mb_row_end =
|
|
AOMMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
|
|
int mb_col_end =
|
|
AOMMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
|
|
int r, c;
|
|
|
|
// compute a complexity measure, basically measure inconsistency of motion
|
|
// vectors obtained from the first pass in the current block
|
|
for (r = mb_row; r < mb_row_end; r++) {
|
|
for (c = mb_col; c < mb_col_end; c++) {
|
|
const int mb_index = r * cm->mb_cols + c;
|
|
|
|
MOTION_DIRECTION this_mv;
|
|
MOTION_DIRECTION right_mv;
|
|
MOTION_DIRECTION bottom_mv;
|
|
|
|
this_mv =
|
|
get_motion_direction_fp(cpi->twopass.this_frame_mb_stats[mb_index]);
|
|
|
|
// to its right
|
|
if (c != mb_col_end - 1) {
|
|
right_mv = get_motion_direction_fp(
|
|
cpi->twopass.this_frame_mb_stats[mb_index + 1]);
|
|
none_complexity += get_motion_inconsistency(this_mv, right_mv);
|
|
}
|
|
|
|
// to its bottom
|
|
if (r != mb_row_end - 1) {
|
|
bottom_mv = get_motion_direction_fp(
|
|
cpi->twopass.this_frame_mb_stats[mb_index + cm->mb_cols]);
|
|
none_complexity += get_motion_inconsistency(this_mv, bottom_mv);
|
|
}
|
|
|
|
// do not count its left and top neighbors to avoid double counting
|
|
}
|
|
}
|
|
|
|
if (none_complexity > complexity_16x16_blocks_threshold[bsize]) {
|
|
partition_none_allowed = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// PARTITION_NONE
|
|
if (partition_none_allowed) {
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc,
|
|
#if CONFIG_SUPERTX
|
|
&this_rate_nocoef,
|
|
#endif
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
PARTITION_NONE,
|
|
#endif
|
|
bsize, ctx_none, best_rdc.rdcost);
|
|
if (this_rdc.rate != INT_MAX) {
|
|
if (bsize_at_least_8x8) {
|
|
this_rdc.rate += partition_cost[PARTITION_NONE];
|
|
this_rdc.rdcost =
|
|
RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist);
|
|
#if CONFIG_SUPERTX
|
|
this_rate_nocoef += partition_cost[PARTITION_NONE];
|
|
#endif
|
|
}
|
|
|
|
if (this_rdc.rdcost < best_rdc.rdcost) {
|
|
// Adjust dist breakout threshold according to the partition size.
|
|
const int64_t dist_breakout_thr =
|
|
cpi->sf.partition_search_breakout_dist_thr >>
|
|
((2 * (MAX_SB_SIZE_LOG2 - 2)) -
|
|
(b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]));
|
|
const int rate_breakout_thr =
|
|
cpi->sf.partition_search_breakout_rate_thr *
|
|
num_pels_log2_lookup[bsize];
|
|
|
|
best_rdc = this_rdc;
|
|
#if CONFIG_SUPERTX
|
|
best_rate_nocoef = this_rate_nocoef;
|
|
assert(best_rate_nocoef >= 0);
|
|
#endif
|
|
if (bsize_at_least_8x8) pc_tree->partitioning = PARTITION_NONE;
|
|
|
|
// If all y, u, v transform blocks in this partition are skippable, and
|
|
// the dist & rate are within the thresholds, the partition search is
|
|
// terminated for current branch of the partition search tree.
|
|
// The dist & rate thresholds are set to 0 at speed 0 to disable the
|
|
// early termination at that speed.
|
|
if (!x->e_mbd.lossless[xd->mi[0]->mbmi.segment_id] &&
|
|
(ctx_none->skippable && best_rdc.dist < dist_breakout_thr &&
|
|
best_rdc.rate < rate_breakout_thr)) {
|
|
do_square_split = 0;
|
|
do_rectangular_split = 0;
|
|
}
|
|
|
|
#if CONFIG_FP_MB_STATS
|
|
// Check if every 16x16 first pass block statistics has zero
|
|
// motion and the corresponding first pass residue is small enough.
|
|
// If that is the case, check the difference variance between the
|
|
// current frame and the last frame. If the variance is small enough,
|
|
// stop further splitting in RD optimization
|
|
if (cpi->use_fp_mb_stats && do_square_split &&
|
|
cm->base_qindex > qindex_skip_threshold_lookup[bsize]) {
|
|
int mb_row = mi_row >> 1;
|
|
int mb_col = mi_col >> 1;
|
|
int mb_row_end =
|
|
AOMMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
|
|
int mb_col_end =
|
|
AOMMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
|
|
int r, c;
|
|
|
|
int skip = 1;
|
|
for (r = mb_row; r < mb_row_end; r++) {
|
|
for (c = mb_col; c < mb_col_end; c++) {
|
|
const int mb_index = r * cm->mb_cols + c;
|
|
if (!(cpi->twopass.this_frame_mb_stats[mb_index] &
|
|
FPMB_MOTION_ZERO_MASK) ||
|
|
!(cpi->twopass.this_frame_mb_stats[mb_index] &
|
|
FPMB_ERROR_SMALL_MASK)) {
|
|
skip = 0;
|
|
break;
|
|
}
|
|
}
|
|
if (skip == 0) {
|
|
break;
|
|
}
|
|
}
|
|
if (skip) {
|
|
if (src_diff_var == UINT_MAX) {
|
|
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
|
|
src_diff_var = get_sby_perpixel_diff_variance(
|
|
cpi, &x->plane[0].src, mi_row, mi_col, bsize);
|
|
}
|
|
if (src_diff_var < 8) {
|
|
do_square_split = 0;
|
|
do_rectangular_split = 0;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
#if !CONFIG_PVQ
|
|
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
|
|
#else
|
|
restore_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize);
|
|
#endif
|
|
}
|
|
|
|
// store estimated motion vector
|
|
if (cpi->sf.adaptive_motion_search) store_pred_mv(x, ctx_none);
|
|
|
|
// PARTITION_SPLIT
|
|
// TODO(jingning): use the motion vectors given by the above search as
|
|
// the starting point of motion search in the following partition type check.
|
|
if (do_square_split) {
|
|
int reached_last_index = 0;
|
|
subsize = get_subsize(bsize, PARTITION_SPLIT);
|
|
if (bsize == BLOCK_8X8 && !unify_bsize) {
|
|
#if CONFIG_DUAL_FILTER
|
|
if (cpi->sf.adaptive_pred_interp_filter && partition_none_allowed)
|
|
pc_tree->leaf_split[0]->pred_interp_filter =
|
|
ctx_none->mic.mbmi.interp_filter[0];
|
|
#else
|
|
if (cpi->sf.adaptive_pred_interp_filter && partition_none_allowed)
|
|
pc_tree->leaf_split[0]->pred_interp_filter =
|
|
ctx_none->mic.mbmi.interp_filter;
|
|
#endif
|
|
#if CONFIG_SUPERTX
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc,
|
|
&sum_rate_nocoef,
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
PARTITION_SPLIT,
|
|
#endif
|
|
subsize, pc_tree->leaf_split[0], INT64_MAX);
|
|
#else
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc,
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
PARTITION_SPLIT,
|
|
#endif
|
|
subsize, pc_tree->leaf_split[0], best_rdc.rdcost);
|
|
#endif // CONFIG_SUPERTX
|
|
if (sum_rdc.rate == INT_MAX) {
|
|
sum_rdc.rdcost = INT64_MAX;
|
|
#if CONFIG_SUPERTX
|
|
sum_rate_nocoef = INT_MAX;
|
|
#endif
|
|
}
|
|
#if CONFIG_SUPERTX
|
|
if (supertx_allowed && sum_rdc.rdcost < INT64_MAX) {
|
|
TX_SIZE supertx_size = max_txsize_lookup[bsize];
|
|
const PARTITION_TYPE best_partition = pc_tree->partitioning;
|
|
|
|
pc_tree->partitioning = PARTITION_SPLIT;
|
|
|
|
sum_rdc.rate +=
|
|
av1_cost_bit(cm->fc->supertx_prob
|
|
[partition_supertx_context_lookup[PARTITION_SPLIT]]
|
|
[supertx_size],
|
|
0);
|
|
sum_rdc.rdcost =
|
|
RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
|
|
|
|
if (is_inter_mode(pc_tree->leaf_split[0]->mic.mbmi.mode)) {
|
|
TX_TYPE best_tx = DCT_DCT;
|
|
RD_COST tmp_rdc = { sum_rate_nocoef, 0, 0 };
|
|
|
|
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
|
|
|
|
rd_supertx_sb(cpi, td, tile_info, mi_row, mi_col, bsize,
|
|
&tmp_rdc.rate, &tmp_rdc.dist, &best_tx, pc_tree);
|
|
|
|
tmp_rdc.rate += av1_cost_bit(
|
|
cm->fc->supertx_prob
|
|
[partition_supertx_context_lookup[PARTITION_SPLIT]]
|
|
[supertx_size],
|
|
1);
|
|
tmp_rdc.rdcost =
|
|
RDCOST(x->rdmult, x->rddiv, tmp_rdc.rate, tmp_rdc.dist);
|
|
if (tmp_rdc.rdcost < sum_rdc.rdcost) {
|
|
sum_rdc = tmp_rdc;
|
|
update_supertx_param_sb(cpi, td, mi_row, mi_col, bsize, best_tx,
|
|
supertx_size, pc_tree);
|
|
}
|
|
}
|
|
|
|
pc_tree->partitioning = best_partition;
|
|
}
|
|
#endif // CONFIG_SUPERTX
|
|
reached_last_index = 1;
|
|
} else {
|
|
int idx;
|
|
#if CONFIG_SUPERTX
|
|
for (idx = 0; idx < 4 && sum_rdc.rdcost < INT64_MAX; ++idx) {
|
|
#else
|
|
for (idx = 0; idx < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++idx) {
|
|
#endif // CONFIG_SUPERTX
|
|
const int x_idx = (idx & 1) * mi_step;
|
|
const int y_idx = (idx >> 1) * mi_step;
|
|
|
|
if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
|
|
continue;
|
|
|
|
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none);
|
|
|
|
pc_tree->split[idx]->index = idx;
|
|
#if CONFIG_SUPERTX
|
|
rd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx,
|
|
mi_col + x_idx, subsize, &this_rdc, &this_rate_nocoef,
|
|
INT64_MAX - sum_rdc.rdcost, pc_tree->split[idx]);
|
|
#else
|
|
rd_pick_partition(
|
|
cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, subsize,
|
|
&this_rdc, best_rdc.rdcost - sum_rdc.rdcost, pc_tree->split[idx]);
|
|
#endif // CONFIG_SUPERTX
|
|
|
|
if (this_rdc.rate == INT_MAX) {
|
|
sum_rdc.rdcost = INT64_MAX;
|
|
#if CONFIG_SUPERTX
|
|
sum_rate_nocoef = INT_MAX;
|
|
#endif // CONFIG_SUPERTX
|
|
break;
|
|
} else {
|
|
sum_rdc.rate += this_rdc.rate;
|
|
sum_rdc.dist += this_rdc.dist;
|
|
sum_rdc.rdcost += this_rdc.rdcost;
|
|
#if CONFIG_SUPERTX
|
|
sum_rate_nocoef += this_rate_nocoef;
|
|
#endif // CONFIG_SUPERTX
|
|
}
|
|
}
|
|
reached_last_index = (idx == 4);
|
|
#if CONFIG_SUPERTX
|
|
if (supertx_allowed && sum_rdc.rdcost < INT64_MAX && reached_last_index) {
|
|
TX_SIZE supertx_size = max_txsize_lookup[bsize];
|
|
const PARTITION_TYPE best_partition = pc_tree->partitioning;
|
|
|
|
pc_tree->partitioning = PARTITION_SPLIT;
|
|
|
|
sum_rdc.rate +=
|
|
av1_cost_bit(cm->fc->supertx_prob
|
|
[partition_supertx_context_lookup[PARTITION_SPLIT]]
|
|
[supertx_size],
|
|
0);
|
|
sum_rdc.rdcost =
|
|
RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
|
|
|
|
if (!check_intra_sb(cpi, tile_info, mi_row, mi_col, bsize, pc_tree)) {
|
|
TX_TYPE best_tx = DCT_DCT;
|
|
RD_COST tmp_rdc = { sum_rate_nocoef, 0, 0 };
|
|
|
|
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
|
|
|
|
rd_supertx_sb(cpi, td, tile_info, mi_row, mi_col, bsize,
|
|
&tmp_rdc.rate, &tmp_rdc.dist, &best_tx, pc_tree);
|
|
|
|
tmp_rdc.rate += av1_cost_bit(
|
|
cm->fc->supertx_prob
|
|
[partition_supertx_context_lookup[PARTITION_SPLIT]]
|
|
[supertx_size],
|
|
1);
|
|
tmp_rdc.rdcost =
|
|
RDCOST(x->rdmult, x->rddiv, tmp_rdc.rate, tmp_rdc.dist);
|
|
if (tmp_rdc.rdcost < sum_rdc.rdcost) {
|
|
sum_rdc = tmp_rdc;
|
|
update_supertx_param_sb(cpi, td, mi_row, mi_col, bsize, best_tx,
|
|
supertx_size, pc_tree);
|
|
}
|
|
}
|
|
|
|
pc_tree->partitioning = best_partition;
|
|
}
|
|
#endif // CONFIG_SUPERTX
|
|
}
|
|
|
|
if (reached_last_index && sum_rdc.rdcost < best_rdc.rdcost) {
|
|
sum_rdc.rate += partition_cost[PARTITION_SPLIT];
|
|
sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
|
|
#if CONFIG_SUPERTX
|
|
sum_rate_nocoef += partition_cost[PARTITION_SPLIT];
|
|
#endif // CONFIG_SUPERTX
|
|
|
|
if (sum_rdc.rdcost < best_rdc.rdcost) {
|
|
best_rdc = sum_rdc;
|
|
#if CONFIG_SUPERTX
|
|
best_rate_nocoef = sum_rate_nocoef;
|
|
assert(best_rate_nocoef >= 0);
|
|
#endif // CONFIG_SUPERTX
|
|
pc_tree->partitioning = PARTITION_SPLIT;
|
|
}
|
|
} else if (cpi->sf.less_rectangular_check) {
|
|
// skip rectangular partition test when larger block size
|
|
// gives better rd cost
|
|
do_rectangular_split &= !partition_none_allowed;
|
|
}
|
|
#if !CONFIG_PVQ
|
|
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
|
|
#else
|
|
restore_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize);
|
|
#endif
|
|
} // if (do_split)
|
|
|
|
// PARTITION_HORZ
|
|
if (partition_horz_allowed &&
|
|
(do_rectangular_split || av1_active_h_edge(cpi, mi_row, mi_step))) {
|
|
subsize = get_subsize(bsize, PARTITION_HORZ);
|
|
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none);
|
|
#if CONFIG_DUAL_FILTER
|
|
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
|
|
partition_none_allowed)
|
|
pc_tree->horizontal[0].pred_interp_filter =
|
|
ctx_none->mic.mbmi.interp_filter[0];
|
|
#else
|
|
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
|
|
partition_none_allowed)
|
|
pc_tree->horizontal[0].pred_interp_filter =
|
|
ctx_none->mic.mbmi.interp_filter;
|
|
#endif
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc,
|
|
#if CONFIG_SUPERTX
|
|
&sum_rate_nocoef,
|
|
#endif // CONFIG_SUPERTX
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
PARTITION_HORZ,
|
|
#endif
|
|
subsize, &pc_tree->horizontal[0], best_rdc.rdcost);
|
|
|
|
#if CONFIG_SUPERTX
|
|
abort_flag =
|
|
(sum_rdc.rdcost >= best_rd && (bsize > BLOCK_8X8 || unify_bsize)) ||
|
|
(sum_rdc.rate == INT_MAX && bsize == BLOCK_8X8);
|
|
if (sum_rdc.rdcost < INT64_MAX &&
|
|
#else
|
|
if (sum_rdc.rdcost < best_rdc.rdcost &&
|
|
#endif // CONFIG_SUPERTX
|
|
!force_horz_split && (bsize > BLOCK_8X8 || unify_bsize)) {
|
|
PICK_MODE_CONTEXT *ctx_h = &pc_tree->horizontal[0];
|
|
update_state(cpi, td, ctx_h, mi_row, mi_col, subsize, 1);
|
|
encode_superblock(cpi, td, tp, DRY_RUN_NORMAL, mi_row, mi_col, subsize,
|
|
ctx_h, NULL);
|
|
|
|
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_h);
|
|
|
|
#if CONFIG_DUAL_FILTER
|
|
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
|
|
partition_none_allowed)
|
|
pc_tree->horizontal[1].pred_interp_filter =
|
|
ctx_h->mic.mbmi.interp_filter[0];
|
|
#else
|
|
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
|
|
partition_none_allowed)
|
|
pc_tree->horizontal[1].pred_interp_filter =
|
|
ctx_none->mic.mbmi.interp_filter;
|
|
#endif
|
|
#if CONFIG_SUPERTX
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col, &this_rdc,
|
|
&this_rate_nocoef,
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
PARTITION_HORZ,
|
|
#endif
|
|
subsize, &pc_tree->horizontal[1], INT64_MAX);
|
|
#else
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col, &this_rdc,
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
PARTITION_HORZ,
|
|
#endif
|
|
subsize, &pc_tree->horizontal[1],
|
|
best_rdc.rdcost - sum_rdc.rdcost);
|
|
#endif // CONFIG_SUPERTX
|
|
if (this_rdc.rate == INT_MAX) {
|
|
sum_rdc.rdcost = INT64_MAX;
|
|
#if CONFIG_SUPERTX
|
|
sum_rate_nocoef = INT_MAX;
|
|
#endif // CONFIG_SUPERTX
|
|
} else {
|
|
sum_rdc.rate += this_rdc.rate;
|
|
sum_rdc.dist += this_rdc.dist;
|
|
sum_rdc.rdcost += this_rdc.rdcost;
|
|
#if CONFIG_SUPERTX
|
|
sum_rate_nocoef += this_rate_nocoef;
|
|
#endif // CONFIG_SUPERTX
|
|
}
|
|
}
|
|
|
|
#if CONFIG_SUPERTX
|
|
if (supertx_allowed && sum_rdc.rdcost < INT64_MAX && !abort_flag) {
|
|
TX_SIZE supertx_size = max_txsize_lookup[bsize];
|
|
const PARTITION_TYPE best_partition = pc_tree->partitioning;
|
|
|
|
pc_tree->partitioning = PARTITION_HORZ;
|
|
|
|
sum_rdc.rate += av1_cost_bit(
|
|
cm->fc->supertx_prob[partition_supertx_context_lookup[PARTITION_HORZ]]
|
|
[supertx_size],
|
|
0);
|
|
sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
|
|
|
|
if (!check_intra_sb(cpi, tile_info, mi_row, mi_col, bsize, pc_tree)) {
|
|
TX_TYPE best_tx = DCT_DCT;
|
|
RD_COST tmp_rdc = { sum_rate_nocoef, 0, 0 };
|
|
|
|
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
|
|
|
|
rd_supertx_sb(cpi, td, tile_info, mi_row, mi_col, bsize, &tmp_rdc.rate,
|
|
&tmp_rdc.dist, &best_tx, pc_tree);
|
|
|
|
tmp_rdc.rate += av1_cost_bit(
|
|
cm->fc
|
|
->supertx_prob[partition_supertx_context_lookup[PARTITION_HORZ]]
|
|
[supertx_size],
|
|
1);
|
|
tmp_rdc.rdcost =
|
|
RDCOST(x->rdmult, x->rddiv, tmp_rdc.rate, tmp_rdc.dist);
|
|
if (tmp_rdc.rdcost < sum_rdc.rdcost) {
|
|
sum_rdc = tmp_rdc;
|
|
update_supertx_param_sb(cpi, td, mi_row, mi_col, bsize, best_tx,
|
|
supertx_size, pc_tree);
|
|
}
|
|
}
|
|
|
|
pc_tree->partitioning = best_partition;
|
|
}
|
|
#endif // CONFIG_SUPERTX
|
|
|
|
if (sum_rdc.rdcost < best_rdc.rdcost) {
|
|
sum_rdc.rate += partition_cost[PARTITION_HORZ];
|
|
sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
|
|
#if CONFIG_SUPERTX
|
|
sum_rate_nocoef += partition_cost[PARTITION_HORZ];
|
|
#endif // CONFIG_SUPERTX
|
|
if (sum_rdc.rdcost < best_rdc.rdcost) {
|
|
best_rdc = sum_rdc;
|
|
#if CONFIG_SUPERTX
|
|
best_rate_nocoef = sum_rate_nocoef;
|
|
assert(best_rate_nocoef >= 0);
|
|
#endif // CONFIG_SUPERTX
|
|
pc_tree->partitioning = PARTITION_HORZ;
|
|
}
|
|
}
|
|
#if !CONFIG_PVQ
|
|
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
|
|
#else
|
|
restore_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize);
|
|
#endif
|
|
}
|
|
|
|
// PARTITION_VERT
|
|
if (partition_vert_allowed &&
|
|
(do_rectangular_split || av1_active_v_edge(cpi, mi_col, mi_step))) {
|
|
subsize = get_subsize(bsize, PARTITION_VERT);
|
|
|
|
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none);
|
|
|
|
#if CONFIG_DUAL_FILTER
|
|
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
|
|
partition_none_allowed)
|
|
pc_tree->vertical[0].pred_interp_filter =
|
|
ctx_none->mic.mbmi.interp_filter[0];
|
|
#else
|
|
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
|
|
partition_none_allowed)
|
|
pc_tree->vertical[0].pred_interp_filter =
|
|
ctx_none->mic.mbmi.interp_filter;
|
|
#endif
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc,
|
|
#if CONFIG_SUPERTX
|
|
&sum_rate_nocoef,
|
|
#endif // CONFIG_SUPERTX
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
PARTITION_VERT,
|
|
#endif
|
|
subsize, &pc_tree->vertical[0], best_rdc.rdcost);
|
|
#if CONFIG_SUPERTX
|
|
abort_flag =
|
|
(sum_rdc.rdcost >= best_rd && (bsize > BLOCK_8X8 || unify_bsize)) ||
|
|
(sum_rdc.rate == INT_MAX && bsize == BLOCK_8X8);
|
|
if (sum_rdc.rdcost < INT64_MAX &&
|
|
#else
|
|
if (sum_rdc.rdcost < best_rdc.rdcost &&
|
|
#endif // CONFIG_SUPERTX
|
|
!force_vert_split && (bsize > BLOCK_8X8 || unify_bsize)) {
|
|
update_state(cpi, td, &pc_tree->vertical[0], mi_row, mi_col, subsize, 1);
|
|
encode_superblock(cpi, td, tp, DRY_RUN_NORMAL, mi_row, mi_col, subsize,
|
|
&pc_tree->vertical[0], NULL);
|
|
|
|
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none);
|
|
|
|
#if CONFIG_DUAL_FILTER
|
|
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
|
|
partition_none_allowed)
|
|
pc_tree->vertical[1].pred_interp_filter =
|
|
ctx_none->mic.mbmi.interp_filter[0];
|
|
#else
|
|
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
|
|
partition_none_allowed)
|
|
pc_tree->vertical[1].pred_interp_filter =
|
|
ctx_none->mic.mbmi.interp_filter;
|
|
#endif
|
|
#if CONFIG_SUPERTX
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step, &this_rdc,
|
|
&this_rate_nocoef,
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
PARTITION_VERT,
|
|
#endif
|
|
subsize, &pc_tree->vertical[1],
|
|
INT64_MAX - sum_rdc.rdcost);
|
|
#else
|
|
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step, &this_rdc,
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
PARTITION_VERT,
|
|
#endif
|
|
subsize, &pc_tree->vertical[1],
|
|
best_rdc.rdcost - sum_rdc.rdcost);
|
|
#endif // CONFIG_SUPERTX
|
|
if (this_rdc.rate == INT_MAX) {
|
|
sum_rdc.rdcost = INT64_MAX;
|
|
#if CONFIG_SUPERTX
|
|
sum_rate_nocoef = INT_MAX;
|
|
#endif // CONFIG_SUPERTX
|
|
} else {
|
|
sum_rdc.rate += this_rdc.rate;
|
|
sum_rdc.dist += this_rdc.dist;
|
|
sum_rdc.rdcost += this_rdc.rdcost;
|
|
#if CONFIG_SUPERTX
|
|
sum_rate_nocoef += this_rate_nocoef;
|
|
#endif // CONFIG_SUPERTX
|
|
}
|
|
}
|
|
#if CONFIG_SUPERTX
|
|
if (supertx_allowed && sum_rdc.rdcost < INT64_MAX && !abort_flag) {
|
|
TX_SIZE supertx_size = max_txsize_lookup[bsize];
|
|
const PARTITION_TYPE best_partition = pc_tree->partitioning;
|
|
|
|
pc_tree->partitioning = PARTITION_VERT;
|
|
|
|
sum_rdc.rate += av1_cost_bit(
|
|
cm->fc->supertx_prob[partition_supertx_context_lookup[PARTITION_VERT]]
|
|
[supertx_size],
|
|
0);
|
|
sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
|
|
|
|
if (!check_intra_sb(cpi, tile_info, mi_row, mi_col, bsize, pc_tree)) {
|
|
TX_TYPE best_tx = DCT_DCT;
|
|
RD_COST tmp_rdc = { sum_rate_nocoef, 0, 0 };
|
|
|
|
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
|
|
|
|
rd_supertx_sb(cpi, td, tile_info, mi_row, mi_col, bsize, &tmp_rdc.rate,
|
|
&tmp_rdc.dist, &best_tx, pc_tree);
|
|
|
|
tmp_rdc.rate += av1_cost_bit(
|
|
cm->fc
|
|
->supertx_prob[partition_supertx_context_lookup[PARTITION_VERT]]
|
|
[supertx_size],
|
|
1);
|
|
tmp_rdc.rdcost =
|
|
RDCOST(x->rdmult, x->rddiv, tmp_rdc.rate, tmp_rdc.dist);
|
|
if (tmp_rdc.rdcost < sum_rdc.rdcost) {
|
|
sum_rdc = tmp_rdc;
|
|
update_supertx_param_sb(cpi, td, mi_row, mi_col, bsize, best_tx,
|
|
supertx_size, pc_tree);
|
|
}
|
|
}
|
|
|
|
pc_tree->partitioning = best_partition;
|
|
}
|
|
#endif // CONFIG_SUPERTX
|
|
|
|
if (sum_rdc.rdcost < best_rdc.rdcost) {
|
|
sum_rdc.rate += partition_cost[PARTITION_VERT];
|
|
sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
|
|
#if CONFIG_SUPERTX
|
|
sum_rate_nocoef += partition_cost[PARTITION_VERT];
|
|
#endif // CONFIG_SUPERTX
|
|
if (sum_rdc.rdcost < best_rdc.rdcost) {
|
|
best_rdc = sum_rdc;
|
|
#if CONFIG_SUPERTX
|
|
best_rate_nocoef = sum_rate_nocoef;
|
|
assert(best_rate_nocoef >= 0);
|
|
#endif // CONFIG_SUPERTX
|
|
pc_tree->partitioning = PARTITION_VERT;
|
|
}
|
|
}
|
|
#if !CONFIG_PVQ
|
|
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
|
|
#else
|
|
restore_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize);
|
|
#endif
|
|
}
|
|
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
// PARTITION_HORZ_A
|
|
if (partition_horz_allowed && do_rectangular_split && bsize > BLOCK_8X8 &&
|
|
partition_none_allowed) {
|
|
subsize = get_subsize(bsize, PARTITION_HORZ_A);
|
|
rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc,
|
|
pc_tree->horizontala, ctx_none, mi_row, mi_col, bsize,
|
|
PARTITION_HORZ_A,
|
|
#if CONFIG_SUPERTX
|
|
best_rd, &best_rate_nocoef, &x_ctx,
|
|
#endif
|
|
mi_row, mi_col, bsize2, mi_row, mi_col + mi_step, bsize2,
|
|
mi_row + mi_step, mi_col, subsize);
|
|
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
|
|
}
|
|
// PARTITION_HORZ_B
|
|
if (partition_horz_allowed && do_rectangular_split && bsize > BLOCK_8X8 &&
|
|
partition_none_allowed) {
|
|
subsize = get_subsize(bsize, PARTITION_HORZ_B);
|
|
rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc,
|
|
pc_tree->horizontalb, ctx_none, mi_row, mi_col, bsize,
|
|
PARTITION_HORZ_B,
|
|
#if CONFIG_SUPERTX
|
|
best_rd, &best_rate_nocoef, &x_ctx,
|
|
#endif
|
|
mi_row, mi_col, subsize, mi_row + mi_step, mi_col,
|
|
bsize2, mi_row + mi_step, mi_col + mi_step, bsize2);
|
|
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
|
|
}
|
|
// PARTITION_VERT_A
|
|
if (partition_vert_allowed && do_rectangular_split && bsize > BLOCK_8X8 &&
|
|
partition_none_allowed) {
|
|
subsize = get_subsize(bsize, PARTITION_VERT_A);
|
|
rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc,
|
|
pc_tree->verticala, ctx_none, mi_row, mi_col, bsize,
|
|
PARTITION_VERT_A,
|
|
#if CONFIG_SUPERTX
|
|
best_rd, &best_rate_nocoef, &x_ctx,
|
|
#endif
|
|
mi_row, mi_col, bsize2, mi_row + mi_step, mi_col, bsize2,
|
|
mi_row, mi_col + mi_step, subsize);
|
|
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
|
|
}
|
|
// PARTITION_VERT_B
|
|
if (partition_vert_allowed && do_rectangular_split && bsize > BLOCK_8X8 &&
|
|
partition_none_allowed) {
|
|
subsize = get_subsize(bsize, PARTITION_VERT_B);
|
|
rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc,
|
|
pc_tree->verticalb, ctx_none, mi_row, mi_col, bsize,
|
|
PARTITION_VERT_B,
|
|
#if CONFIG_SUPERTX
|
|
best_rd, &best_rate_nocoef, &x_ctx,
|
|
#endif
|
|
mi_row, mi_col, subsize, mi_row, mi_col + mi_step,
|
|
bsize2, mi_row + mi_step, mi_col + mi_step, bsize2);
|
|
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
|
|
}
|
|
#endif // CONFIG_EXT_PARTITION_TYPES
|
|
|
|
// TODO(jbb): This code added so that we avoid static analysis
|
|
// warning related to the fact that best_rd isn't used after this
|
|
// point. This code should be refactored so that the duplicate
|
|
// checks occur in some sub function and thus are used...
|
|
(void)best_rd;
|
|
*rd_cost = best_rdc;
|
|
#if CONFIG_SUPERTX
|
|
*rate_nocoef = best_rate_nocoef;
|
|
#endif // CONFIG_SUPERTX
|
|
|
|
if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX &&
|
|
pc_tree->index != 3) {
|
|
if (bsize == cm->sb_size) {
|
|
encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize,
|
|
pc_tree, NULL);
|
|
} else {
|
|
encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
|
|
pc_tree, NULL);
|
|
}
|
|
}
|
|
|
|
if (bsize == cm->sb_size) {
|
|
#if !CONFIG_PVQ
|
|
assert(tp_orig < *tp || (tp_orig == *tp && xd->mi[0]->mbmi.skip));
|
|
#endif
|
|
assert(best_rdc.rate < INT_MAX);
|
|
assert(best_rdc.dist < INT64_MAX);
|
|
} else {
|
|
assert(tp_orig == *tp);
|
|
}
|
|
}
|
|
|
|
static void encode_rd_sb_row(AV1_COMP *cpi, ThreadData *td,
|
|
TileDataEnc *tile_data, int mi_row,
|
|
TOKENEXTRA **tp) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
const TileInfo *const tile_info = &tile_data->tile_info;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
SPEED_FEATURES *const sf = &cpi->sf;
|
|
int mi_col;
|
|
#if CONFIG_EXT_PARTITION
|
|
const int leaf_nodes = 256;
|
|
#else
|
|
const int leaf_nodes = 64;
|
|
#endif // CONFIG_EXT_PARTITION
|
|
|
|
// Initialize the left context for the new SB row
|
|
av1_zero_left_context(xd);
|
|
|
|
#if CONFIG_DELTA_Q
|
|
// Reset delta for every tile
|
|
if (cm->delta_q_present_flag)
|
|
if (mi_row == tile_info->mi_row_start) xd->prev_qindex = cm->base_qindex;
|
|
#endif
|
|
|
|
// Code each SB in the row
|
|
for (mi_col = tile_info->mi_col_start; mi_col < tile_info->mi_col_end;
|
|
mi_col += cm->mib_size) {
|
|
const struct segmentation *const seg = &cm->seg;
|
|
int dummy_rate;
|
|
int64_t dummy_dist;
|
|
RD_COST dummy_rdc;
|
|
#if CONFIG_SUPERTX
|
|
int dummy_rate_nocoef;
|
|
#endif // CONFIG_SUPERTX
|
|
int i;
|
|
int seg_skip = 0;
|
|
|
|
const int idx_str = cm->mi_stride * mi_row + mi_col;
|
|
MODE_INFO **mi = cm->mi_grid_visible + idx_str;
|
|
PC_TREE *const pc_root = td->pc_root[cm->mib_size_log2 - MIN_MIB_SIZE_LOG2];
|
|
|
|
#if CONFIG_DEBLOCKING_ACROSS_TILES
|
|
if (av1_disable_loopfilter_on_tile_boundary(cm)) {
|
|
av1_update_tile_boundary_info(cm, tile_info, mi_row, mi_col);
|
|
}
|
|
#endif // CONFIG_DEBLOCKING_ACROSS_TILES
|
|
if (sf->adaptive_pred_interp_filter) {
|
|
for (i = 0; i < leaf_nodes; ++i)
|
|
td->leaf_tree[i].pred_interp_filter = SWITCHABLE;
|
|
|
|
for (i = 0; i < leaf_nodes; ++i) {
|
|
td->pc_tree[i].vertical[0].pred_interp_filter = SWITCHABLE;
|
|
td->pc_tree[i].vertical[1].pred_interp_filter = SWITCHABLE;
|
|
td->pc_tree[i].horizontal[0].pred_interp_filter = SWITCHABLE;
|
|
td->pc_tree[i].horizontal[1].pred_interp_filter = SWITCHABLE;
|
|
}
|
|
}
|
|
|
|
av1_zero(x->pred_mv);
|
|
pc_root->index = 0;
|
|
|
|
if (seg->enabled) {
|
|
const uint8_t *const map =
|
|
seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
|
|
int segment_id = get_segment_id(cm, map, cm->sb_size, mi_row, mi_col);
|
|
seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP);
|
|
}
|
|
|
|
#if CONFIG_DELTA_Q
|
|
if (cpi->oxcf.aq_mode == DELTA_AQ) {
|
|
// Test mode for delta quantization
|
|
int sb_row = mi_row >> 3;
|
|
int sb_col = mi_col >> 3;
|
|
int sb_stride = (cm->width + MAX_SB_SIZE - 1) >> MAX_SB_SIZE_LOG2;
|
|
int index = ((sb_row * sb_stride + sb_col + 8) & 31) - 16;
|
|
|
|
// Ensure divisibility of delta_qindex by delta_q_res
|
|
int offset_qindex = (index < 0 ? -index - 8 : index - 8);
|
|
int qmask = ~(cm->delta_q_res - 1);
|
|
int current_qindex = clamp(cm->base_qindex + offset_qindex,
|
|
cm->delta_q_res, 256 - cm->delta_q_res);
|
|
current_qindex =
|
|
((current_qindex - cm->base_qindex + cm->delta_q_res / 2) & qmask) +
|
|
cm->base_qindex;
|
|
|
|
xd->delta_qindex = current_qindex - cm->base_qindex;
|
|
set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
|
|
xd->mi[0]->mbmi.current_q_index = current_qindex;
|
|
xd->mi[0]->mbmi.segment_id = 0;
|
|
av1_init_plane_quantizers(cpi, x, xd->mi[0]->mbmi.segment_id);
|
|
}
|
|
#endif
|
|
|
|
x->source_variance = UINT_MAX;
|
|
if (sf->partition_search_type == FIXED_PARTITION || seg_skip) {
|
|
BLOCK_SIZE bsize;
|
|
set_offsets(cpi, tile_info, x, mi_row, mi_col, cm->sb_size);
|
|
bsize = seg_skip ? cm->sb_size : sf->always_this_block_size;
|
|
set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
|
|
rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, cm->sb_size,
|
|
&dummy_rate, &dummy_dist,
|
|
#if CONFIG_SUPERTX
|
|
&dummy_rate_nocoef,
|
|
#endif // CONFIG_SUPERTX
|
|
1, pc_root);
|
|
} else if (cpi->partition_search_skippable_frame) {
|
|
BLOCK_SIZE bsize;
|
|
set_offsets(cpi, tile_info, x, mi_row, mi_col, cm->sb_size);
|
|
bsize = get_rd_var_based_fixed_partition(cpi, x, mi_row, mi_col);
|
|
set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
|
|
rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, cm->sb_size,
|
|
&dummy_rate, &dummy_dist,
|
|
#if CONFIG_SUPERTX
|
|
&dummy_rate_nocoef,
|
|
#endif // CONFIG_SUPERTX
|
|
1, pc_root);
|
|
} else if (sf->partition_search_type == VAR_BASED_PARTITION) {
|
|
choose_partitioning(cpi, td, tile_info, x, mi_row, mi_col);
|
|
rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, cm->sb_size,
|
|
&dummy_rate, &dummy_dist,
|
|
#if CONFIG_SUPERTX
|
|
&dummy_rate_nocoef,
|
|
#endif // CONFIG_SUPERTX
|
|
1, pc_root);
|
|
} else {
|
|
// If required set upper and lower partition size limits
|
|
if (sf->auto_min_max_partition_size) {
|
|
set_offsets(cpi, tile_info, x, mi_row, mi_col, cm->sb_size);
|
|
rd_auto_partition_range(cpi, tile_info, xd, mi_row, mi_col,
|
|
&x->min_partition_size, &x->max_partition_size);
|
|
}
|
|
rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, cm->sb_size,
|
|
&dummy_rdc,
|
|
#if CONFIG_SUPERTX
|
|
&dummy_rate_nocoef,
|
|
#endif // CONFIG_SUPERTX
|
|
INT64_MAX, pc_root);
|
|
}
|
|
}
|
|
#if CONFIG_ENTROPY
|
|
if (cm->do_subframe_update &&
|
|
cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
|
|
if ((mi_row + MI_SIZE) %
|
|
(MI_SIZE *
|
|
AOMMAX(cm->mi_rows / MI_SIZE / COEF_PROBS_BUFS, 1)) ==
|
|
0 &&
|
|
mi_row + MI_SIZE < cm->mi_rows &&
|
|
cm->coef_probs_update_idx < COEF_PROBS_BUFS - 1) {
|
|
TX_SIZE t;
|
|
SUBFRAME_STATS *subframe_stats = &cpi->subframe_stats;
|
|
|
|
for (t = TX_4X4; t < TX_SIZES; ++t)
|
|
av1_full_to_model_counts(cpi->td.counts->coef[t],
|
|
cpi->td.rd_counts.coef_counts[t]);
|
|
av1_partial_adapt_probs(cm, mi_row, mi_col);
|
|
++cm->coef_probs_update_idx;
|
|
av1_copy(subframe_stats->coef_probs_buf[cm->coef_probs_update_idx],
|
|
cm->fc->coef_probs);
|
|
av1_copy(subframe_stats->coef_counts_buf[cm->coef_probs_update_idx],
|
|
cpi->td.rd_counts.coef_counts);
|
|
av1_copy(subframe_stats->eob_counts_buf[cm->coef_probs_update_idx],
|
|
cm->counts.eob_branch);
|
|
av1_fill_token_costs(x->token_costs, cm->fc->coef_probs);
|
|
}
|
|
}
|
|
#endif // CONFIG_ENTROPY
|
|
}
|
|
|
|
static void init_encode_frame_mb_context(AV1_COMP *cpi) {
|
|
MACROBLOCK *const x = &cpi->td.mb;
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
|
|
// Copy data over into macro block data structures.
|
|
av1_setup_src_planes(x, cpi->Source, 0, 0);
|
|
|
|
av1_setup_block_planes(xd, cm->subsampling_x, cm->subsampling_y);
|
|
}
|
|
|
|
static int check_dual_ref_flags(AV1_COMP *cpi) {
|
|
const int ref_flags = cpi->ref_frame_flags;
|
|
|
|
if (segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) {
|
|
return 0;
|
|
} else {
|
|
return (!!(ref_flags & AOM_GOLD_FLAG) + !!(ref_flags & AOM_LAST_FLAG) +
|
|
#if CONFIG_EXT_REFS
|
|
!!(ref_flags & AOM_LAST2_FLAG) + !!(ref_flags & AOM_LAST3_FLAG) +
|
|
!!(ref_flags & AOM_BWD_FLAG) +
|
|
#endif // CONFIG_EXT_REFS
|
|
!!(ref_flags & AOM_ALT_FLAG)) >= 2;
|
|
}
|
|
}
|
|
|
|
#if !CONFIG_VAR_TX
|
|
static void reset_skip_tx_size(AV1_COMMON *cm, TX_SIZE max_tx_size) {
|
|
int mi_row, mi_col;
|
|
const int mis = cm->mi_stride;
|
|
MODE_INFO **mi_ptr = cm->mi_grid_visible;
|
|
|
|
for (mi_row = 0; mi_row < cm->mi_rows; ++mi_row, mi_ptr += mis) {
|
|
for (mi_col = 0; mi_col < cm->mi_cols; ++mi_col) {
|
|
if (txsize_sqr_up_map[mi_ptr[mi_col]->mbmi.tx_size] > max_tx_size)
|
|
mi_ptr[mi_col]->mbmi.tx_size = max_tx_size;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static MV_REFERENCE_FRAME get_frame_type(const AV1_COMP *cpi) {
|
|
if (frame_is_intra_only(&cpi->common)) return INTRA_FRAME;
|
|
#if CONFIG_EXT_REFS
|
|
// We will not update the golden frame with an internal overlay frame
|
|
else if ((cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame) ||
|
|
cpi->rc.is_src_frame_ext_arf)
|
|
#else
|
|
else if (cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame)
|
|
#endif
|
|
return ALTREF_FRAME;
|
|
else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
|
|
return GOLDEN_FRAME;
|
|
else
|
|
// TODO(zoeliu): To investigate whether a frame_type other than
|
|
// INTRA/ALTREF/GOLDEN/LAST needs to be specified seperately.
|
|
return LAST_FRAME;
|
|
}
|
|
|
|
static TX_MODE select_tx_mode(const AV1_COMP *cpi, MACROBLOCKD *const xd) {
|
|
if (xd->lossless[0]) return ONLY_4X4;
|
|
if (cpi->sf.tx_size_search_method == USE_LARGESTALL)
|
|
return ALLOW_32X32 + CONFIG_TX64X64;
|
|
else if (cpi->sf.tx_size_search_method == USE_FULL_RD ||
|
|
cpi->sf.tx_size_search_method == USE_TX_8X8)
|
|
return TX_MODE_SELECT;
|
|
else
|
|
return cpi->common.tx_mode;
|
|
}
|
|
|
|
void av1_init_tile_data(AV1_COMP *cpi) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
const int tile_cols = cm->tile_cols;
|
|
const int tile_rows = cm->tile_rows;
|
|
int tile_col, tile_row;
|
|
TOKENEXTRA *pre_tok = cpi->tile_tok[0][0];
|
|
unsigned int tile_tok = 0;
|
|
|
|
if (cpi->tile_data == NULL || cpi->allocated_tiles < tile_cols * tile_rows) {
|
|
if (cpi->tile_data != NULL) aom_free(cpi->tile_data);
|
|
CHECK_MEM_ERROR(cm, cpi->tile_data, aom_malloc(tile_cols * tile_rows *
|
|
sizeof(*cpi->tile_data)));
|
|
cpi->allocated_tiles = tile_cols * tile_rows;
|
|
|
|
for (tile_row = 0; tile_row < tile_rows; ++tile_row)
|
|
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
|
|
TileDataEnc *const tile_data =
|
|
&cpi->tile_data[tile_row * tile_cols + tile_col];
|
|
int i, j;
|
|
for (i = 0; i < BLOCK_SIZES; ++i) {
|
|
for (j = 0; j < MAX_MODES; ++j) {
|
|
tile_data->thresh_freq_fact[i][j] = 32;
|
|
tile_data->mode_map[i][j] = j;
|
|
}
|
|
}
|
|
#if CONFIG_PVQ
|
|
// This will be dynamically increased as more pvq block is encoded.
|
|
tile_data->pvq_q.buf_len = 1000;
|
|
CHECK_MEM_ERROR(
|
|
cm, tile_data->pvq_q.buf,
|
|
aom_malloc(tile_data->pvq_q.buf_len * sizeof(PVQ_INFO)));
|
|
tile_data->pvq_q.curr_pos = 0;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
|
|
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
|
|
TileInfo *const tile_info =
|
|
&cpi->tile_data[tile_row * tile_cols + tile_col].tile_info;
|
|
av1_tile_init(tile_info, cm, tile_row, tile_col);
|
|
|
|
cpi->tile_tok[tile_row][tile_col] = pre_tok + tile_tok;
|
|
pre_tok = cpi->tile_tok[tile_row][tile_col];
|
|
tile_tok = allocated_tokens(*tile_info);
|
|
#if CONFIG_PVQ
|
|
cpi->tile_data[tile_row * tile_cols + tile_col].pvq_q.curr_pos = 0;
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
void av1_encode_tile(AV1_COMP *cpi, ThreadData *td, int tile_row,
|
|
int tile_col) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
TileDataEnc *const this_tile =
|
|
&cpi->tile_data[tile_row * cm->tile_cols + tile_col];
|
|
const TileInfo *const tile_info = &this_tile->tile_info;
|
|
TOKENEXTRA *tok = cpi->tile_tok[tile_row][tile_col];
|
|
int mi_row;
|
|
#if CONFIG_PVQ
|
|
od_adapt_ctx *adapt;
|
|
#endif
|
|
|
|
av1_zero_above_context(cm, tile_info->mi_col_start, tile_info->mi_col_end);
|
|
|
|
// Set up pointers to per thread motion search counters.
|
|
this_tile->m_search_count = 0; // Count of motion search hits.
|
|
this_tile->ex_search_count = 0; // Exhaustive mesh search hits.
|
|
td->mb.m_search_count_ptr = &this_tile->m_search_count;
|
|
td->mb.ex_search_count_ptr = &this_tile->ex_search_count;
|
|
|
|
#if CONFIG_PVQ
|
|
td->mb.pvq_q = &this_tile->pvq_q;
|
|
|
|
// TODO(yushin) : activity masking info needs be signaled by a bitstream
|
|
td->mb.daala_enc.use_activity_masking = AV1_PVQ_ENABLE_ACTIVITY_MASKING;
|
|
|
|
if (td->mb.daala_enc.use_activity_masking)
|
|
td->mb.daala_enc.qm = OD_HVS_QM; // Hard coded. Enc/dec required to sync.
|
|
else
|
|
td->mb.daala_enc.qm = OD_FLAT_QM; // Hard coded. Enc/dec required to sync.
|
|
|
|
{
|
|
// FIXME: Multiple segments support
|
|
int segment_id = 0;
|
|
int rdmult = set_segment_rdmult(cpi, &td->mb, segment_id);
|
|
int qindex = av1_get_qindex(&cm->seg, segment_id, cm->base_qindex);
|
|
int64_t q_ac = av1_ac_quant(qindex, 0, cpi->common.bit_depth);
|
|
int64_t q_dc = av1_dc_quant(qindex, 0, cpi->common.bit_depth);
|
|
/* td->mb.daala_enc.pvq_norm_lambda = OD_PVQ_LAMBDA; */
|
|
td->mb.daala_enc.pvq_norm_lambda =
|
|
(double)rdmult * (64 / 16) / (q_ac * q_ac * (1 << RDDIV_BITS));
|
|
td->mb.daala_enc.pvq_norm_lambda_dc =
|
|
(double)rdmult * (64 / 16) / (q_dc * q_dc * (1 << RDDIV_BITS));
|
|
// printf("%f\n", td->mb.daala_enc.pvq_norm_lambda);
|
|
}
|
|
od_init_qm(td->mb.daala_enc.state.qm, td->mb.daala_enc.state.qm_inv,
|
|
td->mb.daala_enc.qm == OD_HVS_QM ? OD_QM8_Q4_HVS : OD_QM8_Q4_FLAT);
|
|
|
|
if (td->mb.daala_enc.use_activity_masking) {
|
|
int pli;
|
|
int use_masking = td->mb.daala_enc.use_activity_masking;
|
|
int segment_id = 0;
|
|
int qindex = av1_get_qindex(&cm->seg, segment_id, cm->base_qindex);
|
|
|
|
for (pli = 0; pli < MAX_MB_PLANE; pli++) {
|
|
int i;
|
|
int q;
|
|
|
|
q = qindex;
|
|
if (q <= OD_DEFAULT_QMS[use_masking][0][pli].interp_q << OD_COEFF_SHIFT) {
|
|
od_interp_qm(&td->mb.daala_enc.state.pvq_qm_q4[pli][0], q,
|
|
&OD_DEFAULT_QMS[use_masking][0][pli], NULL);
|
|
} else {
|
|
i = 0;
|
|
while (OD_DEFAULT_QMS[use_masking][i + 1][pli].qm_q4 != NULL &&
|
|
q > OD_DEFAULT_QMS[use_masking][i + 1][pli].interp_q
|
|
<< OD_COEFF_SHIFT) {
|
|
i++;
|
|
}
|
|
od_interp_qm(&td->mb.daala_enc.state.pvq_qm_q4[pli][0], q,
|
|
&OD_DEFAULT_QMS[use_masking][i][pli],
|
|
&OD_DEFAULT_QMS[use_masking][i + 1][pli]);
|
|
}
|
|
}
|
|
}
|
|
|
|
#if CONFIG_DAALA_EC
|
|
od_ec_enc_init(&td->mb.daala_enc.w.ec, 65025);
|
|
#else
|
|
#error "CONFIG_PVQ currently requires CONFIG_DAALA_EC."
|
|
#endif
|
|
|
|
adapt = &td->mb.daala_enc.state.adapt;
|
|
|
|
#if CONFIG_DAALA_EC
|
|
od_ec_enc_reset(&td->mb.daala_enc.w.ec);
|
|
#else
|
|
#error "CONFIG_PVQ currently requires CONFIG_DAALA_EC."
|
|
#endif
|
|
od_adapt_ctx_reset(adapt, 0);
|
|
#endif // #if CONFIG_PVQ
|
|
|
|
for (mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end;
|
|
mi_row += cm->mib_size) {
|
|
encode_rd_sb_row(cpi, td, this_tile, mi_row, &tok);
|
|
}
|
|
|
|
cpi->tok_count[tile_row][tile_col] =
|
|
(unsigned int)(tok - cpi->tile_tok[tile_row][tile_col]);
|
|
assert(cpi->tok_count[tile_row][tile_col] <= allocated_tokens(*tile_info));
|
|
#if CONFIG_PVQ
|
|
#if CONFIG_DAALA_EC
|
|
od_ec_enc_clear(&td->mb.daala_enc.w.ec);
|
|
#else
|
|
#error "CONFIG_PVQ currently requires CONFIG_DAALA_EC."
|
|
#endif
|
|
|
|
td->mb.pvq_q->last_pos = td->mb.pvq_q->curr_pos;
|
|
// rewind current position so that bitstream can be written
|
|
// from the 1st pvq block
|
|
td->mb.pvq_q->curr_pos = 0;
|
|
|
|
td->mb.pvq_q = NULL;
|
|
#endif
|
|
}
|
|
|
|
static void encode_tiles(AV1_COMP *cpi) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
int tile_col, tile_row;
|
|
|
|
av1_init_tile_data(cpi);
|
|
|
|
for (tile_row = 0; tile_row < cm->tile_rows; ++tile_row)
|
|
for (tile_col = 0; tile_col < cm->tile_cols; ++tile_col)
|
|
av1_encode_tile(cpi, &cpi->td, tile_row, tile_col);
|
|
}
|
|
|
|
#if CONFIG_FP_MB_STATS
|
|
static int input_fpmb_stats(FIRSTPASS_MB_STATS *firstpass_mb_stats,
|
|
AV1_COMMON *cm, uint8_t **this_frame_mb_stats) {
|
|
uint8_t *mb_stats_in = firstpass_mb_stats->mb_stats_start +
|
|
cm->current_video_frame * cm->MBs * sizeof(uint8_t);
|
|
|
|
if (mb_stats_in > firstpass_mb_stats->mb_stats_end) return EOF;
|
|
|
|
*this_frame_mb_stats = mb_stats_in;
|
|
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
static void encode_frame_internal(AV1_COMP *cpi) {
|
|
ThreadData *const td = &cpi->td;
|
|
MACROBLOCK *const x = &td->mb;
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
RD_COUNTS *const rdc = &cpi->td.rd_counts;
|
|
int i;
|
|
|
|
x->min_partition_size = AOMMIN(x->min_partition_size, cm->sb_size);
|
|
x->max_partition_size = AOMMIN(x->max_partition_size, cm->sb_size);
|
|
#if CONFIG_REF_MV
|
|
cm->setup_mi(cm);
|
|
#endif
|
|
|
|
xd->mi = cm->mi_grid_visible;
|
|
xd->mi[0] = cm->mi;
|
|
|
|
av1_zero(*td->counts);
|
|
av1_zero(rdc->coef_counts);
|
|
av1_zero(rdc->comp_pred_diff);
|
|
|
|
#if CONFIG_GLOBAL_MOTION
|
|
av1_zero(cpi->global_motion_used);
|
|
if (cpi->common.frame_type == INTER_FRAME && cpi->Source &&
|
|
!cpi->global_motion_search_done) {
|
|
YV12_BUFFER_CONFIG *ref_buf;
|
|
int frame;
|
|
double erroradvantage = 0;
|
|
double params[8] = { 0, 0, 1, 0, 0, 1, 0, 0 };
|
|
for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) {
|
|
ref_buf = get_ref_frame_buffer(cpi, frame);
|
|
if (ref_buf) {
|
|
TransformationType model;
|
|
aom_clear_system_state();
|
|
for (model = ROTZOOM; model < GLOBAL_TRANS_TYPES; ++model) {
|
|
if (compute_global_motion_feature_based(model, cpi->Source, ref_buf,
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
cpi->common.bit_depth,
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
params)) {
|
|
convert_model_to_params(params, &cm->global_motion[frame]);
|
|
if (cm->global_motion[frame].wmtype != IDENTITY) {
|
|
erroradvantage = refine_integerized_param(
|
|
&cm->global_motion[frame], cm->global_motion[frame].wmtype,
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd,
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
ref_buf->y_buffer, ref_buf->y_width, ref_buf->y_height,
|
|
ref_buf->y_stride, cpi->Source->y_buffer,
|
|
cpi->Source->y_width, cpi->Source->y_height,
|
|
cpi->Source->y_stride, 3);
|
|
if (erroradvantage >
|
|
gm_advantage_thresh[cm->global_motion[frame].wmtype]) {
|
|
set_default_gmparams(&cm->global_motion[frame]);
|
|
}
|
|
}
|
|
}
|
|
if (cm->global_motion[frame].wmtype != IDENTITY) break;
|
|
}
|
|
aom_clear_system_state();
|
|
}
|
|
}
|
|
cpi->global_motion_search_done = 1;
|
|
}
|
|
#endif // CONFIG_GLOBAL_MOTION
|
|
|
|
for (i = 0; i < MAX_SEGMENTS; ++i) {
|
|
const int qindex = cm->seg.enabled
|
|
? av1_get_qindex(&cm->seg, i, cm->base_qindex)
|
|
: cm->base_qindex;
|
|
xd->lossless[i] = qindex == 0 && cm->y_dc_delta_q == 0 &&
|
|
cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0;
|
|
}
|
|
|
|
if (!cm->seg.enabled && xd->lossless[0]) x->optimize = 0;
|
|
|
|
cm->tx_mode = select_tx_mode(cpi, xd);
|
|
av1_frame_init_quantizer(cpi);
|
|
|
|
av1_initialize_rd_consts(cpi);
|
|
av1_initialize_me_consts(cpi, x, cm->base_qindex);
|
|
init_encode_frame_mb_context(cpi);
|
|
|
|
cm->use_prev_frame_mvs =
|
|
!cm->error_resilient_mode && cm->width == cm->last_width &&
|
|
cm->height == cm->last_height && !cm->intra_only && cm->last_show_frame;
|
|
|
|
#if CONFIG_DELTA_Q
|
|
// Fix delta q resolution for the moment
|
|
cm->delta_q_res = DEFAULT_DELTA_Q_RES;
|
|
#endif
|
|
|
|
#if CONFIG_EXT_REFS
|
|
// NOTE(zoeliu): As cm->prev_frame can take neither a frame of
|
|
// show_exisiting_frame=1, nor can it take a frame not used as
|
|
// a reference, it is probable that by the time it is being
|
|
// referred to, the frame buffer it originally points to may
|
|
// already get expired and have been reassigned to the current
|
|
// newly coded frame. Hence, we need to check whether this is
|
|
// the case, and if yes, we have 2 choices:
|
|
// (1) Simply disable the use of previous frame mvs; or
|
|
// (2) Have cm->prev_frame point to one reference frame buffer,
|
|
// e.g. LAST_FRAME.
|
|
if (cm->use_prev_frame_mvs && !enc_is_ref_frame_buf(cpi, cm->prev_frame)) {
|
|
// Reassign the LAST_FRAME buffer to cm->prev_frame.
|
|
const int last_fb_buf_idx = get_ref_frame_buf_idx(cpi, LAST_FRAME);
|
|
cm->prev_frame = &cm->buffer_pool->frame_bufs[last_fb_buf_idx];
|
|
}
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
// Special case: set prev_mi to NULL when the previous mode info
|
|
// context cannot be used.
|
|
cm->prev_mi =
|
|
cm->use_prev_frame_mvs ? cm->prev_mip + cm->mi_stride + 1 : NULL;
|
|
|
|
#if CONFIG_VAR_TX
|
|
x->txb_split_count = 0;
|
|
#if CONFIG_REF_MV
|
|
av1_zero(x->blk_skip_drl);
|
|
#endif
|
|
#endif
|
|
|
|
if (cpi->sf.partition_search_type == VAR_BASED_PARTITION &&
|
|
cpi->td.var_root[0] == NULL)
|
|
av1_setup_var_tree(&cpi->common, &cpi->td);
|
|
|
|
{
|
|
struct aom_usec_timer emr_timer;
|
|
aom_usec_timer_start(&emr_timer);
|
|
|
|
#if CONFIG_FP_MB_STATS
|
|
if (cpi->use_fp_mb_stats) {
|
|
input_fpmb_stats(&cpi->twopass.firstpass_mb_stats, cm,
|
|
&cpi->twopass.this_frame_mb_stats);
|
|
}
|
|
#endif
|
|
|
|
// If allowed, encoding tiles in parallel with one thread handling one tile.
|
|
// TODO(geza.lore): The multi-threaded encoder is not safe with more than
|
|
// 1 tile rows, as it uses the single above_context et al arrays from
|
|
// cpi->common
|
|
if (AOMMIN(cpi->oxcf.max_threads, cm->tile_cols) > 1 && cm->tile_rows == 1)
|
|
av1_encode_tiles_mt(cpi);
|
|
else
|
|
encode_tiles(cpi);
|
|
|
|
aom_usec_timer_mark(&emr_timer);
|
|
cpi->time_encode_sb_row += aom_usec_timer_elapsed(&emr_timer);
|
|
}
|
|
|
|
#if 0
|
|
// Keep record of the total distortion this time around for future use
|
|
cpi->last_frame_distortion = cpi->frame_distortion;
|
|
#endif
|
|
}
|
|
|
|
void av1_encode_frame(AV1_COMP *cpi) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
|
|
// In the longer term the encoder should be generalized to match the
|
|
// decoder such that we allow compound where one of the 3 buffers has a
|
|
// different sign bias and that buffer is then the fixed ref. However, this
|
|
// requires further work in the rd loop. For now the only supported encoder
|
|
// side behavior is where the ALT ref buffer has opposite sign bias to
|
|
// the other two.
|
|
if (!frame_is_intra_only(cm)) {
|
|
if ((cm->ref_frame_sign_bias[ALTREF_FRAME] ==
|
|
cm->ref_frame_sign_bias[GOLDEN_FRAME]) ||
|
|
(cm->ref_frame_sign_bias[ALTREF_FRAME] ==
|
|
cm->ref_frame_sign_bias[LAST_FRAME])) {
|
|
cpi->allow_comp_inter_inter = 0;
|
|
} else {
|
|
cpi->allow_comp_inter_inter = 1;
|
|
|
|
#if CONFIG_EXT_REFS
|
|
cm->comp_fwd_ref[0] = LAST_FRAME;
|
|
cm->comp_fwd_ref[1] = LAST2_FRAME;
|
|
cm->comp_fwd_ref[2] = LAST3_FRAME;
|
|
cm->comp_fwd_ref[3] = GOLDEN_FRAME;
|
|
cm->comp_bwd_ref[0] = BWDREF_FRAME;
|
|
cm->comp_bwd_ref[1] = ALTREF_FRAME;
|
|
#else
|
|
cm->comp_fixed_ref = ALTREF_FRAME;
|
|
cm->comp_var_ref[0] = LAST_FRAME;
|
|
cm->comp_var_ref[1] = GOLDEN_FRAME;
|
|
#endif // CONFIG_EXT_REFS
|
|
}
|
|
} else {
|
|
cpi->allow_comp_inter_inter = 0;
|
|
}
|
|
|
|
if (cpi->sf.frame_parameter_update) {
|
|
int i;
|
|
RD_OPT *const rd_opt = &cpi->rd;
|
|
FRAME_COUNTS *counts = cpi->td.counts;
|
|
RD_COUNTS *const rdc = &cpi->td.rd_counts;
|
|
|
|
// This code does a single RD pass over the whole frame assuming
|
|
// either compound, single or hybrid prediction as per whatever has
|
|
// worked best for that type of frame in the past.
|
|
// It also predicts whether another coding mode would have worked
|
|
// better than this coding mode. If that is the case, it remembers
|
|
// that for subsequent frames.
|
|
// It does the same analysis for transform size selection also.
|
|
//
|
|
// TODO(zoeliu): To investigate whether a frame_type other than
|
|
// INTRA/ALTREF/GOLDEN/LAST needs to be specified seperately.
|
|
const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi);
|
|
int64_t *const mode_thrs = rd_opt->prediction_type_threshes[frame_type];
|
|
const int is_alt_ref = frame_type == ALTREF_FRAME;
|
|
|
|
/* prediction (compound, single or hybrid) mode selection */
|
|
if (is_alt_ref || !cpi->allow_comp_inter_inter)
|
|
cm->reference_mode = SINGLE_REFERENCE;
|
|
else if (mode_thrs[COMPOUND_REFERENCE] > mode_thrs[SINGLE_REFERENCE] &&
|
|
mode_thrs[COMPOUND_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT] &&
|
|
check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100)
|
|
cm->reference_mode = COMPOUND_REFERENCE;
|
|
else if (mode_thrs[SINGLE_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT])
|
|
cm->reference_mode = SINGLE_REFERENCE;
|
|
else
|
|
cm->reference_mode = REFERENCE_MODE_SELECT;
|
|
|
|
#if CONFIG_DUAL_FILTER
|
|
cm->interp_filter = SWITCHABLE;
|
|
#endif
|
|
|
|
encode_frame_internal(cpi);
|
|
|
|
for (i = 0; i < REFERENCE_MODES; ++i)
|
|
mode_thrs[i] = (mode_thrs[i] + rdc->comp_pred_diff[i] / cm->MBs) / 2;
|
|
|
|
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
|
|
int single_count_zero = 0;
|
|
int comp_count_zero = 0;
|
|
|
|
for (i = 0; i < COMP_INTER_CONTEXTS; i++) {
|
|
single_count_zero += counts->comp_inter[i][0];
|
|
comp_count_zero += counts->comp_inter[i][1];
|
|
}
|
|
|
|
if (comp_count_zero == 0) {
|
|
cm->reference_mode = SINGLE_REFERENCE;
|
|
av1_zero(counts->comp_inter);
|
|
} else if (single_count_zero == 0) {
|
|
cm->reference_mode = COMPOUND_REFERENCE;
|
|
av1_zero(counts->comp_inter);
|
|
}
|
|
}
|
|
|
|
#if CONFIG_VAR_TX
|
|
if (cm->tx_mode == TX_MODE_SELECT && cpi->td.mb.txb_split_count == 0)
|
|
cm->tx_mode = ALLOW_32X32 + CONFIG_TX64X64;
|
|
#else
|
|
if (cm->tx_mode == TX_MODE_SELECT) {
|
|
#if CONFIG_TX64X64
|
|
int count4x4 = 0;
|
|
int count8x8_8x8p = 0, count8x8_lp = 0;
|
|
int count16x16_16x16p = 0, count16x16_lp = 0;
|
|
int count32x32_32x32p = 0, count32x32_lp = 0;
|
|
int count64x64_64x64p = 0;
|
|
for (i = 0; i < TX_SIZE_CONTEXTS; ++i) {
|
|
// counts->tx_size[max_depth][context_idx][this_depth_level]
|
|
count4x4 += counts->tx_size[0][i][0];
|
|
count4x4 += counts->tx_size[1][i][0];
|
|
count4x4 += counts->tx_size[2][i][0];
|
|
count4x4 += counts->tx_size[3][i][0];
|
|
|
|
count8x8_8x8p += counts->tx_size[0][i][1];
|
|
count8x8_lp += counts->tx_size[1][i][1];
|
|
count8x8_lp += counts->tx_size[2][i][1];
|
|
count8x8_lp += counts->tx_size[3][i][1];
|
|
|
|
count16x16_16x16p += counts->tx_size[1][i][2];
|
|
count16x16_lp += counts->tx_size[2][i][2];
|
|
count16x16_lp += counts->tx_size[3][i][2];
|
|
|
|
count32x32_32x32p += counts->tx_size[2][i][3];
|
|
count32x32_lp += counts->tx_size[3][i][3];
|
|
|
|
count64x64_64x64p += counts->tx_size[3][i][4];
|
|
}
|
|
#if CONFIG_EXT_TX && CONFIG_RECT_TX
|
|
count4x4 += counts->tx_size_implied[0][TX_4X4];
|
|
count4x4 += counts->tx_size_implied[1][TX_4X4];
|
|
count4x4 += counts->tx_size_implied[2][TX_4X4];
|
|
count4x4 += counts->tx_size_implied[3][TX_4X4];
|
|
count8x8_8x8p += counts->tx_size_implied[1][TX_8X8];
|
|
count8x8_lp += counts->tx_size_implied[2][TX_8X8];
|
|
count8x8_lp += counts->tx_size_implied[3][TX_8X8];
|
|
count8x8_lp += counts->tx_size_implied[4][TX_8X8];
|
|
count16x16_16x16p += counts->tx_size_implied[2][TX_16X16];
|
|
count16x16_lp += counts->tx_size_implied[3][TX_16X16];
|
|
count16x16_lp += counts->tx_size_implied[4][TX_16X16];
|
|
count32x32_32x32p += counts->tx_size_implied[3][TX_32X32];
|
|
count32x32_lp += counts->tx_size_implied[4][TX_32X32];
|
|
count64x64_64x64p += counts->tx_size_implied[4][TX_64X64];
|
|
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX
|
|
if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 &&
|
|
count32x32_lp == 0 && count32x32_32x32p == 0 &&
|
|
#if CONFIG_SUPERTX
|
|
cm->counts.supertx_size[TX_16X16] == 0 &&
|
|
cm->counts.supertx_size[TX_32X32] == 0 &&
|
|
cm->counts.supertx_size[TX_64X64] == 0 &&
|
|
#endif
|
|
count64x64_64x64p == 0) {
|
|
cm->tx_mode = ALLOW_8X8;
|
|
reset_skip_tx_size(cm, TX_8X8);
|
|
} else if (count8x8_8x8p == 0 && count8x8_lp == 0 &&
|
|
count16x16_16x16p == 0 && count16x16_lp == 0 &&
|
|
count32x32_32x32p == 0 && count32x32_lp == 0 &&
|
|
#if CONFIG_SUPERTX
|
|
cm->counts.supertx_size[TX_8X8] == 0 &&
|
|
cm->counts.supertx_size[TX_16X16] == 0 &&
|
|
cm->counts.supertx_size[TX_32X32] == 0 &&
|
|
cm->counts.supertx_size[TX_64X64] == 0 &&
|
|
#endif
|
|
count64x64_64x64p == 0) {
|
|
cm->tx_mode = ONLY_4X4;
|
|
reset_skip_tx_size(cm, TX_4X4);
|
|
} else if (count4x4 == 0 && count8x8_lp == 0 && count16x16_lp == 0 &&
|
|
count32x32_lp == 0) {
|
|
cm->tx_mode = ALLOW_64X64;
|
|
} else if (count4x4 == 0 && count8x8_lp == 0 && count16x16_lp == 0 &&
|
|
#if CONFIG_SUPERTX
|
|
cm->counts.supertx_size[TX_64X64] == 0 &&
|
|
#endif
|
|
count64x64_64x64p == 0) {
|
|
cm->tx_mode = ALLOW_32X32;
|
|
reset_skip_tx_size(cm, TX_32X32);
|
|
} else if (count4x4 == 0 && count8x8_lp == 0 && count32x32_lp == 0 &&
|
|
count32x32_32x32p == 0 &&
|
|
#if CONFIG_SUPERTX
|
|
cm->counts.supertx_size[TX_32X32] == 0 &&
|
|
cm->counts.supertx_size[TX_64X64] == 0 &&
|
|
#endif
|
|
count64x64_64x64p == 0) {
|
|
cm->tx_mode = ALLOW_16X16;
|
|
reset_skip_tx_size(cm, TX_16X16);
|
|
}
|
|
|
|
#else // CONFIG_TX64X64
|
|
|
|
int count4x4 = 0;
|
|
int count8x8_lp = 0, count8x8_8x8p = 0;
|
|
int count16x16_16x16p = 0, count16x16_lp = 0;
|
|
int count32x32 = 0;
|
|
for (i = 0; i < TX_SIZE_CONTEXTS; ++i) {
|
|
// counts->tx_size[max_depth][context_idx][this_depth_level]
|
|
count4x4 += counts->tx_size[0][i][0];
|
|
count4x4 += counts->tx_size[1][i][0];
|
|
count4x4 += counts->tx_size[2][i][0];
|
|
|
|
count8x8_8x8p += counts->tx_size[0][i][1];
|
|
count8x8_lp += counts->tx_size[1][i][1];
|
|
count8x8_lp += counts->tx_size[2][i][1];
|
|
|
|
count16x16_16x16p += counts->tx_size[1][i][2];
|
|
count16x16_lp += counts->tx_size[2][i][2];
|
|
count32x32 += counts->tx_size[2][i][3];
|
|
}
|
|
#if CONFIG_EXT_TX && CONFIG_RECT_TX
|
|
count4x4 += counts->tx_size_implied[0][TX_4X4];
|
|
count4x4 += counts->tx_size_implied[1][TX_4X4];
|
|
count4x4 += counts->tx_size_implied[2][TX_4X4];
|
|
count4x4 += counts->tx_size_implied[3][TX_4X4];
|
|
count8x8_8x8p += counts->tx_size_implied[1][TX_8X8];
|
|
count8x8_lp += counts->tx_size_implied[2][TX_8X8];
|
|
count8x8_lp += counts->tx_size_implied[3][TX_8X8];
|
|
count16x16_lp += counts->tx_size_implied[3][TX_16X16];
|
|
count16x16_16x16p += counts->tx_size_implied[2][TX_16X16];
|
|
count32x32 += counts->tx_size_implied[3][TX_32X32];
|
|
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX
|
|
if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 &&
|
|
#if CONFIG_SUPERTX
|
|
cm->counts.supertx_size[TX_16X16] == 0 &&
|
|
cm->counts.supertx_size[TX_32X32] == 0 &&
|
|
#endif // CONFIG_SUPERTX
|
|
count32x32 == 0) {
|
|
cm->tx_mode = ALLOW_8X8;
|
|
reset_skip_tx_size(cm, TX_8X8);
|
|
} else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 &&
|
|
count8x8_lp == 0 && count16x16_lp == 0 &&
|
|
#if CONFIG_SUPERTX
|
|
cm->counts.supertx_size[TX_8X8] == 0 &&
|
|
cm->counts.supertx_size[TX_16X16] == 0 &&
|
|
cm->counts.supertx_size[TX_32X32] == 0 &&
|
|
#endif // CONFIG_SUPERTX
|
|
count32x32 == 0) {
|
|
cm->tx_mode = ONLY_4X4;
|
|
reset_skip_tx_size(cm, TX_4X4);
|
|
} else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) {
|
|
cm->tx_mode = ALLOW_32X32;
|
|
} else if (count32x32 == 0 && count8x8_lp == 0 &&
|
|
#if CONFIG_SUPERTX
|
|
cm->counts.supertx_size[TX_32X32] == 0 &&
|
|
#endif // CONFIG_SUPERTX
|
|
count4x4 == 0) {
|
|
cm->tx_mode = ALLOW_16X16;
|
|
reset_skip_tx_size(cm, TX_16X16);
|
|
}
|
|
#endif // CONFIG_TX64X64
|
|
}
|
|
#endif
|
|
} else {
|
|
encode_frame_internal(cpi);
|
|
}
|
|
}
|
|
|
|
static void sum_intra_stats(FRAME_COUNTS *counts, const MODE_INFO *mi,
|
|
const MODE_INFO *above_mi, const MODE_INFO *left_mi,
|
|
const int intraonly) {
|
|
const PREDICTION_MODE y_mode = mi->mbmi.mode;
|
|
const PREDICTION_MODE uv_mode = mi->mbmi.uv_mode;
|
|
const BLOCK_SIZE bsize = mi->mbmi.sb_type;
|
|
const int unify_bsize = CONFIG_CB4X4;
|
|
|
|
if (bsize < BLOCK_8X8 && !unify_bsize) {
|
|
int idx, idy;
|
|
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
|
|
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
|
|
for (idy = 0; idy < 2; idy += num_4x4_h)
|
|
for (idx = 0; idx < 2; idx += num_4x4_w) {
|
|
const int bidx = idy * 2 + idx;
|
|
const PREDICTION_MODE bmode = mi->bmi[bidx].as_mode;
|
|
if (intraonly) {
|
|
const PREDICTION_MODE a = av1_above_block_mode(mi, above_mi, bidx);
|
|
const PREDICTION_MODE l = av1_left_block_mode(mi, left_mi, bidx);
|
|
++counts->kf_y_mode[a][l][bmode];
|
|
} else {
|
|
++counts->y_mode[0][bmode];
|
|
}
|
|
}
|
|
} else {
|
|
if (intraonly) {
|
|
const PREDICTION_MODE above = av1_above_block_mode(mi, above_mi, 0);
|
|
const PREDICTION_MODE left = av1_left_block_mode(mi, left_mi, 0);
|
|
++counts->kf_y_mode[above][left][y_mode];
|
|
} else {
|
|
++counts->y_mode[size_group_lookup[bsize]][y_mode];
|
|
}
|
|
}
|
|
|
|
++counts->uv_mode[y_mode][uv_mode];
|
|
}
|
|
|
|
#if CONFIG_VAR_TX
|
|
static void update_txfm_count(MACROBLOCK *x, MACROBLOCKD *xd,
|
|
FRAME_COUNTS *counts, TX_SIZE tx_size, int depth,
|
|
int blk_row, int blk_col) {
|
|
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
|
|
const int tx_row = blk_row >> 1;
|
|
const int tx_col = blk_col >> 1;
|
|
const int max_blocks_high = max_block_high(xd, mbmi->sb_type, 0);
|
|
const int max_blocks_wide = max_block_wide(xd, mbmi->sb_type, 0);
|
|
int ctx = txfm_partition_context(xd->above_txfm_context + tx_col,
|
|
xd->left_txfm_context + tx_row,
|
|
mbmi->sb_type, tx_size);
|
|
const TX_SIZE plane_tx_size = mbmi->inter_tx_size[tx_row][tx_col];
|
|
|
|
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
|
|
|
|
if (tx_size == plane_tx_size) {
|
|
++counts->txfm_partition[ctx][0];
|
|
mbmi->tx_size = tx_size;
|
|
txfm_partition_update(xd->above_txfm_context + tx_col,
|
|
xd->left_txfm_context + tx_row, tx_size, tx_size);
|
|
} else {
|
|
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
|
|
const int bs = tx_size_wide_unit[sub_txs];
|
|
int i;
|
|
|
|
++counts->txfm_partition[ctx][1];
|
|
++x->txb_split_count;
|
|
|
|
if (tx_size == TX_8X8) {
|
|
mbmi->inter_tx_size[tx_row][tx_col] = TX_4X4;
|
|
mbmi->tx_size = TX_4X4;
|
|
txfm_partition_update(xd->above_txfm_context + tx_col,
|
|
xd->left_txfm_context + tx_row, TX_4X4, tx_size);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < 4; ++i) {
|
|
int offsetr = (i >> 1) * bs;
|
|
int offsetc = (i & 0x01) * bs;
|
|
update_txfm_count(x, xd, counts, sub_txs, depth + 1, blk_row + offsetr,
|
|
blk_col + offsetc);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void tx_partition_count_update(const AV1_COMMON *const cm, MACROBLOCK *x,
|
|
BLOCK_SIZE plane_bsize, int mi_row,
|
|
int mi_col, FRAME_COUNTS *td_counts) {
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
|
|
const int mi_height = block_size_high[plane_bsize] >> tx_size_wide_log2[0];
|
|
TX_SIZE max_tx_size = max_txsize_rect_lookup[plane_bsize];
|
|
const int bh = tx_size_high_unit[max_tx_size];
|
|
const int bw = tx_size_wide_unit[max_tx_size];
|
|
int idx, idy;
|
|
|
|
xd->above_txfm_context = cm->above_txfm_context + mi_col;
|
|
xd->left_txfm_context =
|
|
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
|
|
|
|
for (idy = 0; idy < mi_height; idy += bh)
|
|
for (idx = 0; idx < mi_width; idx += bw)
|
|
update_txfm_count(x, xd, td_counts, max_tx_size, mi_width != mi_height,
|
|
idy, idx);
|
|
}
|
|
|
|
static void set_txfm_context(MACROBLOCKD *xd, TX_SIZE tx_size, int blk_row,
|
|
int blk_col) {
|
|
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
|
|
const int tx_row = blk_row >> 1;
|
|
const int tx_col = blk_col >> 1;
|
|
const int max_blocks_high = max_block_high(xd, mbmi->sb_type, 0);
|
|
const int max_blocks_wide = max_block_wide(xd, mbmi->sb_type, 0);
|
|
const TX_SIZE plane_tx_size = mbmi->inter_tx_size[tx_row][tx_col];
|
|
|
|
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
|
|
|
|
if (tx_size == plane_tx_size) {
|
|
mbmi->tx_size = tx_size;
|
|
txfm_partition_update(xd->above_txfm_context + tx_col,
|
|
xd->left_txfm_context + tx_row, tx_size, tx_size);
|
|
|
|
} else {
|
|
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
|
|
const int bsl = tx_size_wide_unit[sub_txs];
|
|
int i;
|
|
|
|
if (tx_size == TX_8X8) {
|
|
mbmi->inter_tx_size[tx_row][tx_col] = TX_4X4;
|
|
mbmi->tx_size = TX_4X4;
|
|
txfm_partition_update(xd->above_txfm_context + tx_col,
|
|
xd->left_txfm_context + tx_row, TX_4X4, tx_size);
|
|
return;
|
|
}
|
|
|
|
assert(bsl > 0);
|
|
for (i = 0; i < 4; ++i) {
|
|
int offsetr = (i >> 1) * bsl;
|
|
int offsetc = (i & 0x01) * bsl;
|
|
set_txfm_context(xd, sub_txs, blk_row + offsetr, blk_col + offsetc);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void tx_partition_set_contexts(const AV1_COMMON *const cm,
|
|
MACROBLOCKD *xd, BLOCK_SIZE plane_bsize,
|
|
int mi_row, int mi_col) {
|
|
const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
|
|
const int mi_height = block_size_high[plane_bsize] >> tx_size_high_log2[0];
|
|
TX_SIZE max_tx_size = max_txsize_rect_lookup[plane_bsize];
|
|
const int bh = tx_size_high_unit[max_tx_size];
|
|
const int bw = tx_size_wide_unit[max_tx_size];
|
|
int idx, idy;
|
|
|
|
xd->above_txfm_context = cm->above_txfm_context + mi_col;
|
|
xd->left_txfm_context =
|
|
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
|
|
|
|
for (idy = 0; idy < mi_height; idy += bh)
|
|
for (idx = 0; idx < mi_width; idx += bw)
|
|
set_txfm_context(xd, max_tx_size, idy, idx);
|
|
}
|
|
#endif
|
|
|
|
static void encode_superblock(const AV1_COMP *const cpi, ThreadData *td,
|
|
TOKENEXTRA **t, RUN_TYPE dry_run, int mi_row,
|
|
int mi_col, BLOCK_SIZE bsize,
|
|
PICK_MODE_CONTEXT *ctx, int *rate) {
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO **mi_8x8 = xd->mi;
|
|
MODE_INFO *mi = mi_8x8[0];
|
|
MB_MODE_INFO *mbmi = &mi->mbmi;
|
|
const int seg_skip =
|
|
segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP);
|
|
const int mis = cm->mi_stride;
|
|
const int mi_width = mi_size_wide[bsize];
|
|
const int mi_height = mi_size_high[bsize];
|
|
const int is_inter = is_inter_block(mbmi);
|
|
#if CONFIG_CB4X4
|
|
const int unify_bsize = 1;
|
|
const BLOCK_SIZE block_size = bsize;
|
|
#else
|
|
const int unify_bsize = 0;
|
|
const BLOCK_SIZE block_size = AOMMAX(bsize, BLOCK_8X8);
|
|
#endif
|
|
|
|
#if CONFIG_PVQ
|
|
x->pvq_speed = 0;
|
|
x->pvq_coded = (dry_run == OUTPUT_ENABLED) ? 1 : 0;
|
|
#endif
|
|
|
|
if (!is_inter) {
|
|
int plane;
|
|
mbmi->skip = 1;
|
|
for (plane = 0; plane < MAX_MB_PLANE; ++plane)
|
|
av1_encode_intra_block_plane((AV1_COMMON *)cm, x, block_size, plane, 1);
|
|
if (!dry_run)
|
|
sum_intra_stats(td->counts, mi, xd->above_mi, xd->left_mi,
|
|
frame_is_intra_only(cm));
|
|
|
|
// TODO(huisu): move this into sum_intra_stats().
|
|
if (!dry_run && (bsize >= BLOCK_8X8 || unify_bsize)) {
|
|
FRAME_COUNTS *counts = td->counts;
|
|
(void)counts;
|
|
#if CONFIG_FILTER_INTRA
|
|
if (mbmi->mode == DC_PRED
|
|
#if CONFIG_PALETTE
|
|
&& mbmi->palette_mode_info.palette_size[0] == 0
|
|
#endif // CONFIG_PALETTE
|
|
) {
|
|
const int use_filter_intra_mode =
|
|
mbmi->filter_intra_mode_info.use_filter_intra_mode[0];
|
|
++counts->filter_intra[0][use_filter_intra_mode];
|
|
}
|
|
if (mbmi->uv_mode == DC_PRED
|
|
#if CONFIG_PALETTE
|
|
&& mbmi->palette_mode_info.palette_size[1] == 0
|
|
#endif // CONFIG_PALETTE
|
|
) {
|
|
const int use_filter_intra_mode =
|
|
mbmi->filter_intra_mode_info.use_filter_intra_mode[1];
|
|
++counts->filter_intra[1][use_filter_intra_mode];
|
|
}
|
|
#endif // CONFIG_FILTER_INTRA
|
|
#if CONFIG_EXT_INTRA
|
|
#if CONFIG_INTRA_INTERP
|
|
if (av1_is_directional_mode(mbmi->mode, bsize)) {
|
|
int p_angle;
|
|
const int intra_filter_ctx = av1_get_pred_context_intra_interp(xd);
|
|
p_angle = mode_to_angle_map[mbmi->mode] +
|
|
mbmi->angle_delta[0] * av1_get_angle_step(mbmi->sb_type, 0);
|
|
if (av1_is_intra_filter_switchable(p_angle))
|
|
++counts->intra_filter[intra_filter_ctx][mbmi->intra_filter];
|
|
}
|
|
#endif // CONFIG_INTRA_INTERP
|
|
#endif // CONFIG_EXT_INTRA
|
|
}
|
|
|
|
#if CONFIG_PALETTE
|
|
if (bsize >= BLOCK_8X8 && !dry_run) {
|
|
for (plane = 0; plane <= 1; ++plane) {
|
|
if (mbmi->palette_mode_info.palette_size[plane] > 0) {
|
|
mbmi->palette_mode_info.palette_first_color_idx[plane] =
|
|
xd->plane[plane].color_index_map[0];
|
|
// TODO(huisu): this increases the use of token buffer. Needs stretch
|
|
// test to verify.
|
|
av1_tokenize_palette_sb(cpi, td, plane, t, dry_run, bsize, rate);
|
|
}
|
|
}
|
|
}
|
|
#endif // CONFIG_PALETTE
|
|
#if CONFIG_VAR_TX
|
|
mbmi->min_tx_size = get_min_tx_size(mbmi->tx_size);
|
|
#endif
|
|
av1_tokenize_sb(cpi, td, t, dry_run, block_size, rate);
|
|
} else {
|
|
int ref;
|
|
const int is_compound = has_second_ref(mbmi);
|
|
|
|
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
|
|
for (ref = 0; ref < 1 + is_compound; ++ref) {
|
|
YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, mbmi->ref_frame[ref]);
|
|
assert(cfg != NULL);
|
|
av1_setup_pre_planes(xd, ref, cfg, mi_row, mi_col,
|
|
&xd->block_refs[ref]->sf);
|
|
}
|
|
#if CONFIG_WARPED_MOTION
|
|
if (mbmi->motion_mode == WARPED_CAUSAL) {
|
|
int i;
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
int use_hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH;
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
|
|
for (i = 0; i < 3; ++i) {
|
|
const struct macroblockd_plane *pd = &xd->plane[i];
|
|
|
|
av1_warp_plane(&mbmi->wm_params[0],
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd,
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
pd->pre[0].buf0, pd->pre[0].width, pd->pre[0].height,
|
|
pd->pre[0].stride, pd->dst.buf,
|
|
((mi_col * MI_SIZE) >> pd->subsampling_x),
|
|
((mi_row * MI_SIZE) >> pd->subsampling_y),
|
|
xd->n8_w * (MI_SIZE >> pd->subsampling_x),
|
|
xd->n8_h * (MI_SIZE >> pd->subsampling_y),
|
|
pd->dst.stride, pd->subsampling_x, pd->subsampling_y, 16,
|
|
16, 0);
|
|
}
|
|
} else {
|
|
#endif // CONFIG_WARPED_MOTION
|
|
if (!(cpi->sf.reuse_inter_pred_sby && ctx->pred_pixel_ready) || seg_skip)
|
|
av1_build_inter_predictors_sby(xd, mi_row, mi_col, NULL, block_size);
|
|
|
|
av1_build_inter_predictors_sbuv(xd, mi_row, mi_col, NULL, block_size);
|
|
#if CONFIG_WARPED_MOTION
|
|
}
|
|
#endif // CONFIG_WARPED_MOTION
|
|
|
|
#if CONFIG_MOTION_VAR
|
|
if (mbmi->motion_mode == OBMC_CAUSAL) {
|
|
av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col);
|
|
}
|
|
#endif // CONFIG_MOTION_VAR
|
|
|
|
av1_encode_sb((AV1_COMMON *)cm, x, block_size);
|
|
#if CONFIG_VAR_TX
|
|
if (mbmi->skip) mbmi->min_tx_size = get_min_tx_size(mbmi->tx_size);
|
|
av1_tokenize_sb_vartx(cpi, td, t, dry_run, mi_row, mi_col, block_size,
|
|
rate);
|
|
#else
|
|
av1_tokenize_sb(cpi, td, t, dry_run, block_size, rate);
|
|
#endif
|
|
}
|
|
|
|
if (!dry_run) {
|
|
#if CONFIG_VAR_TX
|
|
TX_SIZE tx_size =
|
|
is_inter && !mbmi->skip ? mbmi->min_tx_size : mbmi->tx_size;
|
|
#else
|
|
TX_SIZE tx_size = mbmi->tx_size;
|
|
#endif
|
|
if (cm->tx_mode == TX_MODE_SELECT &&
|
|
#if CONFIG_CB4X4 && CONFIG_VAR_TX
|
|
(mbmi->sb_type >= BLOCK_8X8 ||
|
|
(mbmi->sb_type >= BLOCK_4X4 && is_inter &&
|
|
!(mbmi->skip || seg_skip))) &&
|
|
#else
|
|
mbmi->sb_type >= BLOCK_8X8 &&
|
|
#endif
|
|
!(is_inter && (mbmi->skip || seg_skip))) {
|
|
#if CONFIG_VAR_TX
|
|
if (is_inter) {
|
|
tx_partition_count_update(cm, x, bsize, mi_row, mi_col, td->counts);
|
|
} else {
|
|
const int tx_size_ctx = get_tx_size_context(xd);
|
|
const int tx_size_cat = is_inter ? inter_tx_size_cat_lookup[bsize]
|
|
: intra_tx_size_cat_lookup[bsize];
|
|
const TX_SIZE coded_tx_size = txsize_sqr_up_map[tx_size];
|
|
const int depth = tx_size_to_depth(coded_tx_size);
|
|
++td->counts->tx_size[tx_size_cat][tx_size_ctx][depth];
|
|
if (tx_size != max_txsize_lookup[bsize]) ++x->txb_split_count;
|
|
}
|
|
#else
|
|
const int tx_size_ctx = get_tx_size_context(xd);
|
|
const int tx_size_cat = is_inter ? inter_tx_size_cat_lookup[bsize]
|
|
: intra_tx_size_cat_lookup[bsize];
|
|
const TX_SIZE coded_tx_size = txsize_sqr_up_map[tx_size];
|
|
const int depth = tx_size_to_depth(coded_tx_size);
|
|
|
|
++td->counts->tx_size[tx_size_cat][tx_size_ctx][depth];
|
|
#endif
|
|
#if CONFIG_EXT_TX && CONFIG_RECT_TX
|
|
assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed(xd, mbmi)));
|
|
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX
|
|
} else {
|
|
int i, j;
|
|
TX_SIZE intra_tx_size;
|
|
// The new intra coding scheme requires no change of transform size
|
|
if (is_inter) {
|
|
if (xd->lossless[mbmi->segment_id]) {
|
|
intra_tx_size = TX_4X4;
|
|
} else {
|
|
intra_tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode, 1);
|
|
}
|
|
#if CONFIG_EXT_TX && CONFIG_RECT_TX
|
|
++td->counts->tx_size_implied[max_txsize_lookup[bsize]]
|
|
[txsize_sqr_up_map[tx_size]];
|
|
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX
|
|
} else {
|
|
intra_tx_size = (bsize >= BLOCK_8X8) ? tx_size : TX_4X4;
|
|
}
|
|
|
|
for (j = 0; j < mi_height; j++)
|
|
for (i = 0; i < mi_width; i++)
|
|
if (mi_col + i < cm->mi_cols && mi_row + j < cm->mi_rows)
|
|
mi_8x8[mis * j + i]->mbmi.tx_size = intra_tx_size;
|
|
|
|
#if CONFIG_VAR_TX
|
|
mbmi->min_tx_size = get_min_tx_size(intra_tx_size);
|
|
if (intra_tx_size != max_txsize_lookup[bsize]) ++x->txb_split_count;
|
|
#endif
|
|
}
|
|
|
|
++td->counts->tx_size_totals[txsize_sqr_map[tx_size]];
|
|
++td->counts
|
|
->tx_size_totals[txsize_sqr_map[get_uv_tx_size(mbmi, &xd->plane[1])]];
|
|
#if CONFIG_EXT_TX
|
|
if (get_ext_tx_types(tx_size, bsize, is_inter) > 1 && cm->base_qindex > 0 &&
|
|
!mbmi->skip &&
|
|
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
|
|
int eset = get_ext_tx_set(tx_size, bsize, is_inter);
|
|
if (eset > 0) {
|
|
if (is_inter) {
|
|
++td->counts->inter_ext_tx[eset][txsize_sqr_map[tx_size]]
|
|
[mbmi->tx_type];
|
|
} else {
|
|
++td->counts->intra_ext_tx[eset][tx_size][mbmi->mode][mbmi->tx_type];
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
if (tx_size < TX_32X32 && cm->base_qindex > 0 && !mbmi->skip &&
|
|
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
|
|
if (is_inter) {
|
|
++td->counts->inter_ext_tx[tx_size][mbmi->tx_type];
|
|
} else {
|
|
++td->counts->intra_ext_tx[tx_size]
|
|
[intra_mode_to_tx_type_context[mbmi->mode]]
|
|
[mbmi->tx_type];
|
|
}
|
|
}
|
|
#endif // CONFIG_EXT_TX
|
|
}
|
|
|
|
#if CONFIG_VAR_TX
|
|
if (cm->tx_mode == TX_MODE_SELECT &&
|
|
#if CONFIG_CB4X4
|
|
mbmi->sb_type >= BLOCK_4X4 &&
|
|
#else
|
|
mbmi->sb_type >= BLOCK_8X8 &&
|
|
#endif
|
|
is_inter && !(mbmi->skip || seg_skip)) {
|
|
if (dry_run) tx_partition_set_contexts(cm, xd, bsize, mi_row, mi_col);
|
|
} else {
|
|
TX_SIZE tx_size = mbmi->tx_size;
|
|
// The new intra coding scheme requires no change of transform size
|
|
if (is_inter)
|
|
tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode, is_inter);
|
|
else
|
|
tx_size = (bsize >= BLOCK_8X8) ? tx_size : TX_4X4;
|
|
mbmi->tx_size = tx_size;
|
|
set_txfm_ctxs(tx_size, xd->n8_w, xd->n8_h, (mbmi->skip || seg_skip), xd);
|
|
}
|
|
#endif // CONFIG_VAR_TX
|
|
}
|
|
|
|
#if CONFIG_SUPERTX
|
|
static int check_intra_b(PICK_MODE_CONTEXT *ctx) {
|
|
if (!is_inter_mode((&ctx->mic)->mbmi.mode)) return 1;
|
|
#if CONFIG_EXT_INTER
|
|
if (ctx->mic.mbmi.ref_frame[1] == INTRA_FRAME) return 1;
|
|
#endif // CONFIG_EXT_INTER
|
|
return 0;
|
|
}
|
|
|
|
static int check_intra_sb(const AV1_COMP *const cpi, const TileInfo *const tile,
|
|
int mi_row, int mi_col, BLOCK_SIZE bsize,
|
|
PC_TREE *pc_tree) {
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
const int hbs = mi_size_wide[bsize] / 2;
|
|
const PARTITION_TYPE partition = pc_tree->partitioning;
|
|
const BLOCK_SIZE subsize = get_subsize(bsize, partition);
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
int i;
|
|
#endif
|
|
#if CONFIG_CB4X4
|
|
const int unify_bsize = 1;
|
|
#else
|
|
const int unify_bsize = 0;
|
|
#endif
|
|
|
|
#if !CONFIG_CB4X4
|
|
assert(bsize >= BLOCK_8X8);
|
|
#endif
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return 1;
|
|
|
|
switch (partition) {
|
|
case PARTITION_NONE: return check_intra_b(&pc_tree->none); break;
|
|
case PARTITION_VERT:
|
|
if (check_intra_b(&pc_tree->vertical[0])) return 1;
|
|
if (mi_col + hbs < cm->mi_cols && (bsize > BLOCK_8X8 || unify_bsize)) {
|
|
if (check_intra_b(&pc_tree->vertical[1])) return 1;
|
|
}
|
|
break;
|
|
case PARTITION_HORZ:
|
|
if (check_intra_b(&pc_tree->horizontal[0])) return 1;
|
|
if (mi_row + hbs < cm->mi_rows && (bsize > BLOCK_8X8 || unify_bsize)) {
|
|
if (check_intra_b(&pc_tree->horizontal[1])) return 1;
|
|
}
|
|
break;
|
|
case PARTITION_SPLIT:
|
|
if (bsize == BLOCK_8X8 && !unify_bsize) {
|
|
if (check_intra_b(pc_tree->leaf_split[0])) return 1;
|
|
} else {
|
|
if (check_intra_sb(cpi, tile, mi_row, mi_col, subsize,
|
|
pc_tree->split[0]))
|
|
return 1;
|
|
if (check_intra_sb(cpi, tile, mi_row, mi_col + hbs, subsize,
|
|
pc_tree->split[1]))
|
|
return 1;
|
|
if (check_intra_sb(cpi, tile, mi_row + hbs, mi_col, subsize,
|
|
pc_tree->split[2]))
|
|
return 1;
|
|
if (check_intra_sb(cpi, tile, mi_row + hbs, mi_col + hbs, subsize,
|
|
pc_tree->split[3]))
|
|
return 1;
|
|
}
|
|
break;
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
case PARTITION_HORZ_A:
|
|
for (i = 0; i < 3; i++) {
|
|
if (check_intra_b(&pc_tree->horizontala[i])) return 1;
|
|
}
|
|
break;
|
|
case PARTITION_HORZ_B:
|
|
for (i = 0; i < 3; i++) {
|
|
if (check_intra_b(&pc_tree->horizontalb[i])) return 1;
|
|
}
|
|
break;
|
|
case PARTITION_VERT_A:
|
|
for (i = 0; i < 3; i++) {
|
|
if (check_intra_b(&pc_tree->verticala[i])) return 1;
|
|
}
|
|
break;
|
|
case PARTITION_VERT_B:
|
|
for (i = 0; i < 3; i++) {
|
|
if (check_intra_b(&pc_tree->verticalb[i])) return 1;
|
|
}
|
|
break;
|
|
#endif // CONFIG_EXT_PARTITION_TYPES
|
|
default: assert(0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int check_supertx_b(TX_SIZE supertx_size, PICK_MODE_CONTEXT *ctx) {
|
|
return ctx->mic.mbmi.tx_size == supertx_size;
|
|
}
|
|
|
|
static int check_supertx_sb(BLOCK_SIZE bsize, TX_SIZE supertx_size,
|
|
PC_TREE *pc_tree) {
|
|
PARTITION_TYPE partition;
|
|
BLOCK_SIZE subsize;
|
|
#if CONFIG_CB4X4
|
|
const int unify_bsize = 1;
|
|
#else
|
|
const int unify_bsize = 0;
|
|
#endif
|
|
|
|
partition = pc_tree->partitioning;
|
|
subsize = get_subsize(bsize, partition);
|
|
switch (partition) {
|
|
case PARTITION_NONE: return check_supertx_b(supertx_size, &pc_tree->none);
|
|
case PARTITION_VERT:
|
|
return check_supertx_b(supertx_size, &pc_tree->vertical[0]);
|
|
case PARTITION_HORZ:
|
|
return check_supertx_b(supertx_size, &pc_tree->horizontal[0]);
|
|
case PARTITION_SPLIT:
|
|
if (bsize == BLOCK_8X8 && !unify_bsize)
|
|
return check_supertx_b(supertx_size, pc_tree->leaf_split[0]);
|
|
else
|
|
return check_supertx_sb(subsize, supertx_size, pc_tree->split[0]);
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
case PARTITION_HORZ_A:
|
|
return check_supertx_b(supertx_size, &pc_tree->horizontala[0]);
|
|
case PARTITION_HORZ_B:
|
|
return check_supertx_b(supertx_size, &pc_tree->horizontalb[0]);
|
|
case PARTITION_VERT_A:
|
|
return check_supertx_b(supertx_size, &pc_tree->verticala[0]);
|
|
case PARTITION_VERT_B:
|
|
return check_supertx_b(supertx_size, &pc_tree->verticalb[0]);
|
|
#endif // CONFIG_EXT_PARTITION_TYPES
|
|
default: assert(0); return 0;
|
|
}
|
|
}
|
|
|
|
static void predict_superblock(const AV1_COMP *const cpi, ThreadData *td,
|
|
#if CONFIG_EXT_INTER
|
|
int mi_row_ori, int mi_col_ori,
|
|
#endif // CONFIG_EXT_INTER
|
|
int mi_row_pred, int mi_col_pred,
|
|
BLOCK_SIZE bsize_pred, int b_sub8x8, int block) {
|
|
// Used in supertx
|
|
// (mi_row_ori, mi_col_ori): location for mv
|
|
// (mi_row_pred, mi_col_pred, bsize_pred): region to predict
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *mi_8x8 = xd->mi[0];
|
|
MODE_INFO *mi = mi_8x8;
|
|
MB_MODE_INFO *mbmi = &mi->mbmi;
|
|
int ref;
|
|
const int is_compound = has_second_ref(mbmi);
|
|
|
|
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
|
|
|
|
for (ref = 0; ref < 1 + is_compound; ++ref) {
|
|
YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, mbmi->ref_frame[ref]);
|
|
av1_setup_pre_planes(xd, ref, cfg, mi_row_pred, mi_col_pred,
|
|
&xd->block_refs[ref]->sf);
|
|
}
|
|
|
|
if (!b_sub8x8)
|
|
av1_build_inter_predictors_sb_extend(xd,
|
|
#if CONFIG_EXT_INTER
|
|
mi_row_ori, mi_col_ori,
|
|
#endif // CONFIG_EXT_INTER
|
|
mi_row_pred, mi_col_pred, bsize_pred);
|
|
else
|
|
av1_build_inter_predictors_sb_sub8x8_extend(xd,
|
|
#if CONFIG_EXT_INTER
|
|
mi_row_ori, mi_col_ori,
|
|
#endif // CONFIG_EXT_INTER
|
|
mi_row_pred, mi_col_pred,
|
|
bsize_pred, block);
|
|
}
|
|
|
|
static void predict_b_extend(const AV1_COMP *const cpi, ThreadData *td,
|
|
const TileInfo *const tile, int block,
|
|
int mi_row_ori, int mi_col_ori, int mi_row_pred,
|
|
int mi_col_pred, int mi_row_top, int mi_col_top,
|
|
uint8_t *dst_buf[3], int dst_stride[3],
|
|
BLOCK_SIZE bsize_top, BLOCK_SIZE bsize_pred,
|
|
RUN_TYPE dry_run, int b_sub8x8, int bextend) {
|
|
// Used in supertx
|
|
// (mi_row_ori, mi_col_ori): location for mv
|
|
// (mi_row_pred, mi_col_pred, bsize_pred): region to predict
|
|
// (mi_row_top, mi_col_top, bsize_top): region of the top partition size
|
|
// block: sub location of sub8x8 blocks
|
|
// b_sub8x8: 1: ori is sub8x8; 0: ori is not sub8x8
|
|
// bextend: 1: region to predict is an extension of ori; 0: not
|
|
|
|
MACROBLOCK *const x = &td->mb;
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
int r = (mi_row_pred - mi_row_top) * MI_SIZE;
|
|
int c = (mi_col_pred - mi_col_top) * MI_SIZE;
|
|
const int mi_width_top = mi_size_wide[bsize_top];
|
|
const int mi_height_top = mi_size_high[bsize_top];
|
|
|
|
if (mi_row_pred < mi_row_top || mi_col_pred < mi_col_top ||
|
|
mi_row_pred >= mi_row_top + mi_height_top ||
|
|
mi_col_pred >= mi_col_top + mi_width_top || mi_row_pred >= cm->mi_rows ||
|
|
mi_col_pred >= cm->mi_cols)
|
|
return;
|
|
|
|
set_offsets_extend(cpi, td, tile, mi_row_pred, mi_col_pred, mi_row_ori,
|
|
mi_col_ori, bsize_pred);
|
|
xd->plane[0].dst.stride = dst_stride[0];
|
|
xd->plane[1].dst.stride = dst_stride[1];
|
|
xd->plane[2].dst.stride = dst_stride[2];
|
|
xd->plane[0].dst.buf = dst_buf[0] +
|
|
(r >> xd->plane[0].subsampling_y) * dst_stride[0] +
|
|
(c >> xd->plane[0].subsampling_x);
|
|
xd->plane[1].dst.buf = dst_buf[1] +
|
|
(r >> xd->plane[1].subsampling_y) * dst_stride[1] +
|
|
(c >> xd->plane[1].subsampling_x);
|
|
xd->plane[2].dst.buf = dst_buf[2] +
|
|
(r >> xd->plane[2].subsampling_y) * dst_stride[2] +
|
|
(c >> xd->plane[2].subsampling_x);
|
|
|
|
predict_superblock(cpi, td,
|
|
#if CONFIG_EXT_INTER
|
|
mi_row_ori, mi_col_ori,
|
|
#endif // CONFIG_EXT_INTER
|
|
mi_row_pred, mi_col_pred, bsize_pred, b_sub8x8, block);
|
|
|
|
if (!dry_run && !bextend)
|
|
update_stats(&cpi->common, td, mi_row_pred, mi_col_pred, 1);
|
|
}
|
|
|
|
static void extend_dir(const AV1_COMP *const cpi, ThreadData *td,
|
|
const TileInfo *const tile, int block, BLOCK_SIZE bsize,
|
|
BLOCK_SIZE top_bsize, int mi_row, int mi_col,
|
|
int mi_row_top, int mi_col_top, RUN_TYPE dry_run,
|
|
uint8_t *dst_buf[3], int dst_stride[3], int dir) {
|
|
// dir: 0-lower, 1-upper, 2-left, 3-right
|
|
// 4-lowerleft, 5-upperleft, 6-lowerright, 7-upperright
|
|
MACROBLOCKD *xd = &td->mb.e_mbd;
|
|
const int mi_width = mi_size_wide[bsize];
|
|
const int mi_height = mi_size_high[bsize];
|
|
int xss = xd->plane[1].subsampling_x;
|
|
int yss = xd->plane[1].subsampling_y;
|
|
#if CONFIG_CB4X4
|
|
const int unify_bsize = 1;
|
|
#else
|
|
const int unify_bsize = 0;
|
|
#endif
|
|
int b_sub8x8 = (bsize < BLOCK_8X8) && !unify_bsize ? 1 : 0;
|
|
int wide_unit, high_unit;
|
|
int i, j;
|
|
int ext_offset = 0;
|
|
|
|
BLOCK_SIZE extend_bsize;
|
|
int mi_row_pred, mi_col_pred;
|
|
|
|
if (dir == 0 || dir == 1) { // lower and upper
|
|
extend_bsize =
|
|
(mi_width == mi_size_wide[BLOCK_8X8] || bsize < BLOCK_8X8 || xss < yss)
|
|
? BLOCK_8X8
|
|
: BLOCK_16X8;
|
|
|
|
#if CONFIG_CB4X4
|
|
if (bsize < BLOCK_8X8) {
|
|
extend_bsize = BLOCK_4X4;
|
|
ext_offset = mi_size_wide[BLOCK_8X8];
|
|
}
|
|
#endif
|
|
wide_unit = mi_size_wide[extend_bsize];
|
|
high_unit = mi_size_high[extend_bsize];
|
|
|
|
mi_row_pred = mi_row + ((dir == 0) ? mi_height : -(mi_height + ext_offset));
|
|
mi_col_pred = mi_col;
|
|
|
|
for (j = 0; j < mi_height + ext_offset; j += high_unit)
|
|
for (i = 0; i < mi_width + ext_offset; i += wide_unit)
|
|
predict_b_extend(cpi, td, tile, block, mi_row, mi_col, mi_row_pred + j,
|
|
mi_col_pred + i, mi_row_top, mi_col_top, dst_buf,
|
|
dst_stride, top_bsize, extend_bsize, dry_run, b_sub8x8,
|
|
1);
|
|
} else if (dir == 2 || dir == 3) { // left and right
|
|
extend_bsize =
|
|
(mi_height == mi_size_high[BLOCK_8X8] || bsize < BLOCK_8X8 || yss < xss)
|
|
? BLOCK_8X8
|
|
: BLOCK_8X16;
|
|
#if CONFIG_CB4X4
|
|
if (bsize < BLOCK_8X8) {
|
|
extend_bsize = BLOCK_4X4;
|
|
ext_offset = mi_size_wide[BLOCK_8X8];
|
|
}
|
|
#endif
|
|
wide_unit = mi_size_wide[extend_bsize];
|
|
high_unit = mi_size_high[extend_bsize];
|
|
|
|
mi_row_pred = mi_row;
|
|
mi_col_pred = mi_col + ((dir == 3) ? mi_width : -(mi_width + ext_offset));
|
|
|
|
for (j = 0; j < mi_height + ext_offset; j += high_unit)
|
|
for (i = 0; i < mi_width + ext_offset; i += wide_unit)
|
|
predict_b_extend(cpi, td, tile, block, mi_row, mi_col, mi_row_pred + j,
|
|
mi_col_pred + i, mi_row_top, mi_col_top, dst_buf,
|
|
dst_stride, top_bsize, extend_bsize, dry_run, b_sub8x8,
|
|
1);
|
|
} else {
|
|
extend_bsize = BLOCK_8X8;
|
|
#if CONFIG_CB4X4
|
|
if (bsize < BLOCK_8X8) {
|
|
extend_bsize = BLOCK_4X4;
|
|
ext_offset = mi_size_wide[BLOCK_8X8];
|
|
}
|
|
#endif
|
|
wide_unit = mi_size_wide[extend_bsize];
|
|
high_unit = mi_size_high[extend_bsize];
|
|
|
|
mi_row_pred = mi_row + ((dir == 4 || dir == 6) ? mi_height
|
|
: -(mi_height + ext_offset));
|
|
mi_col_pred =
|
|
mi_col + ((dir == 6 || dir == 7) ? mi_width : -(mi_width + ext_offset));
|
|
|
|
for (j = 0; j < mi_height + ext_offset; j += high_unit)
|
|
for (i = 0; i < mi_width + ext_offset; i += wide_unit)
|
|
predict_b_extend(cpi, td, tile, block, mi_row, mi_col, mi_row_pred + j,
|
|
mi_col_pred + i, mi_row_top, mi_col_top, dst_buf,
|
|
dst_stride, top_bsize, extend_bsize, dry_run, b_sub8x8,
|
|
1);
|
|
}
|
|
}
|
|
|
|
static void extend_all(const AV1_COMP *const cpi, ThreadData *td,
|
|
const TileInfo *const tile, int block, BLOCK_SIZE bsize,
|
|
BLOCK_SIZE top_bsize, int mi_row, int mi_col,
|
|
int mi_row_top, int mi_col_top, RUN_TYPE dry_run,
|
|
uint8_t *dst_buf[3], int dst_stride[3]) {
|
|
assert(block >= 0 && block < 4);
|
|
extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top,
|
|
mi_col_top, dry_run, dst_buf, dst_stride, 0);
|
|
extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top,
|
|
mi_col_top, dry_run, dst_buf, dst_stride, 1);
|
|
extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top,
|
|
mi_col_top, dry_run, dst_buf, dst_stride, 2);
|
|
extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top,
|
|
mi_col_top, dry_run, dst_buf, dst_stride, 3);
|
|
extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top,
|
|
mi_col_top, dry_run, dst_buf, dst_stride, 4);
|
|
extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top,
|
|
mi_col_top, dry_run, dst_buf, dst_stride, 5);
|
|
extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top,
|
|
mi_col_top, dry_run, dst_buf, dst_stride, 6);
|
|
extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top,
|
|
mi_col_top, dry_run, dst_buf, dst_stride, 7);
|
|
}
|
|
|
|
// This function generates prediction for multiple blocks, between which
|
|
// discontinuity around boundary is reduced by smoothing masks. The basic
|
|
// smoothing mask is a soft step function along horz/vert direction. In more
|
|
// complicated case when a block is split into 4 subblocks, the basic mask is
|
|
// first applied to neighboring subblocks (2 pairs) in horizontal direction and
|
|
// then applied to the 2 masked prediction mentioned above in vertical direction
|
|
// If the block is split into more than one level, at every stage, masked
|
|
// prediction is stored in dst_buf[] passed from higher level.
|
|
static void predict_sb_complex(const AV1_COMP *const cpi, ThreadData *td,
|
|
const TileInfo *const tile, int mi_row,
|
|
int mi_col, int mi_row_top, int mi_col_top,
|
|
RUN_TYPE dry_run, BLOCK_SIZE bsize,
|
|
BLOCK_SIZE top_bsize, uint8_t *dst_buf[3],
|
|
int dst_stride[3], PC_TREE *pc_tree) {
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
const int is_partition_root = bsize >= BLOCK_8X8;
|
|
const int ctx = is_partition_root
|
|
? partition_plane_context(xd, mi_row, mi_col, bsize)
|
|
: 0;
|
|
const int hbs = mi_size_wide[bsize] / 2;
|
|
const PARTITION_TYPE partition = pc_tree->partitioning;
|
|
const BLOCK_SIZE subsize = get_subsize(bsize, partition);
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
const BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
|
|
#endif
|
|
|
|
int i;
|
|
uint8_t *dst_buf1[3], *dst_buf2[3], *dst_buf3[3];
|
|
DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_TX_SQUARE * 2]);
|
|
DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_TX_SQUARE * 2]);
|
|
DECLARE_ALIGNED(16, uint8_t, tmp_buf3[MAX_MB_PLANE * MAX_TX_SQUARE * 2]);
|
|
int dst_stride1[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE };
|
|
int dst_stride2[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE };
|
|
int dst_stride3[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE };
|
|
#if CONFIG_CB4X4
|
|
const int unify_bsize = 1;
|
|
#else
|
|
const int unify_bsize = 0;
|
|
assert(bsize >= BLOCK_8X8);
|
|
#endif
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
|
|
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
int len = sizeof(uint16_t);
|
|
dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1);
|
|
dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_TX_SQUARE * len);
|
|
dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + 2 * MAX_TX_SQUARE * len);
|
|
dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2);
|
|
dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_TX_SQUARE * len);
|
|
dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + 2 * MAX_TX_SQUARE * len);
|
|
dst_buf3[0] = CONVERT_TO_BYTEPTR(tmp_buf3);
|
|
dst_buf3[1] = CONVERT_TO_BYTEPTR(tmp_buf3 + MAX_TX_SQUARE * len);
|
|
dst_buf3[2] = CONVERT_TO_BYTEPTR(tmp_buf3 + 2 * MAX_TX_SQUARE * len);
|
|
} else {
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
dst_buf1[0] = tmp_buf1;
|
|
dst_buf1[1] = tmp_buf1 + MAX_TX_SQUARE;
|
|
dst_buf1[2] = tmp_buf1 + 2 * MAX_TX_SQUARE;
|
|
dst_buf2[0] = tmp_buf2;
|
|
dst_buf2[1] = tmp_buf2 + MAX_TX_SQUARE;
|
|
dst_buf2[2] = tmp_buf2 + 2 * MAX_TX_SQUARE;
|
|
dst_buf3[0] = tmp_buf3;
|
|
dst_buf3[1] = tmp_buf3 + MAX_TX_SQUARE;
|
|
dst_buf3[2] = tmp_buf3 + 2 * MAX_TX_SQUARE;
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
}
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
|
|
if (!dry_run && is_partition_root && bsize < top_bsize) {
|
|
// Explicitly cast away const.
|
|
FRAME_COUNTS *const frame_counts = (FRAME_COUNTS *)&cm->counts;
|
|
frame_counts->partition[ctx][partition]++;
|
|
}
|
|
|
|
for (i = 0; i < MAX_MB_PLANE; i++) {
|
|
xd->plane[i].dst.buf = dst_buf[i];
|
|
xd->plane[i].dst.stride = dst_stride[i];
|
|
}
|
|
|
|
switch (partition) {
|
|
case PARTITION_NONE:
|
|
assert(bsize < top_bsize);
|
|
predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize,
|
|
bsize, dry_run, 0, 0);
|
|
extend_all(cpi, td, tile, 0, bsize, top_bsize, mi_row, mi_col, mi_row_top,
|
|
mi_col_top, dry_run, dst_buf, dst_stride);
|
|
break;
|
|
case PARTITION_HORZ:
|
|
if (bsize == BLOCK_8X8 && !unify_bsize) {
|
|
// Fisrt half
|
|
predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize,
|
|
BLOCK_8X8, dry_run, 1, 0);
|
|
if (bsize < top_bsize)
|
|
extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride);
|
|
|
|
// Second half
|
|
predict_b_extend(cpi, td, tile, 2, mi_row, mi_col, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dst_buf1, dst_stride1,
|
|
top_bsize, BLOCK_8X8, dry_run, 1, 1);
|
|
if (bsize < top_bsize)
|
|
extend_all(cpi, td, tile, 2, subsize, top_bsize, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dry_run, dst_buf1, dst_stride1);
|
|
|
|
// Smooth
|
|
xd->plane[0].dst.buf = dst_buf[0];
|
|
xd->plane[0].dst.stride = dst_stride[0];
|
|
av1_build_masked_inter_predictor_complex(
|
|
xd, dst_buf[0], dst_stride[0], dst_buf1[0], dst_stride1[0], mi_row,
|
|
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ,
|
|
0);
|
|
} else {
|
|
// First half
|
|
predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize,
|
|
subsize, dry_run, 0, 0);
|
|
if (bsize < top_bsize)
|
|
extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride);
|
|
else
|
|
extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride, 0);
|
|
|
|
if (mi_row + hbs < cm->mi_rows) {
|
|
// Second half
|
|
predict_b_extend(cpi, td, tile, 0, mi_row + hbs, mi_col, mi_row + hbs,
|
|
mi_col, mi_row_top, mi_col_top, dst_buf1,
|
|
dst_stride1, top_bsize, subsize, dry_run, 0, 0);
|
|
if (bsize < top_bsize)
|
|
extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row + hbs,
|
|
mi_col, mi_row_top, mi_col_top, dry_run, dst_buf1,
|
|
dst_stride1);
|
|
else
|
|
extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row + hbs,
|
|
mi_col, mi_row_top, mi_col_top, dry_run, dst_buf1,
|
|
dst_stride1, 1);
|
|
|
|
// Smooth
|
|
for (i = 0; i < MAX_MB_PLANE; i++) {
|
|
xd->plane[i].dst.buf = dst_buf[i];
|
|
xd->plane[i].dst.stride = dst_stride[i];
|
|
av1_build_masked_inter_predictor_complex(
|
|
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i],
|
|
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
|
|
PARTITION_HORZ, i);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case PARTITION_VERT:
|
|
if (bsize == BLOCK_8X8 && !unify_bsize) {
|
|
// First half
|
|
predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize,
|
|
BLOCK_8X8, dry_run, 1, 0);
|
|
if (bsize < top_bsize)
|
|
extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride);
|
|
|
|
// Second half
|
|
predict_b_extend(cpi, td, tile, 1, mi_row, mi_col, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dst_buf1, dst_stride1,
|
|
top_bsize, BLOCK_8X8, dry_run, 1, 1);
|
|
if (bsize < top_bsize)
|
|
extend_all(cpi, td, tile, 1, subsize, top_bsize, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dry_run, dst_buf1, dst_stride1);
|
|
|
|
// Smooth
|
|
xd->plane[0].dst.buf = dst_buf[0];
|
|
xd->plane[0].dst.stride = dst_stride[0];
|
|
av1_build_masked_inter_predictor_complex(
|
|
xd, dst_buf[0], dst_stride[0], dst_buf1[0], dst_stride1[0], mi_row,
|
|
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT,
|
|
0);
|
|
} else {
|
|
// bsize: not important, not useful
|
|
predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize,
|
|
subsize, dry_run, 0, 0);
|
|
if (bsize < top_bsize)
|
|
extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride);
|
|
else
|
|
extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride, 3);
|
|
|
|
if (mi_col + hbs < cm->mi_cols) {
|
|
predict_b_extend(cpi, td, tile, 0, mi_row, mi_col + hbs, mi_row,
|
|
mi_col + hbs, mi_row_top, mi_col_top, dst_buf1,
|
|
dst_stride1, top_bsize, subsize, dry_run, 0, 0);
|
|
if (bsize < top_bsize)
|
|
extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row,
|
|
mi_col + hbs, mi_row_top, mi_col_top, dry_run, dst_buf1,
|
|
dst_stride1);
|
|
else
|
|
extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row,
|
|
mi_col + hbs, mi_row_top, mi_col_top, dry_run, dst_buf1,
|
|
dst_stride1, 2);
|
|
|
|
for (i = 0; i < MAX_MB_PLANE; i++) {
|
|
xd->plane[i].dst.buf = dst_buf[i];
|
|
xd->plane[i].dst.stride = dst_stride[i];
|
|
av1_build_masked_inter_predictor_complex(
|
|
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i],
|
|
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
|
|
PARTITION_VERT, i);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case PARTITION_SPLIT:
|
|
if (bsize == BLOCK_8X8 && !unify_bsize) {
|
|
predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize,
|
|
BLOCK_8X8, dry_run, 1, 0);
|
|
predict_b_extend(cpi, td, tile, 1, mi_row, mi_col, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dst_buf1, dst_stride1,
|
|
top_bsize, BLOCK_8X8, dry_run, 1, 1);
|
|
predict_b_extend(cpi, td, tile, 2, mi_row, mi_col, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dst_buf2, dst_stride2,
|
|
top_bsize, BLOCK_8X8, dry_run, 1, 1);
|
|
predict_b_extend(cpi, td, tile, 3, mi_row, mi_col, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dst_buf3, dst_stride3,
|
|
top_bsize, BLOCK_8X8, dry_run, 1, 1);
|
|
|
|
if (bsize < top_bsize) {
|
|
extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride);
|
|
extend_all(cpi, td, tile, 1, subsize, top_bsize, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dry_run, dst_buf1, dst_stride1);
|
|
extend_all(cpi, td, tile, 2, subsize, top_bsize, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dry_run, dst_buf2, dst_stride2);
|
|
extend_all(cpi, td, tile, 3, subsize, top_bsize, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dry_run, dst_buf3, dst_stride3);
|
|
}
|
|
} else {
|
|
predict_sb_complex(cpi, td, tile, mi_row, mi_col, mi_row_top,
|
|
mi_col_top, dry_run, subsize, top_bsize, dst_buf,
|
|
dst_stride, pc_tree->split[0]);
|
|
if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols)
|
|
predict_sb_complex(cpi, td, tile, mi_row, mi_col + hbs, mi_row_top,
|
|
mi_col_top, dry_run, subsize, top_bsize, dst_buf1,
|
|
dst_stride1, pc_tree->split[1]);
|
|
if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols)
|
|
predict_sb_complex(cpi, td, tile, mi_row + hbs, mi_col, mi_row_top,
|
|
mi_col_top, dry_run, subsize, top_bsize, dst_buf2,
|
|
dst_stride2, pc_tree->split[2]);
|
|
if (mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols)
|
|
predict_sb_complex(cpi, td, tile, mi_row + hbs, mi_col + hbs,
|
|
mi_row_top, mi_col_top, dry_run, subsize,
|
|
top_bsize, dst_buf3, dst_stride3,
|
|
pc_tree->split[3]);
|
|
}
|
|
for (i = 0; i < MAX_MB_PLANE; i++) {
|
|
#if !CONFIG_CB4X4
|
|
if (bsize == BLOCK_8X8 && i != 0)
|
|
continue; // Skip <4x4 chroma smoothing
|
|
#endif
|
|
if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols) {
|
|
av1_build_masked_inter_predictor_complex(
|
|
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i],
|
|
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
|
|
PARTITION_VERT, i);
|
|
if (mi_row + hbs < cm->mi_rows) {
|
|
av1_build_masked_inter_predictor_complex(
|
|
xd, dst_buf2[i], dst_stride2[i], dst_buf3[i], dst_stride3[i],
|
|
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
|
|
PARTITION_VERT, i);
|
|
av1_build_masked_inter_predictor_complex(
|
|
xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i],
|
|
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
|
|
PARTITION_HORZ, i);
|
|
}
|
|
} else if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols) {
|
|
if (bsize == BLOCK_8X8 && i != 0)
|
|
continue; // Skip <4x4 chroma smoothing
|
|
|
|
av1_build_masked_inter_predictor_complex(
|
|
xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i],
|
|
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
|
|
PARTITION_HORZ, i);
|
|
}
|
|
}
|
|
break;
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
case PARTITION_HORZ_A:
|
|
predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize,
|
|
bsize2, dry_run, 0, 0);
|
|
extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride);
|
|
|
|
predict_b_extend(cpi, td, tile, 0, mi_row, mi_col + hbs, mi_row,
|
|
mi_col + hbs, mi_row_top, mi_col_top, dst_buf1,
|
|
dst_stride1, top_bsize, bsize2, dry_run, 0, 0);
|
|
extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row, mi_col + hbs,
|
|
mi_row_top, mi_col_top, dry_run, dst_buf1, dst_stride1);
|
|
|
|
predict_b_extend(cpi, td, tile, 0, mi_row + hbs, mi_col, mi_row + hbs,
|
|
mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2,
|
|
top_bsize, subsize, dry_run, 0, 0);
|
|
if (bsize < top_bsize)
|
|
extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row + hbs, mi_col,
|
|
mi_row_top, mi_col_top, dry_run, dst_buf2, dst_stride2);
|
|
else
|
|
extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row + hbs, mi_col,
|
|
mi_row_top, mi_col_top, dry_run, dst_buf2, dst_stride2, 1);
|
|
|
|
for (i = 0; i < MAX_MB_PLANE; i++) {
|
|
xd->plane[i].dst.buf = dst_buf[i];
|
|
xd->plane[i].dst.stride = dst_stride[i];
|
|
av1_build_masked_inter_predictor_complex(
|
|
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row,
|
|
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT,
|
|
i);
|
|
}
|
|
for (i = 0; i < MAX_MB_PLANE; i++) {
|
|
av1_build_masked_inter_predictor_complex(
|
|
xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], mi_row,
|
|
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ,
|
|
i);
|
|
}
|
|
|
|
break;
|
|
case PARTITION_VERT_A:
|
|
|
|
predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize,
|
|
bsize2, dry_run, 0, 0);
|
|
extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride);
|
|
|
|
predict_b_extend(cpi, td, tile, 0, mi_row + hbs, mi_col, mi_row + hbs,
|
|
mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1,
|
|
top_bsize, bsize2, dry_run, 0, 0);
|
|
extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col,
|
|
mi_row_top, mi_col_top, dry_run, dst_buf1, dst_stride1);
|
|
|
|
predict_b_extend(cpi, td, tile, 0, mi_row, mi_col + hbs, mi_row,
|
|
mi_col + hbs, mi_row_top, mi_col_top, dst_buf2,
|
|
dst_stride2, top_bsize, subsize, dry_run, 0, 0);
|
|
if (bsize < top_bsize)
|
|
extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col + hbs,
|
|
mi_row_top, mi_col_top, dry_run, dst_buf2, dst_stride2);
|
|
else
|
|
extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col + hbs,
|
|
mi_row_top, mi_col_top, dry_run, dst_buf2, dst_stride2, 2);
|
|
|
|
for (i = 0; i < MAX_MB_PLANE; i++) {
|
|
xd->plane[i].dst.buf = dst_buf[i];
|
|
xd->plane[i].dst.stride = dst_stride[i];
|
|
av1_build_masked_inter_predictor_complex(
|
|
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row,
|
|
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ,
|
|
i);
|
|
}
|
|
for (i = 0; i < MAX_MB_PLANE; i++) {
|
|
av1_build_masked_inter_predictor_complex(
|
|
xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], mi_row,
|
|
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT,
|
|
i);
|
|
}
|
|
break;
|
|
case PARTITION_HORZ_B:
|
|
|
|
predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize,
|
|
subsize, dry_run, 0, 0);
|
|
if (bsize < top_bsize)
|
|
extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride);
|
|
else
|
|
extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride, 0);
|
|
|
|
predict_b_extend(cpi, td, tile, 0, mi_row + hbs, mi_col, mi_row + hbs,
|
|
mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1,
|
|
top_bsize, bsize2, dry_run, 0, 0);
|
|
extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col,
|
|
mi_row_top, mi_col_top, dry_run, dst_buf1, dst_stride1);
|
|
|
|
predict_b_extend(cpi, td, tile, 0, mi_row + hbs, mi_col + hbs,
|
|
mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top,
|
|
dst_buf2, dst_stride2, top_bsize, bsize2, dry_run, 0, 0);
|
|
extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row + hbs,
|
|
mi_col + hbs, mi_row_top, mi_col_top, dry_run, dst_buf2,
|
|
dst_stride2);
|
|
|
|
for (i = 0; i < MAX_MB_PLANE; i++) {
|
|
xd->plane[i].dst.buf = dst_buf1[i];
|
|
xd->plane[i].dst.stride = dst_stride1[i];
|
|
av1_build_masked_inter_predictor_complex(
|
|
xd, dst_buf1[i], dst_stride1[i], dst_buf2[i], dst_stride2[i],
|
|
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
|
|
PARTITION_VERT, i);
|
|
}
|
|
for (i = 0; i < MAX_MB_PLANE; i++) {
|
|
xd->plane[i].dst.buf = dst_buf[i];
|
|
xd->plane[i].dst.stride = dst_stride[i];
|
|
av1_build_masked_inter_predictor_complex(
|
|
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row,
|
|
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ,
|
|
i);
|
|
}
|
|
break;
|
|
case PARTITION_VERT_B:
|
|
|
|
predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize,
|
|
subsize, dry_run, 0, 0);
|
|
if (bsize < top_bsize)
|
|
extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride);
|
|
else
|
|
extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
|
|
mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride, 3);
|
|
|
|
predict_b_extend(cpi, td, tile, 0, mi_row, mi_col + hbs, mi_row,
|
|
mi_col + hbs, mi_row_top, mi_col_top, dst_buf1,
|
|
dst_stride1, top_bsize, bsize2, dry_run, 0, 0);
|
|
extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row, mi_col + hbs,
|
|
mi_row_top, mi_col_top, dry_run, dst_buf1, dst_stride1);
|
|
|
|
predict_b_extend(cpi, td, tile, 0, mi_row + hbs, mi_col + hbs,
|
|
mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top,
|
|
dst_buf2, dst_stride2, top_bsize, bsize2, dry_run, 0, 0);
|
|
extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row + hbs,
|
|
mi_col + hbs, mi_row_top, mi_col_top, dry_run, dst_buf2,
|
|
dst_stride2);
|
|
|
|
for (i = 0; i < MAX_MB_PLANE; i++) {
|
|
xd->plane[i].dst.buf = dst_buf1[i];
|
|
xd->plane[i].dst.stride = dst_stride1[i];
|
|
av1_build_masked_inter_predictor_complex(
|
|
xd, dst_buf1[i], dst_stride1[i], dst_buf2[i], dst_stride2[i],
|
|
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
|
|
PARTITION_HORZ, i);
|
|
}
|
|
for (i = 0; i < MAX_MB_PLANE; i++) {
|
|
xd->plane[i].dst.buf = dst_buf[i];
|
|
xd->plane[i].dst.stride = dst_stride[i];
|
|
av1_build_masked_inter_predictor_complex(
|
|
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row,
|
|
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT,
|
|
i);
|
|
}
|
|
break;
|
|
#endif // CONFIG_EXT_PARTITION_TYPES
|
|
default: assert(0);
|
|
}
|
|
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
if (bsize < top_bsize)
|
|
update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
|
|
#else
|
|
if (bsize < top_bsize && (partition != PARTITION_SPLIT || bsize == BLOCK_8X8))
|
|
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
|
|
#endif // CONFIG_EXT_PARTITION_TYPES
|
|
}
|
|
|
|
static void rd_supertx_sb(const AV1_COMP *const cpi, ThreadData *td,
|
|
const TileInfo *const tile, int mi_row, int mi_col,
|
|
BLOCK_SIZE bsize, int *tmp_rate, int64_t *tmp_dist,
|
|
TX_TYPE *best_tx, PC_TREE *pc_tree) {
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCK *const x = &td->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
int plane, pnskip, skippable, skippable_uv, rate_uv, this_rate,
|
|
base_rate = *tmp_rate;
|
|
int64_t sse, pnsse, sse_uv, this_dist, dist_uv;
|
|
uint8_t *dst_buf[3];
|
|
int dst_stride[3];
|
|
TX_SIZE tx_size;
|
|
MB_MODE_INFO *mbmi;
|
|
TX_TYPE tx_type, best_tx_nostx;
|
|
#if CONFIG_EXT_TX
|
|
int ext_tx_set;
|
|
#endif // CONFIG_EXT_TX
|
|
int tmp_rate_tx = 0, skip_tx = 0;
|
|
int64_t tmp_dist_tx = 0, rd_tx, bestrd_tx = INT64_MAX;
|
|
|
|
set_skip_context(xd, mi_row, mi_col);
|
|
set_mode_info_offsets(cpi, x, xd, mi_row, mi_col);
|
|
update_state_sb_supertx(cpi, td, tile, mi_row, mi_col, bsize, 1, pc_tree);
|
|
av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
|
|
for (plane = 0; plane < MAX_MB_PLANE; plane++) {
|
|
dst_buf[plane] = xd->plane[plane].dst.buf;
|
|
dst_stride[plane] = xd->plane[plane].dst.stride;
|
|
}
|
|
predict_sb_complex(cpi, td, tile, mi_row, mi_col, mi_row, mi_col, 1, bsize,
|
|
bsize, dst_buf, dst_stride, pc_tree);
|
|
|
|
set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize);
|
|
set_segment_id_supertx(cpi, x, mi_row, mi_col, bsize);
|
|
|
|
mbmi = &xd->mi[0]->mbmi;
|
|
best_tx_nostx = mbmi->tx_type;
|
|
|
|
*best_tx = DCT_DCT;
|
|
|
|
// chroma
|
|
skippable_uv = 1;
|
|
rate_uv = 0;
|
|
dist_uv = 0;
|
|
sse_uv = 0;
|
|
for (plane = 1; plane < MAX_MB_PLANE; ++plane) {
|
|
#if CONFIG_VAR_TX
|
|
ENTROPY_CONTEXT ctxa[2 * MAX_MIB_SIZE];
|
|
ENTROPY_CONTEXT ctxl[2 * MAX_MIB_SIZE];
|
|
const struct macroblockd_plane *const pd = &xd->plane[plane];
|
|
int coeff_ctx = 1;
|
|
RD_STATS this_rd_stats;
|
|
av1_init_rd_stats(&this_rd_stats);
|
|
|
|
tx_size = max_txsize_lookup[bsize];
|
|
tx_size =
|
|
uv_txsize_lookup[bsize][tx_size][cm->subsampling_x][cm->subsampling_y];
|
|
av1_get_entropy_contexts(bsize, tx_size, pd, ctxa, ctxl);
|
|
coeff_ctx = combine_entropy_contexts(ctxa[0], ctxl[0]);
|
|
|
|
av1_subtract_plane(x, bsize, plane);
|
|
av1_tx_block_rd_b(cpi, x, tx_size, 0, 0, plane, 0,
|
|
get_plane_block_size(bsize, pd), coeff_ctx,
|
|
&this_rd_stats);
|
|
|
|
this_rate = this_rd_stats.rate;
|
|
this_dist = this_rd_stats.dist;
|
|
pnsse = this_rd_stats.sse;
|
|
pnskip = this_rd_stats.skip;
|
|
#else
|
|
tx_size = max_txsize_lookup[bsize];
|
|
tx_size =
|
|
uv_txsize_lookup[bsize][tx_size][cm->subsampling_x][cm->subsampling_y];
|
|
av1_subtract_plane(x, bsize, plane);
|
|
av1_txfm_rd_in_plane_supertx(x, cpi, &this_rate, &this_dist, &pnskip,
|
|
&pnsse, INT64_MAX, plane, bsize, tx_size, 0);
|
|
#endif // CONFIG_VAR_TX
|
|
|
|
rate_uv += this_rate;
|
|
dist_uv += this_dist;
|
|
sse_uv += pnsse;
|
|
skippable_uv &= pnskip;
|
|
}
|
|
|
|
// luma
|
|
tx_size = max_txsize_lookup[bsize];
|
|
av1_subtract_plane(x, bsize, 0);
|
|
#if CONFIG_EXT_TX
|
|
ext_tx_set = get_ext_tx_set(tx_size, bsize, 1);
|
|
#endif // CONFIG_EXT_TX
|
|
for (tx_type = DCT_DCT; tx_type < TX_TYPES; ++tx_type) {
|
|
#if CONFIG_VAR_TX
|
|
ENTROPY_CONTEXT ctxa[2 * MAX_MIB_SIZE];
|
|
ENTROPY_CONTEXT ctxl[2 * MAX_MIB_SIZE];
|
|
const struct macroblockd_plane *const pd = &xd->plane[0];
|
|
int coeff_ctx = 1;
|
|
RD_STATS this_rd_stats;
|
|
#endif // CONFIG_VAR_TX
|
|
|
|
#if CONFIG_EXT_TX
|
|
if (!ext_tx_used_inter[ext_tx_set][tx_type]) continue;
|
|
#else
|
|
if (tx_size >= TX_32X32 && tx_type != DCT_DCT) continue;
|
|
#endif // CONFIG_EXT_TX
|
|
mbmi->tx_type = tx_type;
|
|
|
|
#if CONFIG_VAR_TX
|
|
av1_init_rd_stats(&this_rd_stats);
|
|
|
|
av1_get_entropy_contexts(bsize, tx_size, pd, ctxa, ctxl);
|
|
coeff_ctx = combine_entropy_contexts(ctxa[0], ctxl[0]);
|
|
av1_tx_block_rd_b(cpi, x, tx_size, 0, 0, 0, 0, bsize, coeff_ctx,
|
|
&this_rd_stats);
|
|
|
|
this_rate = this_rd_stats.rate;
|
|
this_dist = this_rd_stats.dist;
|
|
pnsse = this_rd_stats.sse;
|
|
pnskip = this_rd_stats.skip;
|
|
#else
|
|
av1_txfm_rd_in_plane_supertx(x, cpi, &this_rate, &this_dist, &pnskip,
|
|
&pnsse, INT64_MAX, 0, bsize, tx_size, 0);
|
|
#endif // CONFIG_VAR_TX
|
|
|
|
#if CONFIG_EXT_TX
|
|
if (get_ext_tx_types(tx_size, bsize, 1) > 1 &&
|
|
!xd->lossless[xd->mi[0]->mbmi.segment_id] && this_rate != INT_MAX) {
|
|
if (ext_tx_set > 0)
|
|
this_rate +=
|
|
cpi->inter_tx_type_costs[ext_tx_set][mbmi->tx_size][mbmi->tx_type];
|
|
}
|
|
#else
|
|
if (tx_size < TX_32X32 && !xd->lossless[xd->mi[0]->mbmi.segment_id] &&
|
|
this_rate != INT_MAX) {
|
|
this_rate += cpi->inter_tx_type_costs[tx_size][mbmi->tx_type];
|
|
}
|
|
#endif // CONFIG_EXT_TX
|
|
*tmp_rate = rate_uv + this_rate;
|
|
*tmp_dist = dist_uv + this_dist;
|
|
sse = sse_uv + pnsse;
|
|
skippable = skippable_uv && pnskip;
|
|
if (skippable) {
|
|
*tmp_rate = av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
|
|
x->skip = 1;
|
|
} else {
|
|
if (RDCOST(x->rdmult, x->rddiv, *tmp_rate, *tmp_dist) <
|
|
RDCOST(x->rdmult, x->rddiv, 0, sse)) {
|
|
*tmp_rate += av1_cost_bit(av1_get_skip_prob(cm, xd), 0);
|
|
x->skip = 0;
|
|
} else {
|
|
*tmp_dist = sse;
|
|
*tmp_rate = av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
|
|
x->skip = 1;
|
|
}
|
|
}
|
|
*tmp_rate += base_rate;
|
|
rd_tx = RDCOST(x->rdmult, x->rddiv, *tmp_rate, *tmp_dist);
|
|
if (rd_tx < bestrd_tx * 0.99 || tx_type == DCT_DCT) {
|
|
*best_tx = tx_type;
|
|
bestrd_tx = rd_tx;
|
|
tmp_rate_tx = *tmp_rate;
|
|
tmp_dist_tx = *tmp_dist;
|
|
skip_tx = x->skip;
|
|
}
|
|
}
|
|
*tmp_rate = tmp_rate_tx;
|
|
*tmp_dist = tmp_dist_tx;
|
|
x->skip = skip_tx;
|
|
#if CONFIG_VAR_TX
|
|
for (plane = 0; plane < 1; ++plane)
|
|
memset(x->blk_skip[plane], x->skip,
|
|
sizeof(uint8_t) * pc_tree->none.num_4x4_blk);
|
|
#endif // CONFIG_VAR_TX
|
|
xd->mi[0]->mbmi.tx_type = best_tx_nostx;
|
|
}
|
|
#endif // CONFIG_SUPERTX
|