978 строки
31 KiB
C
978 строки
31 KiB
C
/*
|
|
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
|
|
*
|
|
* This source code is subject to the terms of the BSD 2 Clause License and
|
|
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
|
|
* was not distributed with this source code in the LICENSE file, you can
|
|
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
|
|
* Media Patent License 1.0 was not distributed with this source code in the
|
|
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
|
|
*/
|
|
|
|
#ifndef AV1_COMMON_ONYXC_INT_H_
|
|
#define AV1_COMMON_ONYXC_INT_H_
|
|
|
|
#include "./aom_config.h"
|
|
#include "./av1_rtcd.h"
|
|
#include "aom/internal/aom_codec_internal.h"
|
|
#include "aom_util/aom_thread.h"
|
|
#if CONFIG_ANS
|
|
#include "aom_dsp/ans.h"
|
|
#endif
|
|
#include "av1/common/alloccommon.h"
|
|
#include "av1/common/av1_loopfilter.h"
|
|
#include "av1/common/entropy.h"
|
|
#include "av1/common/entropymode.h"
|
|
#include "av1/common/entropymv.h"
|
|
#include "av1/common/frame_buffers.h"
|
|
#include "av1/common/mv.h"
|
|
#include "av1/common/quant_common.h"
|
|
#if CONFIG_LOOP_RESTORATION
|
|
#include "av1/common/restoration.h"
|
|
#endif // CONFIG_LOOP_RESTORATION
|
|
#include "av1/common/tile_common.h"
|
|
#include "av1/common/odintrin.h"
|
|
#if CONFIG_PVQ
|
|
#include "av1/common/pvq.h"
|
|
#endif
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
#define REF_FRAMES_LOG2 3
|
|
#define REF_FRAMES (1 << REF_FRAMES_LOG2)
|
|
|
|
// 4 scratch frames for the new frames to support a maximum of 4 cores decoding
|
|
// in parallel, 3 for scaled references on the encoder.
|
|
// TODO(hkuang): Add ondemand frame buffers instead of hardcoding the number
|
|
// of framebuffers.
|
|
// TODO(jkoleszar): These 3 extra references could probably come from the
|
|
// normal reference pool.
|
|
#define FRAME_BUFFERS (REF_FRAMES + 7)
|
|
|
|
#if CONFIG_REFERENCE_BUFFER
|
|
/* Constant values while waiting for the sequence header */
|
|
#define FRAME_ID_NUMBERS_PRESENT_FLAG 1
|
|
#define FRAME_ID_LENGTH_MINUS7 8 // Allows frame id up to 2^15-1
|
|
#define DELTA_FRAME_ID_LENGTH_MINUS2 12 // Allows frame id deltas up to 2^14-1
|
|
#endif
|
|
|
|
#if CONFIG_EXT_REFS
|
|
#define FRAME_CONTEXTS_LOG2 3
|
|
#else
|
|
#define FRAME_CONTEXTS_LOG2 2
|
|
#endif
|
|
|
|
#define FRAME_CONTEXTS (1 << FRAME_CONTEXTS_LOG2)
|
|
|
|
#define NUM_PING_PONG_BUFFERS 2
|
|
|
|
typedef enum {
|
|
SINGLE_REFERENCE = 0,
|
|
COMPOUND_REFERENCE = 1,
|
|
REFERENCE_MODE_SELECT = 2,
|
|
REFERENCE_MODES = 3,
|
|
} REFERENCE_MODE;
|
|
|
|
typedef enum {
|
|
RESET_FRAME_CONTEXT_NONE = 0,
|
|
RESET_FRAME_CONTEXT_CURRENT = 1,
|
|
RESET_FRAME_CONTEXT_ALL = 2,
|
|
} RESET_FRAME_CONTEXT_MODE;
|
|
|
|
typedef enum {
|
|
/**
|
|
* Update frame context to values resulting from forward probability
|
|
* updates signaled in the frame header
|
|
*/
|
|
REFRESH_FRAME_CONTEXT_FORWARD,
|
|
/**
|
|
* Update frame context to values resulting from backward probability
|
|
* updates based on entropy/counts in the decoded frame
|
|
*/
|
|
REFRESH_FRAME_CONTEXT_BACKWARD,
|
|
} REFRESH_FRAME_CONTEXT_MODE;
|
|
|
|
typedef struct {
|
|
int_mv mv[2];
|
|
#if CONFIG_REF_MV
|
|
int_mv pred_mv[2];
|
|
#endif
|
|
MV_REFERENCE_FRAME ref_frame[2];
|
|
} MV_REF;
|
|
|
|
typedef struct {
|
|
int ref_count;
|
|
MV_REF *mvs;
|
|
int mi_rows;
|
|
int mi_cols;
|
|
aom_codec_frame_buffer_t raw_frame_buffer;
|
|
YV12_BUFFER_CONFIG buf;
|
|
#if CONFIG_TEMPMV_SIGNALING
|
|
uint8_t intra_only;
|
|
#endif
|
|
// The Following variables will only be used in frame parallel decode.
|
|
|
|
// frame_worker_owner indicates which FrameWorker owns this buffer. NULL means
|
|
// that no FrameWorker owns, or is decoding, this buffer.
|
|
AVxWorker *frame_worker_owner;
|
|
|
|
// row and col indicate which position frame has been decoded to in real
|
|
// pixel unit. They are reset to -1 when decoding begins and set to INT_MAX
|
|
// when the frame is fully decoded.
|
|
int row;
|
|
int col;
|
|
} RefCntBuffer;
|
|
|
|
typedef struct BufferPool {
|
|
// Protect BufferPool from being accessed by several FrameWorkers at
|
|
// the same time during frame parallel decode.
|
|
// TODO(hkuang): Try to use atomic variable instead of locking the whole pool.
|
|
#if CONFIG_MULTITHREAD
|
|
pthread_mutex_t pool_mutex;
|
|
#endif
|
|
|
|
// Private data associated with the frame buffer callbacks.
|
|
void *cb_priv;
|
|
|
|
aom_get_frame_buffer_cb_fn_t get_fb_cb;
|
|
aom_release_frame_buffer_cb_fn_t release_fb_cb;
|
|
|
|
RefCntBuffer frame_bufs[FRAME_BUFFERS];
|
|
|
|
// Frame buffers allocated internally by the codec.
|
|
InternalFrameBufferList int_frame_buffers;
|
|
} BufferPool;
|
|
|
|
typedef struct AV1Common {
|
|
struct aom_internal_error_info error;
|
|
aom_color_space_t color_space;
|
|
int color_range;
|
|
int width;
|
|
int height;
|
|
int render_width;
|
|
int render_height;
|
|
int last_width;
|
|
int last_height;
|
|
|
|
// TODO(jkoleszar): this implies chroma ss right now, but could vary per
|
|
// plane. Revisit as part of the future change to YV12_BUFFER_CONFIG to
|
|
// support additional planes.
|
|
int subsampling_x;
|
|
int subsampling_y;
|
|
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
// Marks if we need to use 16bit frame buffers (1: yes, 0: no).
|
|
int use_highbitdepth;
|
|
#endif
|
|
#if CONFIG_CLPF
|
|
// Two bits are used to signal the strength for all blocks and the
|
|
// valid values are:
|
|
// 0: no filtering
|
|
// 1: strength = 1
|
|
// 2: strength = 2
|
|
// 3: strength = 4
|
|
int clpf_strength_y;
|
|
int clpf_strength_u;
|
|
int clpf_strength_v;
|
|
|
|
// If clpf_strength_y is not 0, another two bits are used to signal
|
|
// the filter block size. The valid values for clfp_size are:
|
|
// 0: no block signalling
|
|
// 1: 32x32
|
|
// 2: 64x64
|
|
// 3: 128x128
|
|
CLPF_BLOCK_SIZE clpf_size;
|
|
|
|
// Buffer for storing whether to filter individual blocks.
|
|
int8_t *clpf_blocks;
|
|
int clpf_stride;
|
|
#endif
|
|
|
|
YV12_BUFFER_CONFIG *frame_to_show;
|
|
RefCntBuffer *prev_frame;
|
|
|
|
// TODO(hkuang): Combine this with cur_buf in macroblockd.
|
|
RefCntBuffer *cur_frame;
|
|
|
|
int ref_frame_map[REF_FRAMES]; /* maps fb_idx to reference slot */
|
|
|
|
// Prepare ref_frame_map for the next frame.
|
|
// Only used in frame parallel decode.
|
|
int next_ref_frame_map[REF_FRAMES];
|
|
|
|
// TODO(jkoleszar): could expand active_ref_idx to 4, with 0 as intra, and
|
|
// roll new_fb_idx into it.
|
|
|
|
// Each Inter frame can reference INTER_REFS_PER_FRAME buffers
|
|
RefBuffer frame_refs[INTER_REFS_PER_FRAME];
|
|
|
|
int new_fb_idx;
|
|
|
|
FRAME_TYPE last_frame_type; /* last frame's frame type for motion search.*/
|
|
FRAME_TYPE frame_type;
|
|
|
|
int show_frame;
|
|
int last_show_frame;
|
|
int show_existing_frame;
|
|
#if CONFIG_EXT_REFS
|
|
// Flag for a frame used as a reference - not written to the bitstream
|
|
int is_reference_frame;
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
// Flag signaling that the frame is encoded using only INTRA modes.
|
|
uint8_t intra_only;
|
|
uint8_t last_intra_only;
|
|
|
|
int allow_high_precision_mv;
|
|
|
|
#if CONFIG_PALETTE
|
|
int allow_screen_content_tools;
|
|
#endif // CONFIG_PALETTE
|
|
|
|
// Flag signaling which frame contexts should be reset to default values.
|
|
RESET_FRAME_CONTEXT_MODE reset_frame_context;
|
|
|
|
// MBs, mb_rows/cols is in 16-pixel units; mi_rows/cols is in
|
|
// MODE_INFO (8-pixel) units.
|
|
int MBs;
|
|
int mb_rows, mi_rows;
|
|
int mb_cols, mi_cols;
|
|
int mi_stride;
|
|
|
|
/* profile settings */
|
|
TX_MODE tx_mode;
|
|
|
|
int base_qindex;
|
|
int y_dc_delta_q;
|
|
int uv_dc_delta_q;
|
|
int uv_ac_delta_q;
|
|
int16_t y_dequant[MAX_SEGMENTS][2];
|
|
int16_t uv_dequant[MAX_SEGMENTS][2];
|
|
|
|
#if CONFIG_AOM_QM
|
|
// Global quant matrix tables
|
|
qm_val_t *giqmatrix[NUM_QM_LEVELS][2][2][TX_SIZES];
|
|
qm_val_t *gqmatrix[NUM_QM_LEVELS][2][2][TX_SIZES];
|
|
|
|
// Local quant matrix tables for each frame
|
|
qm_val_t *y_iqmatrix[MAX_SEGMENTS][2][TX_SIZES];
|
|
qm_val_t *uv_iqmatrix[MAX_SEGMENTS][2][TX_SIZES];
|
|
// Encoder
|
|
qm_val_t *y_qmatrix[MAX_SEGMENTS][2][TX_SIZES];
|
|
qm_val_t *uv_qmatrix[MAX_SEGMENTS][2][TX_SIZES];
|
|
|
|
int using_qmatrix;
|
|
int min_qmlevel;
|
|
int max_qmlevel;
|
|
#endif
|
|
#if CONFIG_NEW_QUANT
|
|
dequant_val_type_nuq y_dequant_nuq[MAX_SEGMENTS][QUANT_PROFILES][COEF_BANDS];
|
|
dequant_val_type_nuq uv_dequant_nuq[MAX_SEGMENTS][QUANT_PROFILES][COEF_BANDS];
|
|
#endif
|
|
|
|
/* We allocate a MODE_INFO struct for each macroblock, together with
|
|
an extra row on top and column on the left to simplify prediction. */
|
|
int mi_alloc_size;
|
|
MODE_INFO *mip; /* Base of allocated array */
|
|
MODE_INFO *mi; /* Corresponds to upper left visible macroblock */
|
|
|
|
// TODO(agrange): Move prev_mi into encoder structure.
|
|
// prev_mip and prev_mi will only be allocated in encoder.
|
|
MODE_INFO *prev_mip; /* MODE_INFO array 'mip' from last decoded frame */
|
|
MODE_INFO *prev_mi; /* 'mi' from last frame (points into prev_mip) */
|
|
|
|
// Separate mi functions between encoder and decoder.
|
|
int (*alloc_mi)(struct AV1Common *cm, int mi_size);
|
|
void (*free_mi)(struct AV1Common *cm);
|
|
void (*setup_mi)(struct AV1Common *cm);
|
|
|
|
// Grid of pointers to 8x8 MODE_INFO structs. Any 8x8 not in the visible
|
|
// area will be NULL.
|
|
MODE_INFO **mi_grid_base;
|
|
MODE_INFO **mi_grid_visible;
|
|
MODE_INFO **prev_mi_grid_base;
|
|
MODE_INFO **prev_mi_grid_visible;
|
|
|
|
// Whether to use previous frame's motion vectors for prediction.
|
|
int use_prev_frame_mvs;
|
|
|
|
// Persistent mb segment id map used in prediction.
|
|
int seg_map_idx;
|
|
int prev_seg_map_idx;
|
|
|
|
uint8_t *seg_map_array[NUM_PING_PONG_BUFFERS];
|
|
uint8_t *last_frame_seg_map;
|
|
uint8_t *current_frame_seg_map;
|
|
int seg_map_alloc_size;
|
|
|
|
InterpFilter interp_filter;
|
|
|
|
loop_filter_info_n lf_info;
|
|
#if CONFIG_LOOP_RESTORATION
|
|
RestorationInfo rst_info[MAX_MB_PLANE];
|
|
RestorationInternal rst_internal;
|
|
#endif // CONFIG_LOOP_RESTORATION
|
|
|
|
// Flag signaling how frame contexts should be updated at the end of
|
|
// a frame decode
|
|
REFRESH_FRAME_CONTEXT_MODE refresh_frame_context;
|
|
|
|
int ref_frame_sign_bias[TOTAL_REFS_PER_FRAME]; /* Two state 0, 1 */
|
|
|
|
struct loopfilter lf;
|
|
struct segmentation seg;
|
|
|
|
int frame_parallel_decode; // frame-based threading.
|
|
|
|
// Context probabilities for reference frame prediction
|
|
#if CONFIG_EXT_REFS
|
|
MV_REFERENCE_FRAME comp_fwd_ref[FWD_REFS];
|
|
MV_REFERENCE_FRAME comp_bwd_ref[BWD_REFS];
|
|
#else
|
|
MV_REFERENCE_FRAME comp_fixed_ref;
|
|
MV_REFERENCE_FRAME comp_var_ref[COMP_REFS];
|
|
#endif // CONFIG_EXT_REFS
|
|
REFERENCE_MODE reference_mode;
|
|
|
|
FRAME_CONTEXT *fc; /* this frame entropy */
|
|
FRAME_CONTEXT *frame_contexts; // FRAME_CONTEXTS
|
|
unsigned int frame_context_idx; /* Context to use/update */
|
|
FRAME_COUNTS counts;
|
|
|
|
#if CONFIG_ENTROPY
|
|
// The initial probabilities for a frame, before any subframe backward update,
|
|
// and after forward update.
|
|
av1_coeff_probs_model starting_coef_probs[TX_SIZES][PLANE_TYPES];
|
|
// Number of subframe backward updates already done
|
|
uint8_t coef_probs_update_idx;
|
|
// Signal if the backward update is subframe or end-of-frame
|
|
uint8_t partial_prob_update;
|
|
// Frame level flag to turn on/off subframe backward update
|
|
uint8_t do_subframe_update;
|
|
#endif // CONFIG_ENTROPY
|
|
|
|
unsigned int current_video_frame;
|
|
BITSTREAM_PROFILE profile;
|
|
|
|
// AOM_BITS_8 in profile 0 or 1, AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3.
|
|
aom_bit_depth_t bit_depth;
|
|
aom_bit_depth_t dequant_bit_depth; // bit_depth of current dequantizer
|
|
|
|
int error_resilient_mode;
|
|
|
|
#if !CONFIG_EXT_TILE
|
|
int log2_tile_cols, log2_tile_rows;
|
|
#endif // !CONFIG_EXT_TILE
|
|
int tile_cols, tile_rows;
|
|
int tile_width, tile_height; // In MI units
|
|
|
|
#if CONFIG_DEPENDENT_HORZTILES
|
|
int dependent_horz_tiles;
|
|
#endif
|
|
#if CONFIG_LOOPFILTERING_ACROSS_TILES
|
|
int loop_filter_across_tiles_enabled;
|
|
#endif // CONFIG_LOOPFILTERING_ACROSS_TILES
|
|
|
|
int byte_alignment;
|
|
int skip_loop_filter;
|
|
|
|
// Private data associated with the frame buffer callbacks.
|
|
void *cb_priv;
|
|
aom_get_frame_buffer_cb_fn_t get_fb_cb;
|
|
aom_release_frame_buffer_cb_fn_t release_fb_cb;
|
|
|
|
// Handles memory for the codec.
|
|
InternalFrameBufferList int_frame_buffers;
|
|
|
|
// External BufferPool passed from outside.
|
|
BufferPool *buffer_pool;
|
|
|
|
PARTITION_CONTEXT *above_seg_context;
|
|
ENTROPY_CONTEXT *above_context[MAX_MB_PLANE];
|
|
#if CONFIG_VAR_TX
|
|
TXFM_CONTEXT *above_txfm_context;
|
|
TXFM_CONTEXT left_txfm_context[MAX_MIB_SIZE];
|
|
#endif
|
|
int above_context_alloc_cols;
|
|
|
|
// scratch memory for intraonly/keyframe forward updates from default tables
|
|
// - this is intentionally not placed in FRAME_CONTEXT since it's reset upon
|
|
// each keyframe and not used afterwards
|
|
aom_prob kf_y_prob[INTRA_MODES][INTRA_MODES][INTRA_MODES - 1];
|
|
#if CONFIG_GLOBAL_MOTION
|
|
WarpedMotionParams global_motion[TOTAL_REFS_PER_FRAME];
|
|
#endif
|
|
|
|
BLOCK_SIZE sb_size; // Size of the superblock used for this frame
|
|
int mib_size; // Size of the superblock in units of MI blocks
|
|
int mib_size_log2; // Log 2 of above.
|
|
#if CONFIG_DERING
|
|
int dering_level;
|
|
#endif
|
|
|
|
#if CONFIG_DELTA_Q
|
|
int delta_q_present_flag;
|
|
// Resolution of delta quant
|
|
int delta_q_res;
|
|
#endif
|
|
#if CONFIG_TILE_GROUPS
|
|
int num_tg;
|
|
#endif
|
|
#if CONFIG_REFERENCE_BUFFER
|
|
int current_frame_id;
|
|
int ref_frame_id[REF_FRAMES];
|
|
int valid_for_referencing[REF_FRAMES];
|
|
int refresh_mask;
|
|
int invalid_delta_frame_id_minus1;
|
|
#endif
|
|
#if CONFIG_ANS && ANS_MAX_SYMBOLS
|
|
int ans_window_size_log2;
|
|
#endif
|
|
} AV1_COMMON;
|
|
|
|
#if CONFIG_REFERENCE_BUFFER
|
|
/* Initial version of sequence header structure */
|
|
typedef struct SequenceHeader {
|
|
int frame_id_numbers_present_flag;
|
|
int frame_id_length_minus7;
|
|
int delta_frame_id_length_minus2;
|
|
} SequenceHeader;
|
|
#endif
|
|
|
|
// TODO(hkuang): Don't need to lock the whole pool after implementing atomic
|
|
// frame reference count.
|
|
static void lock_buffer_pool(BufferPool *const pool) {
|
|
#if CONFIG_MULTITHREAD
|
|
pthread_mutex_lock(&pool->pool_mutex);
|
|
#else
|
|
(void)pool;
|
|
#endif
|
|
}
|
|
|
|
static void unlock_buffer_pool(BufferPool *const pool) {
|
|
#if CONFIG_MULTITHREAD
|
|
pthread_mutex_unlock(&pool->pool_mutex);
|
|
#else
|
|
(void)pool;
|
|
#endif
|
|
}
|
|
|
|
static INLINE YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) {
|
|
if (index < 0 || index >= REF_FRAMES) return NULL;
|
|
if (cm->ref_frame_map[index] < 0) return NULL;
|
|
assert(cm->ref_frame_map[index] < FRAME_BUFFERS);
|
|
return &cm->buffer_pool->frame_bufs[cm->ref_frame_map[index]].buf;
|
|
}
|
|
|
|
static INLINE YV12_BUFFER_CONFIG *get_frame_new_buffer(
|
|
const AV1_COMMON *const cm) {
|
|
return &cm->buffer_pool->frame_bufs[cm->new_fb_idx].buf;
|
|
}
|
|
|
|
static INLINE int get_free_fb(AV1_COMMON *cm) {
|
|
RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
|
|
int i;
|
|
|
|
lock_buffer_pool(cm->buffer_pool);
|
|
for (i = 0; i < FRAME_BUFFERS; ++i)
|
|
if (frame_bufs[i].ref_count == 0) break;
|
|
|
|
if (i != FRAME_BUFFERS) {
|
|
frame_bufs[i].ref_count = 1;
|
|
} else {
|
|
// Reset i to be INVALID_IDX to indicate no free buffer found.
|
|
i = INVALID_IDX;
|
|
}
|
|
|
|
unlock_buffer_pool(cm->buffer_pool);
|
|
return i;
|
|
}
|
|
|
|
static INLINE void ref_cnt_fb(RefCntBuffer *bufs, int *idx, int new_idx) {
|
|
const int ref_index = *idx;
|
|
|
|
if (ref_index >= 0 && bufs[ref_index].ref_count > 0)
|
|
bufs[ref_index].ref_count--;
|
|
|
|
*idx = new_idx;
|
|
|
|
bufs[new_idx].ref_count++;
|
|
}
|
|
|
|
static INLINE int mi_cols_aligned_to_sb(const AV1_COMMON *cm) {
|
|
return ALIGN_POWER_OF_TWO(cm->mi_cols, cm->mib_size_log2);
|
|
}
|
|
|
|
static INLINE int mi_rows_aligned_to_sb(const AV1_COMMON *cm) {
|
|
return ALIGN_POWER_OF_TWO(cm->mi_rows, cm->mib_size_log2);
|
|
}
|
|
|
|
static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) {
|
|
return cm->frame_type == KEY_FRAME || cm->intra_only;
|
|
}
|
|
|
|
static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd,
|
|
#if CONFIG_PVQ
|
|
tran_low_t *pvq_ref_coeff,
|
|
#endif
|
|
tran_low_t *dqcoeff) {
|
|
int i;
|
|
for (i = 0; i < MAX_MB_PLANE; ++i) {
|
|
xd->plane[i].dqcoeff = dqcoeff;
|
|
#if CONFIG_PVQ
|
|
xd->plane[i].pvq_ref_coeff = pvq_ref_coeff;
|
|
#endif
|
|
xd->above_context[i] = cm->above_context[i];
|
|
if (xd->plane[i].plane_type == PLANE_TYPE_Y) {
|
|
memcpy(xd->plane[i].seg_dequant, cm->y_dequant, sizeof(cm->y_dequant));
|
|
#if CONFIG_AOM_QM
|
|
memcpy(xd->plane[i].seg_iqmatrix, cm->y_iqmatrix, sizeof(cm->y_iqmatrix));
|
|
#endif
|
|
|
|
#if CONFIG_NEW_QUANT
|
|
memcpy(xd->plane[i].seg_dequant_nuq, cm->y_dequant_nuq,
|
|
sizeof(cm->y_dequant_nuq));
|
|
#endif
|
|
} else {
|
|
memcpy(xd->plane[i].seg_dequant, cm->uv_dequant, sizeof(cm->uv_dequant));
|
|
#if CONFIG_AOM_QM
|
|
memcpy(xd->plane[i].seg_iqmatrix, cm->uv_iqmatrix,
|
|
sizeof(cm->uv_iqmatrix));
|
|
#endif
|
|
#if CONFIG_NEW_QUANT
|
|
memcpy(xd->plane[i].seg_dequant_nuq, cm->uv_dequant_nuq,
|
|
sizeof(cm->uv_dequant_nuq));
|
|
#endif
|
|
}
|
|
xd->fc = cm->fc;
|
|
}
|
|
xd->above_seg_context = cm->above_seg_context;
|
|
#if CONFIG_VAR_TX
|
|
xd->above_txfm_context = cm->above_txfm_context;
|
|
#endif
|
|
xd->mi_stride = cm->mi_stride;
|
|
xd->error_info = &cm->error;
|
|
}
|
|
|
|
static INLINE void set_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col) {
|
|
const int above_idx = mi_col * 2;
|
|
const int left_idx = (mi_row * 2) & MAX_MIB_MASK_2;
|
|
int i;
|
|
for (i = 0; i < MAX_MB_PLANE; ++i) {
|
|
struct macroblockd_plane *const pd = &xd->plane[i];
|
|
pd->above_context = &xd->above_context[i][above_idx >> pd->subsampling_x];
|
|
pd->left_context = &xd->left_context[i][left_idx >> pd->subsampling_y];
|
|
}
|
|
}
|
|
|
|
static INLINE int calc_mi_size(int len) {
|
|
// len is in mi units.
|
|
return len + MAX_MIB_SIZE;
|
|
}
|
|
|
|
static INLINE void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh) {
|
|
int i;
|
|
for (i = 0; i < MAX_MB_PLANE; i++) {
|
|
xd->plane[i].n4_w = (bw << 1) >> xd->plane[i].subsampling_x;
|
|
xd->plane[i].n4_h = (bh << 1) >> xd->plane[i].subsampling_y;
|
|
|
|
xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x;
|
|
xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y;
|
|
}
|
|
}
|
|
|
|
#if CONFIG_DEPENDENT_HORZTILES
|
|
static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
|
|
int mi_row, int bh, int mi_col, int bw,
|
|
int mi_rows, int mi_cols,
|
|
int dependent_horz_tile_flag) {
|
|
xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8);
|
|
xd->mb_to_bottom_edge = ((mi_rows - bh - mi_row) * MI_SIZE) * 8;
|
|
xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8);
|
|
xd->mb_to_right_edge = ((mi_cols - bw - mi_col) * MI_SIZE) * 8;
|
|
|
|
if (dependent_horz_tile_flag) {
|
|
xd->up_available = (mi_row > 0);
|
|
} else {
|
|
// Are edges available for intra prediction?
|
|
xd->up_available = (mi_row > tile->mi_row_start);
|
|
}
|
|
|
|
xd->left_available = (mi_col > tile->mi_col_start);
|
|
if (xd->up_available) {
|
|
xd->above_mi = xd->mi[-xd->mi_stride];
|
|
// above_mi may be NULL in encoder's first pass.
|
|
xd->above_mbmi = xd->above_mi ? &xd->above_mi->mbmi : NULL;
|
|
} else {
|
|
xd->above_mi = NULL;
|
|
xd->above_mbmi = NULL;
|
|
}
|
|
|
|
if (xd->left_available) {
|
|
xd->left_mi = xd->mi[-1];
|
|
// left_mi may be NULL in encoder's first pass.
|
|
xd->left_mbmi = xd->left_mi ? &xd->left_mi->mbmi : NULL;
|
|
} else {
|
|
xd->left_mi = NULL;
|
|
xd->left_mbmi = NULL;
|
|
}
|
|
|
|
xd->n8_h = bh;
|
|
xd->n8_w = bw;
|
|
#if CONFIG_REF_MV
|
|
xd->is_sec_rect = 0;
|
|
if (xd->n8_w < xd->n8_h)
|
|
if (mi_col & (xd->n8_h - 1)) xd->is_sec_rect = 1;
|
|
|
|
if (xd->n8_w > xd->n8_h)
|
|
if (mi_row & (xd->n8_w - 1)) xd->is_sec_rect = 1;
|
|
#endif
|
|
}
|
|
#else
|
|
static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
|
|
int mi_row, int bh, int mi_col, int bw,
|
|
int mi_rows, int mi_cols) {
|
|
xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8);
|
|
xd->mb_to_bottom_edge = ((mi_rows - bh - mi_row) * MI_SIZE) * 8;
|
|
xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8);
|
|
xd->mb_to_right_edge = ((mi_cols - bw - mi_col) * MI_SIZE) * 8;
|
|
|
|
// Are edges available for intra prediction?
|
|
xd->up_available = (mi_row > tile->mi_row_start);
|
|
xd->left_available = (mi_col > tile->mi_col_start);
|
|
if (xd->up_available) {
|
|
xd->above_mi = xd->mi[-xd->mi_stride];
|
|
// above_mi may be NULL in encoder's first pass.
|
|
xd->above_mbmi = xd->above_mi ? &xd->above_mi->mbmi : NULL;
|
|
} else {
|
|
xd->above_mi = NULL;
|
|
xd->above_mbmi = NULL;
|
|
}
|
|
|
|
if (xd->left_available) {
|
|
xd->left_mi = xd->mi[-1];
|
|
// left_mi may be NULL in encoder's first pass.
|
|
xd->left_mbmi = xd->left_mi ? &xd->left_mi->mbmi : NULL;
|
|
} else {
|
|
xd->left_mi = NULL;
|
|
xd->left_mbmi = NULL;
|
|
}
|
|
|
|
xd->n8_h = bh;
|
|
xd->n8_w = bw;
|
|
#if CONFIG_REF_MV
|
|
xd->is_sec_rect = 0;
|
|
if (xd->n8_w < xd->n8_h)
|
|
if (mi_col & (xd->n8_h - 1)) xd->is_sec_rect = 1;
|
|
|
|
if (xd->n8_w > xd->n8_h)
|
|
if (mi_row & (xd->n8_w - 1)) xd->is_sec_rect = 1;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
static INLINE const aom_prob *get_y_mode_probs(const AV1_COMMON *cm,
|
|
const MODE_INFO *mi,
|
|
const MODE_INFO *above_mi,
|
|
const MODE_INFO *left_mi,
|
|
int block) {
|
|
const PREDICTION_MODE above = av1_above_block_mode(mi, above_mi, block);
|
|
const PREDICTION_MODE left = av1_left_block_mode(mi, left_mi, block);
|
|
return cm->kf_y_prob[above][left];
|
|
}
|
|
|
|
#if CONFIG_EC_MULTISYMBOL
|
|
static INLINE aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx,
|
|
const MODE_INFO *mi,
|
|
const MODE_INFO *above_mi,
|
|
const MODE_INFO *left_mi,
|
|
int block) {
|
|
const PREDICTION_MODE above = av1_above_block_mode(mi, above_mi, block);
|
|
const PREDICTION_MODE left = av1_left_block_mode(mi, left_mi, block);
|
|
return tile_ctx->kf_y_cdf[above][left];
|
|
}
|
|
#endif
|
|
|
|
static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row,
|
|
int mi_col, BLOCK_SIZE subsize,
|
|
BLOCK_SIZE bsize) {
|
|
PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col;
|
|
PARTITION_CONTEXT *const left_ctx =
|
|
xd->left_seg_context + (mi_row & MAX_MIB_MASK);
|
|
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
const int bw = mi_size_wide[bsize];
|
|
const int bh = mi_size_high[bsize];
|
|
memset(above_ctx, partition_context_lookup[subsize].above, bw);
|
|
memset(left_ctx, partition_context_lookup[subsize].left, bh);
|
|
#else
|
|
// num_4x4_blocks_wide_lookup[bsize] / 2
|
|
const int bs = mi_size_wide[bsize];
|
|
|
|
// update the partition context at the end notes. set partition bits
|
|
// of block sizes larger than the current one to be one, and partition
|
|
// bits of smaller block sizes to be zero.
|
|
memset(above_ctx, partition_context_lookup[subsize].above, bs);
|
|
memset(left_ctx, partition_context_lookup[subsize].left, bs);
|
|
#endif // CONFIG_EXT_PARTITION_TYPES
|
|
}
|
|
|
|
#if CONFIG_EXT_PARTITION_TYPES
|
|
static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row,
|
|
int mi_col, BLOCK_SIZE subsize,
|
|
BLOCK_SIZE bsize,
|
|
PARTITION_TYPE partition) {
|
|
if (bsize >= BLOCK_8X8) {
|
|
const int hbs = mi_size_wide[bsize] / 2;
|
|
BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
|
|
switch (partition) {
|
|
case PARTITION_SPLIT:
|
|
if (bsize != BLOCK_8X8) break;
|
|
case PARTITION_NONE:
|
|
case PARTITION_HORZ:
|
|
case PARTITION_VERT:
|
|
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
|
|
break;
|
|
case PARTITION_HORZ_A:
|
|
update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
|
|
update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize);
|
|
break;
|
|
case PARTITION_HORZ_B:
|
|
update_partition_context(xd, mi_row, mi_col, subsize, subsize);
|
|
update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize);
|
|
break;
|
|
case PARTITION_VERT_A:
|
|
update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
|
|
update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize);
|
|
break;
|
|
case PARTITION_VERT_B:
|
|
update_partition_context(xd, mi_row, mi_col, subsize, subsize);
|
|
update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize);
|
|
break;
|
|
default: assert(0 && "Invalid partition type");
|
|
}
|
|
}
|
|
}
|
|
#endif // CONFIG_EXT_PARTITION_TYPES
|
|
|
|
static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row,
|
|
int mi_col,
|
|
#if CONFIG_UNPOISON_PARTITION_CTX
|
|
int has_rows, int has_cols,
|
|
#endif
|
|
BLOCK_SIZE bsize) {
|
|
#if CONFIG_UNPOISON_PARTITION_CTX
|
|
const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col;
|
|
const PARTITION_CONTEXT *left_ctx =
|
|
xd->left_seg_context + (mi_row & MAX_MIB_MASK);
|
|
// Minimum partition point is 8x8. Offset the bsl accordingly.
|
|
const int bsl = mi_width_log2_lookup[bsize] - mi_width_log2_lookup[BLOCK_8X8];
|
|
int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
|
|
|
|
assert(b_width_log2_lookup[bsize] == b_height_log2_lookup[bsize]);
|
|
assert(bsl >= 0);
|
|
|
|
if (has_rows && has_cols)
|
|
return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
|
|
else if (has_rows && !has_cols)
|
|
return PARTITION_CONTEXTS_PRIMARY + bsl;
|
|
else if (!has_rows && has_cols)
|
|
return PARTITION_CONTEXTS_PRIMARY + PARTITION_BLOCK_SIZES + bsl;
|
|
else
|
|
return -1; // Bogus context, forced SPLIT
|
|
#else
|
|
const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col;
|
|
const PARTITION_CONTEXT *left_ctx =
|
|
xd->left_seg_context + (mi_row & MAX_MIB_MASK);
|
|
// Minimum partition point is 8x8. Offset the bsl accordingly.
|
|
const int bsl = mi_width_log2_lookup[bsize] - mi_width_log2_lookup[BLOCK_8X8];
|
|
int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
|
|
|
|
assert(b_width_log2_lookup[bsize] == b_height_log2_lookup[bsize]);
|
|
assert(bsl >= 0);
|
|
|
|
return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
|
|
#endif
|
|
}
|
|
|
|
static INLINE int max_block_wide(const MACROBLOCKD *xd, const BLOCK_SIZE bsize,
|
|
const int plane) {
|
|
int max_blocks_wide = block_size_wide[bsize];
|
|
const struct macroblockd_plane *const pd = &xd->plane[plane];
|
|
|
|
if (xd->mb_to_right_edge < 0)
|
|
max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x);
|
|
|
|
// Scale the width in the transform block unit.
|
|
return max_blocks_wide >> tx_size_wide_log2[0];
|
|
}
|
|
|
|
static INLINE int max_block_high(const MACROBLOCKD *xd, const BLOCK_SIZE bsize,
|
|
const int plane) {
|
|
int max_blocks_high = block_size_high[bsize];
|
|
const struct macroblockd_plane *const pd = &xd->plane[plane];
|
|
|
|
if (xd->mb_to_bottom_edge < 0)
|
|
max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y);
|
|
|
|
// Scale the width in the transform block unit.
|
|
return max_blocks_high >> tx_size_wide_log2[0];
|
|
}
|
|
|
|
static INLINE void av1_zero_above_context(AV1_COMMON *const cm,
|
|
int mi_col_start, int mi_col_end) {
|
|
const int width = mi_col_end - mi_col_start;
|
|
|
|
const int offset_y = 2 * mi_col_start;
|
|
const int width_y = 2 * width;
|
|
const int offset_uv = offset_y >> cm->subsampling_x;
|
|
const int width_uv = width_y >> cm->subsampling_x;
|
|
|
|
av1_zero_array(cm->above_context[0] + offset_y, width_y);
|
|
av1_zero_array(cm->above_context[1] + offset_uv, width_uv);
|
|
av1_zero_array(cm->above_context[2] + offset_uv, width_uv);
|
|
|
|
av1_zero_array(cm->above_seg_context + mi_col_start, width);
|
|
|
|
#if CONFIG_VAR_TX
|
|
av1_zero_array(cm->above_txfm_context + mi_col_start, width);
|
|
#endif // CONFIG_VAR_TX
|
|
}
|
|
|
|
static INLINE void av1_zero_left_context(MACROBLOCKD *const xd) {
|
|
av1_zero(xd->left_context);
|
|
av1_zero(xd->left_seg_context);
|
|
#if CONFIG_VAR_TX
|
|
av1_zero(xd->left_txfm_context_buffer);
|
|
#endif
|
|
}
|
|
|
|
#if CONFIG_VAR_TX
|
|
static INLINE TX_SIZE get_min_tx_size(const TX_SIZE tx_size) {
|
|
if (tx_size >= TX_SIZES_ALL) assert(0);
|
|
return txsize_sqr_map[tx_size];
|
|
}
|
|
|
|
static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) {
|
|
int i;
|
|
for (i = 0; i < len; ++i) txfm_ctx[i] = txs;
|
|
}
|
|
|
|
static INLINE void set_txfm_ctxs(TX_SIZE tx_size, int n8_w, int n8_h,
|
|
const int skip, const MACROBLOCKD *xd) {
|
|
uint8_t bw = tx_size_wide[tx_size];
|
|
uint8_t bh = tx_size_high[tx_size];
|
|
|
|
if (skip) {
|
|
bw = n8_w * MI_SIZE;
|
|
bh = n8_h * MI_SIZE;
|
|
}
|
|
|
|
set_txfm_ctx(xd->above_txfm_context, bw, n8_w);
|
|
set_txfm_ctx(xd->left_txfm_context, bh, n8_h);
|
|
}
|
|
|
|
static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx,
|
|
TXFM_CONTEXT *left_ctx,
|
|
TX_SIZE tx_size, TX_SIZE txb_size) {
|
|
BLOCK_SIZE bsize = txsize_to_bsize[txb_size];
|
|
int bh = mi_size_high[bsize];
|
|
int bw = mi_size_wide[bsize];
|
|
uint8_t txw = tx_size_wide[tx_size];
|
|
uint8_t txh = tx_size_high[tx_size];
|
|
int i;
|
|
for (i = 0; i < bh; ++i) left_ctx[i] = txh;
|
|
for (i = 0; i < bw; ++i) above_ctx[i] = txw;
|
|
}
|
|
|
|
static INLINE int txfm_partition_context(TXFM_CONTEXT *above_ctx,
|
|
TXFM_CONTEXT *left_ctx,
|
|
const BLOCK_SIZE bsize,
|
|
const TX_SIZE tx_size) {
|
|
const uint8_t txw = tx_size_wide[tx_size];
|
|
const uint8_t txh = tx_size_high[tx_size];
|
|
const int above = *above_ctx < txw;
|
|
const int left = *left_ctx < txh;
|
|
TX_SIZE max_tx_size = max_txsize_lookup[bsize];
|
|
int category = TXFM_PARTITION_CONTEXTS - 1;
|
|
|
|
// dummy return, not used by others.
|
|
if (tx_size <= TX_4X4) return 0;
|
|
|
|
switch (AOMMAX(block_size_wide[bsize], block_size_high[bsize])) {
|
|
case 64:
|
|
case 32: max_tx_size = TX_32X32; break;
|
|
case 16: max_tx_size = TX_16X16; break;
|
|
case 8: max_tx_size = TX_8X8; break;
|
|
default: assert(0);
|
|
}
|
|
|
|
if (max_tx_size >= TX_8X8) {
|
|
category = (tx_size != max_tx_size && max_tx_size > TX_8X8) +
|
|
(TX_SIZES - 1 - max_tx_size) * 2;
|
|
}
|
|
if (category == TXFM_PARTITION_CONTEXTS - 1) return category;
|
|
return category * 3 + above + left;
|
|
}
|
|
#endif
|
|
|
|
static INLINE PARTITION_TYPE get_partition(const AV1_COMMON *const cm,
|
|
const int mi_row, const int mi_col,
|
|
const BLOCK_SIZE bsize) {
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) {
|
|
return PARTITION_INVALID;
|
|
} else {
|
|
const int offset = mi_row * cm->mi_stride + mi_col;
|
|
MODE_INFO **mi = cm->mi_grid_visible + offset;
|
|
const MB_MODE_INFO *const mbmi = &mi[0]->mbmi;
|
|
const int bsl = b_width_log2_lookup[bsize];
|
|
const PARTITION_TYPE partition = partition_lookup[bsl][mbmi->sb_type];
|
|
#if !CONFIG_EXT_PARTITION_TYPES
|
|
return partition;
|
|
#else
|
|
const int hbs = mi_size_wide[bsize] / 2;
|
|
|
|
assert(cm->mi_grid_visible[offset] == &cm->mi[offset]);
|
|
|
|
if (partition != PARTITION_NONE && bsize > BLOCK_8X8 &&
|
|
mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols) {
|
|
const BLOCK_SIZE h = get_subsize(bsize, PARTITION_HORZ_A);
|
|
const BLOCK_SIZE v = get_subsize(bsize, PARTITION_VERT_A);
|
|
const MB_MODE_INFO *const mbmi_right = &mi[hbs]->mbmi;
|
|
const MB_MODE_INFO *const mbmi_below = &mi[hbs * cm->mi_stride]->mbmi;
|
|
if (mbmi->sb_type == h) {
|
|
return mbmi_below->sb_type == h ? PARTITION_HORZ : PARTITION_HORZ_B;
|
|
} else if (mbmi->sb_type == v) {
|
|
return mbmi_right->sb_type == v ? PARTITION_VERT : PARTITION_VERT_B;
|
|
} else if (mbmi_below->sb_type == h) {
|
|
return PARTITION_HORZ_A;
|
|
} else if (mbmi_right->sb_type == v) {
|
|
return PARTITION_VERT_A;
|
|
} else {
|
|
return PARTITION_SPLIT;
|
|
}
|
|
}
|
|
|
|
return partition;
|
|
#endif // !CONFIG_EXT_PARTITION_TYPES
|
|
}
|
|
}
|
|
|
|
static INLINE void set_sb_size(AV1_COMMON *const cm, const BLOCK_SIZE sb_size) {
|
|
cm->sb_size = sb_size;
|
|
cm->mib_size = mi_size_wide[cm->sb_size];
|
|
#if CONFIG_CB4X4
|
|
cm->mib_size_log2 = b_width_log2_lookup[cm->sb_size];
|
|
#else
|
|
cm->mib_size_log2 = mi_width_log2_lookup[cm->sb_size];
|
|
#endif
|
|
}
|
|
|
|
#ifdef __cplusplus
|
|
} // extern "C"
|
|
#endif
|
|
|
|
#endif // AV1_COMMON_ONYXC_INT_H_
|