aom/av1/encoder/encodemv.c

486 строки
16 KiB
C

/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include "av1/common/common.h"
#include "av1/common/entropymode.h"
#include "av1/encoder/cost.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/subexp.h"
#include "aom_dsp/aom_dsp_common.h"
static struct av1_token mv_joint_encodings[MV_JOINTS];
static struct av1_token mv_class_encodings[MV_CLASSES];
static struct av1_token mv_fp_encodings[MV_FP_SIZE];
void av1_entropy_mv_init(void) {
av1_tokens_from_tree(mv_joint_encodings, av1_mv_joint_tree);
av1_tokens_from_tree(mv_class_encodings, av1_mv_class_tree);
av1_tokens_from_tree(mv_fp_encodings, av1_mv_fp_tree);
}
static void encode_mv_component(aom_writer *w, int comp, nmv_component *mvcomp,
int usehp) {
int offset;
const int sign = comp < 0;
const int mag = sign ? -comp : comp;
const int mv_class = av1_get_mv_class(mag - 1, &offset);
const int d = offset >> 3; // int mv data
const int fr = (offset >> 1) & 3; // fractional mv data
const int hp = offset & 1; // high precision mv data
assert(comp != 0);
// Sign
aom_write(w, sign, mvcomp->sign);
// Class
#if CONFIG_EC_MULTISYMBOL
aom_write_symbol(w, mv_class, mvcomp->class_cdf, MV_CLASSES);
#else
av1_write_token(w, av1_mv_class_tree, mvcomp->classes,
&mv_class_encodings[mv_class]);
#endif
// Integer bits
if (mv_class == MV_CLASS_0) {
aom_write(w, d, mvcomp->class0[0]);
} else {
int i;
const int n = mv_class + CLASS0_BITS - 1; // number of bits
for (i = 0; i < n; ++i) aom_write(w, (d >> i) & 1, mvcomp->bits[i]);
}
// Fractional bits
#if CONFIG_EC_MULTISYMBOL
aom_write_symbol(
w, fr, mv_class == MV_CLASS_0 ? mvcomp->class0_fp_cdf[d] : mvcomp->fp_cdf,
MV_FP_SIZE);
#else
av1_write_token(w, av1_mv_fp_tree,
mv_class == MV_CLASS_0 ? mvcomp->class0_fp[d] : mvcomp->fp,
&mv_fp_encodings[fr]);
#endif
// High precision bit
if (usehp)
aom_write(w, hp, mv_class == MV_CLASS_0 ? mvcomp->class0_hp : mvcomp->hp);
}
static void build_nmv_component_cost_table(int *mvcost,
const nmv_component *const mvcomp,
int usehp) {
int i, v;
int sign_cost[2], class_cost[MV_CLASSES], class0_cost[CLASS0_SIZE];
int bits_cost[MV_OFFSET_BITS][2];
int class0_fp_cost[CLASS0_SIZE][MV_FP_SIZE], fp_cost[MV_FP_SIZE];
int class0_hp_cost[2], hp_cost[2];
sign_cost[0] = av1_cost_zero(mvcomp->sign);
sign_cost[1] = av1_cost_one(mvcomp->sign);
av1_cost_tokens(class_cost, mvcomp->classes, av1_mv_class_tree);
av1_cost_tokens(class0_cost, mvcomp->class0, av1_mv_class0_tree);
for (i = 0; i < MV_OFFSET_BITS; ++i) {
bits_cost[i][0] = av1_cost_zero(mvcomp->bits[i]);
bits_cost[i][1] = av1_cost_one(mvcomp->bits[i]);
}
for (i = 0; i < CLASS0_SIZE; ++i)
av1_cost_tokens(class0_fp_cost[i], mvcomp->class0_fp[i], av1_mv_fp_tree);
av1_cost_tokens(fp_cost, mvcomp->fp, av1_mv_fp_tree);
if (usehp) {
class0_hp_cost[0] = av1_cost_zero(mvcomp->class0_hp);
class0_hp_cost[1] = av1_cost_one(mvcomp->class0_hp);
hp_cost[0] = av1_cost_zero(mvcomp->hp);
hp_cost[1] = av1_cost_one(mvcomp->hp);
}
mvcost[0] = 0;
for (v = 1; v <= MV_MAX; ++v) {
int z, c, o, d, e, f, cost = 0;
z = v - 1;
c = av1_get_mv_class(z, &o);
cost += class_cost[c];
d = (o >> 3); /* int mv data */
f = (o >> 1) & 3; /* fractional pel mv data */
e = (o & 1); /* high precision mv data */
if (c == MV_CLASS_0) {
cost += class0_cost[d];
} else {
const int b = c + CLASS0_BITS - 1; /* number of bits */
for (i = 0; i < b; ++i) cost += bits_cost[i][((d >> i) & 1)];
}
if (c == MV_CLASS_0) {
cost += class0_fp_cost[d][f];
} else {
cost += fp_cost[f];
}
if (usehp) {
if (c == MV_CLASS_0) {
cost += class0_hp_cost[e];
} else {
cost += hp_cost[e];
}
}
mvcost[v] = cost + sign_cost[0];
mvcost[-v] = cost + sign_cost[1];
}
}
static void update_mv(aom_writer *w, const unsigned int ct[2], aom_prob *cur_p,
aom_prob upd_p) {
(void)upd_p;
#if CONFIG_TILE_GROUPS
// Just use the default maximum number of tile groups to avoid passing in the
// actual
// number
av1_cond_prob_diff_update(w, cur_p, ct, DEFAULT_MAX_NUM_TG);
#else
av1_cond_prob_diff_update(w, cur_p, ct, 1);
#endif
}
#if !CONFIG_EC_ADAPT
static void write_mv_update(const aom_tree_index *tree,
aom_prob probs[/*n - 1*/],
const unsigned int counts[/*n - 1*/], int n,
aom_writer *w) {
int i;
unsigned int branch_ct[32][2];
// Assuming max number of probabilities <= 32
assert(n <= 32);
av1_tree_probs_from_distribution(tree, branch_ct, counts);
for (i = 0; i < n - 1; ++i)
update_mv(w, branch_ct[i], &probs[i], MV_UPDATE_PROB);
}
#endif
void av1_write_nmv_probs(AV1_COMMON *cm, int usehp, aom_writer *w,
nmv_context_counts *const nmv_counts) {
int i;
#if CONFIG_REF_MV
int nmv_ctx = 0;
for (nmv_ctx = 0; nmv_ctx < NMV_CONTEXTS; ++nmv_ctx) {
nmv_context *const mvc = &cm->fc->nmvc[nmv_ctx];
nmv_context_counts *const counts = &nmv_counts[nmv_ctx];
#if !CONFIG_EC_ADAPT
write_mv_update(av1_mv_joint_tree, mvc->joints, counts->joints, MV_JOINTS,
w);
for (i = 0; i < 2; ++i) {
int j;
nmv_component *comp = &mvc->comps[i];
nmv_component_counts *comp_counts = &counts->comps[i];
update_mv(w, comp_counts->sign, &comp->sign, MV_UPDATE_PROB);
write_mv_update(av1_mv_class_tree, comp->classes, comp_counts->classes,
MV_CLASSES, w);
write_mv_update(av1_mv_class0_tree, comp->class0, comp_counts->class0,
CLASS0_SIZE, w);
for (j = 0; j < MV_OFFSET_BITS; ++j)
update_mv(w, comp_counts->bits[j], &comp->bits[j], MV_UPDATE_PROB);
}
for (i = 0; i < 2; ++i) {
int j;
for (j = 0; j < CLASS0_SIZE; ++j)
write_mv_update(av1_mv_fp_tree, mvc->comps[i].class0_fp[j],
counts->comps[i].class0_fp[j], MV_FP_SIZE, w);
write_mv_update(av1_mv_fp_tree, mvc->comps[i].fp, counts->comps[i].fp,
MV_FP_SIZE, w);
}
#endif
if (usehp) {
for (i = 0; i < 2; ++i) {
update_mv(w, counts->comps[i].class0_hp, &mvc->comps[i].class0_hp,
MV_UPDATE_PROB);
update_mv(w, counts->comps[i].hp, &mvc->comps[i].hp, MV_UPDATE_PROB);
}
}
}
#else
nmv_context *const mvc = &cm->fc->nmvc;
nmv_context_counts *const counts = nmv_counts;
#if !CONFIG_EC_ADAPT
write_mv_update(av1_mv_joint_tree, mvc->joints, counts->joints, MV_JOINTS, w);
for (i = 0; i < 2; ++i) {
int j;
nmv_component *comp = &mvc->comps[i];
nmv_component_counts *comp_counts = &counts->comps[i];
update_mv(w, comp_counts->sign, &comp->sign, MV_UPDATE_PROB);
write_mv_update(av1_mv_class_tree, comp->classes, comp_counts->classes,
MV_CLASSES, w);
write_mv_update(av1_mv_class0_tree, comp->class0, comp_counts->class0,
CLASS0_SIZE, w);
for (j = 0; j < MV_OFFSET_BITS; ++j)
update_mv(w, comp_counts->bits[j], &comp->bits[j], MV_UPDATE_PROB);
}
for (i = 0; i < 2; ++i) {
int j;
for (j = 0; j < CLASS0_SIZE; ++j) {
write_mv_update(av1_mv_fp_tree, mvc->comps[i].class0_fp[j],
counts->comps[i].class0_fp[j], MV_FP_SIZE, w);
}
write_mv_update(av1_mv_fp_tree, mvc->comps[i].fp, counts->comps[i].fp,
MV_FP_SIZE, w);
}
#endif // !CONFIG_EC_ADAPT
if (usehp) {
for (i = 0; i < 2; ++i) {
update_mv(w, counts->comps[i].class0_hp, &mvc->comps[i].class0_hp,
MV_UPDATE_PROB);
update_mv(w, counts->comps[i].hp, &mvc->comps[i].hp, MV_UPDATE_PROB);
}
}
#endif
}
void av1_encode_mv(AV1_COMP *cpi, aom_writer *w, const MV *mv, const MV *ref,
#if CONFIG_REF_MV
int is_compound,
#endif
nmv_context *mvctx, int usehp) {
const MV diff = { mv->row - ref->row, mv->col - ref->col };
const MV_JOINT_TYPE j = av1_get_mv_joint(&diff);
#if CONFIG_REF_MV
(void)is_compound;
#endif
#if CONFIG_EC_MULTISYMBOL
aom_write_symbol(w, j, mvctx->joint_cdf, MV_JOINTS);
#else
av1_write_token(w, av1_mv_joint_tree, mvctx->joints, &mv_joint_encodings[j]);
#endif
if (mv_joint_vertical(j))
encode_mv_component(w, diff.row, &mvctx->comps[0], usehp);
if (mv_joint_horizontal(j))
encode_mv_component(w, diff.col, &mvctx->comps[1], usehp);
// If auto_mv_step_size is enabled then keep track of the largest
// motion vector component used.
if (cpi->sf.mv.auto_mv_step_size) {
unsigned int maxv = AOMMAX(abs(mv->row), abs(mv->col)) >> 3;
cpi->max_mv_magnitude = AOMMAX(maxv, cpi->max_mv_magnitude);
}
}
void av1_build_nmv_cost_table(int *mvjoint, int *mvcost[2],
const nmv_context *ctx, int usehp) {
av1_cost_tokens(mvjoint, ctx->joints, av1_mv_joint_tree);
build_nmv_component_cost_table(mvcost[0], &ctx->comps[0], usehp);
build_nmv_component_cost_table(mvcost[1], &ctx->comps[1], usehp);
}
#if CONFIG_EXT_INTER
static void inc_mvs(const MB_MODE_INFO *mbmi, const MB_MODE_INFO_EXT *mbmi_ext,
const int_mv mvs[2],
#if CONFIG_REF_MV
const int_mv pred_mvs[2],
#endif
nmv_context_counts *nmv_counts) {
int i;
PREDICTION_MODE mode = mbmi->mode;
int mv_idx = (mode == NEWFROMNEARMV);
#if !CONFIG_REF_MV
nmv_context_counts *counts = nmv_counts;
#endif
if (mode == NEWMV || mode == NEWFROMNEARMV || mode == NEW_NEWMV) {
for (i = 0; i < 1 + has_second_ref(mbmi); ++i) {
const MV *ref = &mbmi_ext->ref_mvs[mbmi->ref_frame[i]][mv_idx].as_mv;
const MV diff = { mvs[i].as_mv.row - ref->row,
mvs[i].as_mv.col - ref->col };
#if CONFIG_REF_MV
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
int nmv_ctx =
av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type],
mbmi_ext->ref_mv_stack[rf_type], i, mbmi->ref_mv_idx);
nmv_context_counts *counts = &nmv_counts[nmv_ctx];
(void)pred_mvs;
#endif
av1_inc_mv(&diff, counts, 1);
}
} else if (mode == NEAREST_NEWMV || mode == NEAR_NEWMV) {
const MV *ref = &mbmi_ext->ref_mvs[mbmi->ref_frame[1]][0].as_mv;
const MV diff = { mvs[1].as_mv.row - ref->row,
mvs[1].as_mv.col - ref->col };
#if CONFIG_REF_MV
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
int nmv_ctx =
av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type],
mbmi_ext->ref_mv_stack[rf_type], 1, mbmi->ref_mv_idx);
nmv_context_counts *counts = &nmv_counts[nmv_ctx];
#endif
av1_inc_mv(&diff, counts, 1);
} else if (mode == NEW_NEARESTMV || mode == NEW_NEARMV) {
const MV *ref = &mbmi_ext->ref_mvs[mbmi->ref_frame[0]][0].as_mv;
const MV diff = { mvs[0].as_mv.row - ref->row,
mvs[0].as_mv.col - ref->col };
#if CONFIG_REF_MV
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
int nmv_ctx =
av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type],
mbmi_ext->ref_mv_stack[rf_type], 0, mbmi->ref_mv_idx);
nmv_context_counts *counts = &nmv_counts[nmv_ctx];
#endif
av1_inc_mv(&diff, counts, 1);
}
}
static void inc_mvs_sub8x8(const MODE_INFO *mi, int block, const int_mv mvs[2],
#if CONFIG_REF_MV
const MB_MODE_INFO_EXT *mbmi_ext,
#endif
nmv_context_counts *nmv_counts) {
int i;
PREDICTION_MODE mode = mi->bmi[block].as_mode;
#if CONFIG_REF_MV
const MB_MODE_INFO *mbmi = &mi->mbmi;
#else
nmv_context_counts *counts = nmv_counts;
#endif
if (mode == NEWMV || mode == NEWFROMNEARMV || mode == NEW_NEWMV) {
for (i = 0; i < 1 + has_second_ref(&mi->mbmi); ++i) {
const MV *ref = &mi->bmi[block].ref_mv[i].as_mv;
const MV diff = { mvs[i].as_mv.row - ref->row,
mvs[i].as_mv.col - ref->col };
#if CONFIG_REF_MV
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
int nmv_ctx =
av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type],
mbmi_ext->ref_mv_stack[rf_type], i, mbmi->ref_mv_idx);
nmv_context_counts *counts = &nmv_counts[nmv_ctx];
#endif
av1_inc_mv(&diff, counts, 1);
}
} else if (mode == NEAREST_NEWMV || mode == NEAR_NEWMV) {
const MV *ref = &mi->bmi[block].ref_mv[1].as_mv;
const MV diff = { mvs[1].as_mv.row - ref->row,
mvs[1].as_mv.col - ref->col };
#if CONFIG_REF_MV
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
int nmv_ctx =
av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type],
mbmi_ext->ref_mv_stack[rf_type], 1, mbmi->ref_mv_idx);
nmv_context_counts *counts = &nmv_counts[nmv_ctx];
#endif
av1_inc_mv(&diff, counts, 1);
} else if (mode == NEW_NEARESTMV || mode == NEW_NEARMV) {
const MV *ref = &mi->bmi[block].ref_mv[0].as_mv;
const MV diff = { mvs[0].as_mv.row - ref->row,
mvs[0].as_mv.col - ref->col };
#if CONFIG_REF_MV
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
int nmv_ctx =
av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type],
mbmi_ext->ref_mv_stack[rf_type], 0, mbmi->ref_mv_idx);
nmv_context_counts *counts = &nmv_counts[nmv_ctx];
#endif
av1_inc_mv(&diff, counts, 1);
}
}
#else
static void inc_mvs(const MB_MODE_INFO *mbmi, const MB_MODE_INFO_EXT *mbmi_ext,
const int_mv mvs[2],
#if CONFIG_REF_MV
const int_mv pred_mvs[2],
#endif
nmv_context_counts *nmv_counts) {
int i;
#if !CONFIG_REF_MV
nmv_context_counts *counts = nmv_counts;
#endif
for (i = 0; i < 1 + has_second_ref(mbmi); ++i) {
#if CONFIG_REF_MV
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
int nmv_ctx =
av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type],
mbmi_ext->ref_mv_stack[rf_type], i, mbmi->ref_mv_idx);
nmv_context_counts *counts = &nmv_counts[nmv_ctx];
const MV *ref = &pred_mvs[i].as_mv;
#else
const MV *ref = &mbmi_ext->ref_mvs[mbmi->ref_frame[i]][0].as_mv;
#endif
const MV diff = { mvs[i].as_mv.row - ref->row,
mvs[i].as_mv.col - ref->col };
av1_inc_mv(&diff, counts, 1);
}
}
#endif // CONFIG_EXT_INTER
void av1_update_mv_count(ThreadData *td) {
const MACROBLOCKD *xd = &td->mb.e_mbd;
const MODE_INFO *mi = xd->mi[0];
const MB_MODE_INFO *const mbmi = &mi->mbmi;
const MB_MODE_INFO_EXT *mbmi_ext = td->mb.mbmi_ext;
#if CONFIG_CB4X4
const int unify_bsize = 1;
#else
const int unify_bsize = 0;
#endif
if (mbmi->sb_type < BLOCK_8X8 && !unify_bsize) {
const int num_4x4_w = num_4x4_blocks_wide_lookup[mbmi->sb_type];
const int num_4x4_h = num_4x4_blocks_high_lookup[mbmi->sb_type];
int idx, idy;
for (idy = 0; idy < 2; idy += num_4x4_h) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
const int i = idy * 2 + idx;
#if CONFIG_EXT_INTER
if (have_newmv_in_inter_mode(mi->bmi[i].as_mode))
inc_mvs_sub8x8(mi, i, mi->bmi[i].as_mv,
#if CONFIG_REF_MV
mbmi_ext, td->counts->mv);
#else
&td->counts->mv);
#endif
#else
if (mi->bmi[i].as_mode == NEWMV)
inc_mvs(mbmi, mbmi_ext, mi->bmi[i].as_mv,
#if CONFIG_REF_MV
mi->bmi[i].pred_mv, td->counts->mv);
#else
&td->counts->mv);
#endif
#endif // CONFIG_EXT_INTER
}
}
} else {
#if CONFIG_EXT_INTER
if (have_newmv_in_inter_mode(mbmi->mode))
#else
if (mbmi->mode == NEWMV)
#endif // CONFIG_EXT_INTER
inc_mvs(mbmi, mbmi_ext, mbmi->mv,
#if CONFIG_REF_MV
mbmi->pred_mv, td->counts->mv);
#else
&td->counts->mv);
#endif
}
}