aom/aom_dsp/x86/aom_subpixel_8t_intrin_ssse3.c

921 строка
41 KiB
C

/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <tmmintrin.h>
#include "./aom_dsp_rtcd.h"
#include "aom_dsp/aom_filter.h"
#include "aom_dsp/x86/convolve.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "aom_ports/emmintrin_compat.h"
// filters only for the 4_h8 convolution
DECLARE_ALIGNED(16, static const uint8_t, filt1_4_h8[16]) = {
0, 1, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 5, 6
};
DECLARE_ALIGNED(16, static const uint8_t, filt2_4_h8[16]) = {
4, 5, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 9, 10
};
// filters for 8_h8 and 16_h8
DECLARE_ALIGNED(16, static const uint8_t, filt1_global[16]) = {
0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8
};
DECLARE_ALIGNED(16, static const uint8_t, filt2_global[16]) = {
2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10
};
DECLARE_ALIGNED(16, static const uint8_t, filt3_global[16]) = {
4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12
};
DECLARE_ALIGNED(16, static const uint8_t, filt4_global[16]) = {
6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14
};
// These are reused by the avx2 intrinsics.
filter8_1dfunction aom_filter_block1d8_v8_intrin_ssse3;
filter8_1dfunction aom_filter_block1d8_h8_intrin_ssse3;
filter8_1dfunction aom_filter_block1d4_h8_intrin_ssse3;
void aom_filter_block1d4_h8_intrin_ssse3(
const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr,
ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
__m128i firstFilters, secondFilters, shuffle1, shuffle2;
__m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt4;
__m128i addFilterReg64, filtersReg, srcReg, minReg;
unsigned int i;
// create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
addFilterReg64 = _mm_set1_epi32((int)0x0400040u);
filtersReg = _mm_loadu_si128((const __m128i *)filter);
// converting the 16 bit (short) to 8 bit (byte) and have the same data
// in both lanes of 128 bit register.
filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
// duplicate only the first 16 bits in the filter into the first lane
firstFilters = _mm_shufflelo_epi16(filtersReg, 0);
// duplicate only the third 16 bit in the filter into the first lane
secondFilters = _mm_shufflelo_epi16(filtersReg, 0xAAu);
// duplicate only the seconds 16 bits in the filter into the second lane
// firstFilters: k0 k1 k0 k1 k0 k1 k0 k1 k2 k3 k2 k3 k2 k3 k2 k3
firstFilters = _mm_shufflehi_epi16(firstFilters, 0x55u);
// duplicate only the forth 16 bits in the filter into the second lane
// secondFilters: k4 k5 k4 k5 k4 k5 k4 k5 k6 k7 k6 k7 k6 k7 k6 k7
secondFilters = _mm_shufflehi_epi16(secondFilters, 0xFFu);
// loading the local filters
shuffle1 = _mm_load_si128((__m128i const *)filt1_4_h8);
shuffle2 = _mm_load_si128((__m128i const *)filt2_4_h8);
for (i = 0; i < output_height; i++) {
srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3));
// filter the source buffer
srcRegFilt1 = _mm_shuffle_epi8(srcReg, shuffle1);
srcRegFilt2 = _mm_shuffle_epi8(srcReg, shuffle2);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters);
srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters);
// extract the higher half of the lane
srcRegFilt3 = _mm_srli_si128(srcRegFilt1, 8);
srcRegFilt4 = _mm_srli_si128(srcRegFilt2, 8);
minReg = _mm_min_epi16(srcRegFilt3, srcRegFilt2);
// add and saturate all the results together
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4);
srcRegFilt3 = _mm_max_epi16(srcRegFilt3, srcRegFilt2);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt3);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64);
// shift by 7 bit each 16 bits
srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);
// shrink to 8 bit each 16 bits
srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1);
src_ptr += src_pixels_per_line;
// save only 4 bytes
*((int *)&output_ptr[0]) = _mm_cvtsi128_si32(srcRegFilt1);
output_ptr += output_pitch;
}
}
void aom_filter_block1d8_h8_intrin_ssse3(
const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr,
ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
__m128i firstFilters, secondFilters, thirdFilters, forthFilters, srcReg;
__m128i filt1Reg, filt2Reg, filt3Reg, filt4Reg;
__m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt4;
__m128i addFilterReg64, filtersReg, minReg;
unsigned int i;
// create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
addFilterReg64 = _mm_set1_epi32((int)0x0400040u);
filtersReg = _mm_loadu_si128((const __m128i *)filter);
// converting the 16 bit (short) to 8 bit (byte) and have the same data
// in both lanes of 128 bit register.
filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
// duplicate only the first 16 bits (first and second byte)
// across 128 bit register
firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u));
// duplicate only the second 16 bits (third and forth byte)
// across 128 bit register
secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u));
// duplicate only the third 16 bits (fifth and sixth byte)
// across 128 bit register
thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u));
// duplicate only the forth 16 bits (seventh and eighth byte)
// across 128 bit register
forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u));
filt1Reg = _mm_load_si128((__m128i const *)filt1_global);
filt2Reg = _mm_load_si128((__m128i const *)filt2_global);
filt3Reg = _mm_load_si128((__m128i const *)filt3_global);
filt4Reg = _mm_load_si128((__m128i const *)filt4_global);
for (i = 0; i < output_height; i++) {
srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3));
// filter the source buffer
srcRegFilt1 = _mm_shuffle_epi8(srcReg, filt1Reg);
srcRegFilt2 = _mm_shuffle_epi8(srcReg, filt2Reg);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters);
srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters);
// filter the source buffer
srcRegFilt3 = _mm_shuffle_epi8(srcReg, filt3Reg);
srcRegFilt4 = _mm_shuffle_epi8(srcReg, filt4Reg);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, thirdFilters);
srcRegFilt4 = _mm_maddubs_epi16(srcRegFilt4, forthFilters);
// add and saturate all the results together
minReg = _mm_min_epi16(srcRegFilt2, srcRegFilt3);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4);
srcRegFilt2 = _mm_max_epi16(srcRegFilt2, srcRegFilt3);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64);
// shift by 7 bit each 16 bits
srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);
// shrink to 8 bit each 16 bits
srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1);
src_ptr += src_pixels_per_line;
// save only 8 bytes
_mm_storel_epi64((__m128i *)&output_ptr[0], srcRegFilt1);
output_ptr += output_pitch;
}
}
void aom_filter_block1d8_v8_intrin_ssse3(
const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) {
__m128i addFilterReg64, filtersReg, minReg;
__m128i firstFilters, secondFilters, thirdFilters, forthFilters;
__m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt5;
__m128i srcReg1, srcReg2, srcReg3, srcReg4, srcReg5, srcReg6, srcReg7;
__m128i srcReg8;
unsigned int i;
// create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
addFilterReg64 = _mm_set1_epi32((int)0x0400040u);
filtersReg = _mm_loadu_si128((const __m128i *)filter);
// converting the 16 bit (short) to 8 bit (byte) and have the same data
// in both lanes of 128 bit register.
filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
// duplicate only the first 16 bits in the filter
firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u));
// duplicate only the second 16 bits in the filter
secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u));
// duplicate only the third 16 bits in the filter
thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u));
// duplicate only the forth 16 bits in the filter
forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u));
// load the first 7 rows of 8 bytes
srcReg1 = _mm_loadl_epi64((const __m128i *)src_ptr);
srcReg2 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch));
srcReg3 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2));
srcReg4 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3));
srcReg5 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4));
srcReg6 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5));
srcReg7 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6));
for (i = 0; i < output_height; i++) {
// load the last 8 bytes
srcReg8 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 7));
// merge the result together
srcRegFilt1 = _mm_unpacklo_epi8(srcReg1, srcReg2);
srcRegFilt3 = _mm_unpacklo_epi8(srcReg3, srcReg4);
// merge the result together
srcRegFilt2 = _mm_unpacklo_epi8(srcReg5, srcReg6);
srcRegFilt5 = _mm_unpacklo_epi8(srcReg7, srcReg8);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters);
srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, secondFilters);
srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, thirdFilters);
srcRegFilt5 = _mm_maddubs_epi16(srcRegFilt5, forthFilters);
// add and saturate the results together
minReg = _mm_min_epi16(srcRegFilt2, srcRegFilt3);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt5);
srcRegFilt2 = _mm_max_epi16(srcRegFilt2, srcRegFilt3);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64);
// shift by 7 bit each 16 bit
srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);
// shrink to 8 bit each 16 bits
srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1);
src_ptr += src_pitch;
// shift down a row
srcReg1 = srcReg2;
srcReg2 = srcReg3;
srcReg3 = srcReg4;
srcReg4 = srcReg5;
srcReg5 = srcReg6;
srcReg6 = srcReg7;
srcReg7 = srcReg8;
// save only 8 bytes convolve result
_mm_storel_epi64((__m128i *)&output_ptr[0], srcRegFilt1);
output_ptr += out_pitch;
}
}
filter8_1dfunction aom_filter_block1d16_v8_ssse3;
filter8_1dfunction aom_filter_block1d16_h8_ssse3;
filter8_1dfunction aom_filter_block1d8_v8_ssse3;
filter8_1dfunction aom_filter_block1d8_h8_ssse3;
filter8_1dfunction aom_filter_block1d4_v8_ssse3;
filter8_1dfunction aom_filter_block1d4_h8_ssse3;
filter8_1dfunction aom_filter_block1d16_v8_avg_ssse3;
filter8_1dfunction aom_filter_block1d16_h8_avg_ssse3;
filter8_1dfunction aom_filter_block1d8_v8_avg_ssse3;
filter8_1dfunction aom_filter_block1d8_h8_avg_ssse3;
filter8_1dfunction aom_filter_block1d4_v8_avg_ssse3;
filter8_1dfunction aom_filter_block1d4_h8_avg_ssse3;
#if CONFIG_LOOP_RESTORATION
filter8_1dfunction aom_filter_block1d16_v8_add_src_ssse3;
filter8_1dfunction aom_filter_block1d16_h8_add_src_ssse3;
filter8_1dfunction aom_filter_block1d8_v8_add_src_ssse3;
filter8_1dfunction aom_filter_block1d8_h8_add_src_ssse3;
filter8_1dfunction aom_filter_block1d4_v8_add_src_ssse3;
filter8_1dfunction aom_filter_block1d4_h8_add_src_ssse3;
#endif
filter8_1dfunction aom_filter_block1d16_v2_ssse3;
filter8_1dfunction aom_filter_block1d16_h2_ssse3;
filter8_1dfunction aom_filter_block1d8_v2_ssse3;
filter8_1dfunction aom_filter_block1d8_h2_ssse3;
filter8_1dfunction aom_filter_block1d4_v2_ssse3;
filter8_1dfunction aom_filter_block1d4_h2_ssse3;
filter8_1dfunction aom_filter_block1d16_v2_avg_ssse3;
filter8_1dfunction aom_filter_block1d16_h2_avg_ssse3;
filter8_1dfunction aom_filter_block1d8_v2_avg_ssse3;
filter8_1dfunction aom_filter_block1d8_h2_avg_ssse3;
filter8_1dfunction aom_filter_block1d4_v2_avg_ssse3;
filter8_1dfunction aom_filter_block1d4_h2_avg_ssse3;
// void aom_convolve8_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride,
// uint8_t *dst, ptrdiff_t dst_stride,
// const int16_t *filter_x, int x_step_q4,
// const int16_t *filter_y, int y_step_q4,
// int w, int h);
// void aom_convolve8_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride,
// uint8_t *dst, ptrdiff_t dst_stride,
// const int16_t *filter_x, int x_step_q4,
// const int16_t *filter_y, int y_step_q4,
// int w, int h);
// void aom_convolve8_avg_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride,
// uint8_t *dst, ptrdiff_t dst_stride,
// const int16_t *filter_x, int x_step_q4,
// const int16_t *filter_y, int y_step_q4,
// int w, int h);
// void aom_convolve8_avg_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride,
// uint8_t *dst, ptrdiff_t dst_stride,
// const int16_t *filter_x, int x_step_q4,
// const int16_t *filter_y, int y_step_q4,
// int w, int h);
FUN_CONV_1D(horiz, x_step_q4, filter_x, h, src, , ssse3);
FUN_CONV_1D(vert, y_step_q4, filter_y, v, src - src_stride * 3, , ssse3);
FUN_CONV_1D(avg_horiz, x_step_q4, filter_x, h, src, avg_, ssse3);
FUN_CONV_1D(avg_vert, y_step_q4, filter_y, v, src - src_stride * 3, avg_,
ssse3);
#if CONFIG_LOOP_RESTORATION
FUN_CONV_1D_NO_BILINEAR(add_src_horiz, x_step_q4, filter_x, h, src, add_src_,
ssse3);
FUN_CONV_1D_NO_BILINEAR(add_src_vert, y_step_q4, filter_y, v,
src - src_stride * 3, add_src_, ssse3);
#endif
#define TRANSPOSE_8X8(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \
out2, out3, out4, out5, out6, out7) \
{ \
const __m128i tr0_0 = _mm_unpacklo_epi8(in0, in1); \
const __m128i tr0_1 = _mm_unpacklo_epi8(in2, in3); \
const __m128i tr0_2 = _mm_unpacklo_epi8(in4, in5); \
const __m128i tr0_3 = _mm_unpacklo_epi8(in6, in7); \
\
const __m128i tr1_0 = _mm_unpacklo_epi16(tr0_0, tr0_1); \
const __m128i tr1_1 = _mm_unpackhi_epi16(tr0_0, tr0_1); \
const __m128i tr1_2 = _mm_unpacklo_epi16(tr0_2, tr0_3); \
const __m128i tr1_3 = _mm_unpackhi_epi16(tr0_2, tr0_3); \
\
const __m128i tr2_0 = _mm_unpacklo_epi32(tr1_0, tr1_2); \
const __m128i tr2_1 = _mm_unpackhi_epi32(tr1_0, tr1_2); \
const __m128i tr2_2 = _mm_unpacklo_epi32(tr1_1, tr1_3); \
const __m128i tr2_3 = _mm_unpackhi_epi32(tr1_1, tr1_3); \
\
out0 = _mm_unpacklo_epi64(tr2_0, tr2_0); \
out1 = _mm_unpackhi_epi64(tr2_0, tr2_0); \
out2 = _mm_unpacklo_epi64(tr2_1, tr2_1); \
out3 = _mm_unpackhi_epi64(tr2_1, tr2_1); \
out4 = _mm_unpacklo_epi64(tr2_2, tr2_2); \
out5 = _mm_unpackhi_epi64(tr2_2, tr2_2); \
out6 = _mm_unpacklo_epi64(tr2_3, tr2_3); \
out7 = _mm_unpackhi_epi64(tr2_3, tr2_3); \
}
static void filter_horiz_w8_ssse3(const uint8_t *src_x, ptrdiff_t src_pitch,
uint8_t *dst, const int16_t *x_filter) {
const __m128i k_256 = _mm_set1_epi16(1 << 8);
const __m128i f_values = _mm_load_si128((const __m128i *)x_filter);
// pack and duplicate the filter values
const __m128i f1f0 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0200u));
const __m128i f3f2 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0604u));
const __m128i f5f4 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0a08u));
const __m128i f7f6 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0e0cu));
const __m128i A = _mm_loadl_epi64((const __m128i *)src_x);
const __m128i B = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch));
const __m128i C = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch * 2));
const __m128i D = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch * 3));
const __m128i E = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch * 4));
const __m128i F = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch * 5));
const __m128i G = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch * 6));
const __m128i H = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch * 7));
// 00 01 10 11 02 03 12 13 04 05 14 15 06 07 16 17
const __m128i tr0_0 = _mm_unpacklo_epi16(A, B);
// 20 21 30 31 22 23 32 33 24 25 34 35 26 27 36 37
const __m128i tr0_1 = _mm_unpacklo_epi16(C, D);
// 40 41 50 51 42 43 52 53 44 45 54 55 46 47 56 57
const __m128i tr0_2 = _mm_unpacklo_epi16(E, F);
// 60 61 70 71 62 63 72 73 64 65 74 75 66 67 76 77
const __m128i tr0_3 = _mm_unpacklo_epi16(G, H);
// 00 01 10 11 20 21 30 31 02 03 12 13 22 23 32 33
const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
// 04 05 14 15 24 25 34 35 06 07 16 17 26 27 36 37
const __m128i tr1_1 = _mm_unpackhi_epi32(tr0_0, tr0_1);
// 40 41 50 51 60 61 70 71 42 43 52 53 62 63 72 73
const __m128i tr1_2 = _mm_unpacklo_epi32(tr0_2, tr0_3);
// 44 45 54 55 64 65 74 75 46 47 56 57 66 67 76 77
const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
// 00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71
const __m128i s1s0 = _mm_unpacklo_epi64(tr1_0, tr1_2);
const __m128i s3s2 = _mm_unpackhi_epi64(tr1_0, tr1_2);
const __m128i s5s4 = _mm_unpacklo_epi64(tr1_1, tr1_3);
const __m128i s7s6 = _mm_unpackhi_epi64(tr1_1, tr1_3);
// multiply 2 adjacent elements with the filter and add the result
const __m128i x0 = _mm_maddubs_epi16(s1s0, f1f0);
const __m128i x1 = _mm_maddubs_epi16(s3s2, f3f2);
const __m128i x2 = _mm_maddubs_epi16(s5s4, f5f4);
const __m128i x3 = _mm_maddubs_epi16(s7s6, f7f6);
// add and saturate the results together
const __m128i min_x2x1 = _mm_min_epi16(x2, x1);
const __m128i max_x2x1 = _mm_max_epi16(x2, x1);
__m128i temp = _mm_adds_epi16(x0, x3);
temp = _mm_adds_epi16(temp, min_x2x1);
temp = _mm_adds_epi16(temp, max_x2x1);
// round and shift by 7 bit each 16 bit
temp = _mm_mulhrs_epi16(temp, k_256);
// shrink to 8 bit each 16 bits
temp = _mm_packus_epi16(temp, temp);
// save only 8 bytes convolve result
_mm_storel_epi64((__m128i *)dst, temp);
}
static void transpose8x8_to_dst(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride) {
__m128i A, B, C, D, E, F, G, H;
A = _mm_loadl_epi64((const __m128i *)src);
B = _mm_loadl_epi64((const __m128i *)(src + src_stride));
C = _mm_loadl_epi64((const __m128i *)(src + src_stride * 2));
D = _mm_loadl_epi64((const __m128i *)(src + src_stride * 3));
E = _mm_loadl_epi64((const __m128i *)(src + src_stride * 4));
F = _mm_loadl_epi64((const __m128i *)(src + src_stride * 5));
G = _mm_loadl_epi64((const __m128i *)(src + src_stride * 6));
H = _mm_loadl_epi64((const __m128i *)(src + src_stride * 7));
TRANSPOSE_8X8(A, B, C, D, E, F, G, H, A, B, C, D, E, F, G, H);
_mm_storel_epi64((__m128i *)dst, A);
_mm_storel_epi64((__m128i *)(dst + dst_stride * 1), B);
_mm_storel_epi64((__m128i *)(dst + dst_stride * 2), C);
_mm_storel_epi64((__m128i *)(dst + dst_stride * 3), D);
_mm_storel_epi64((__m128i *)(dst + dst_stride * 4), E);
_mm_storel_epi64((__m128i *)(dst + dst_stride * 5), F);
_mm_storel_epi64((__m128i *)(dst + dst_stride * 6), G);
_mm_storel_epi64((__m128i *)(dst + dst_stride * 7), H);
}
static void scaledconvolve_horiz_w8(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const InterpKernel *x_filters, int x0_q4,
int x_step_q4, int w, int h) {
DECLARE_ALIGNED(16, uint8_t, temp[8 * 8]);
int x, y, z;
src -= SUBPEL_TAPS / 2 - 1;
// This function processes 8x8 areas. The intermediate height is not always
// a multiple of 8, so force it to be a multiple of 8 here.
y = h + (8 - (h & 0x7));
do {
int x_q4 = x0_q4;
for (x = 0; x < w; x += 8) {
// process 8 src_x steps
for (z = 0; z < 8; ++z) {
const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK];
if (x_q4 & SUBPEL_MASK) {
filter_horiz_w8_ssse3(src_x, src_stride, temp + (z * 8), x_filter);
} else {
int i;
for (i = 0; i < 8; ++i) {
temp[z * 8 + i] = src_x[i * src_stride + 3];
}
}
x_q4 += x_step_q4;
}
// transpose the 8x8 filters values back to dst
transpose8x8_to_dst(temp, 8, dst + x, dst_stride);
}
src += src_stride * 8;
dst += dst_stride * 8;
} while (y -= 8);
}
static void filter_horiz_w4_ssse3(const uint8_t *src_ptr, ptrdiff_t src_pitch,
uint8_t *dst, const int16_t *filter) {
const __m128i k_256 = _mm_set1_epi16(1 << 8);
const __m128i f_values = _mm_load_si128((const __m128i *)filter);
// pack and duplicate the filter values
const __m128i f1f0 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0200u));
const __m128i f3f2 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0604u));
const __m128i f5f4 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0a08u));
const __m128i f7f6 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0e0cu));
const __m128i A = _mm_loadl_epi64((const __m128i *)src_ptr);
const __m128i B = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch));
const __m128i C = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2));
const __m128i D = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3));
// TRANSPOSE...
// 00 01 02 03 04 05 06 07
// 10 11 12 13 14 15 16 17
// 20 21 22 23 24 25 26 27
// 30 31 32 33 34 35 36 37
//
// TO
//
// 00 10 20 30
// 01 11 21 31
// 02 12 22 32
// 03 13 23 33
// 04 14 24 34
// 05 15 25 35
// 06 16 26 36
// 07 17 27 37
//
// 00 01 10 11 02 03 12 13 04 05 14 15 06 07 16 17
const __m128i tr0_0 = _mm_unpacklo_epi16(A, B);
// 20 21 30 31 22 23 32 33 24 25 34 35 26 27 36 37
const __m128i tr0_1 = _mm_unpacklo_epi16(C, D);
// 00 01 10 11 20 21 30 31 02 03 12 13 22 23 32 33
const __m128i s1s0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
// 04 05 14 15 24 25 34 35 06 07 16 17 26 27 36 37
const __m128i s5s4 = _mm_unpackhi_epi32(tr0_0, tr0_1);
// 02 03 12 13 22 23 32 33
const __m128i s3s2 = _mm_srli_si128(s1s0, 8);
// 06 07 16 17 26 27 36 37
const __m128i s7s6 = _mm_srli_si128(s5s4, 8);
// multiply 2 adjacent elements with the filter and add the result
const __m128i x0 = _mm_maddubs_epi16(s1s0, f1f0);
const __m128i x1 = _mm_maddubs_epi16(s3s2, f3f2);
const __m128i x2 = _mm_maddubs_epi16(s5s4, f5f4);
const __m128i x3 = _mm_maddubs_epi16(s7s6, f7f6);
// add and saturate the results together
const __m128i min_x2x1 = _mm_min_epi16(x2, x1);
const __m128i max_x2x1 = _mm_max_epi16(x2, x1);
__m128i temp = _mm_adds_epi16(x0, x3);
temp = _mm_adds_epi16(temp, min_x2x1);
temp = _mm_adds_epi16(temp, max_x2x1);
// round and shift by 7 bit each 16 bit
temp = _mm_mulhrs_epi16(temp, k_256);
// shrink to 8 bit each 16 bits
temp = _mm_packus_epi16(temp, temp);
// save only 4 bytes
*(int *)dst = _mm_cvtsi128_si32(temp);
}
static void transpose4x4_to_dst(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride) {
__m128i A = _mm_cvtsi32_si128(*(const int *)src);
__m128i B = _mm_cvtsi32_si128(*(const int *)(src + src_stride));
__m128i C = _mm_cvtsi32_si128(*(const int *)(src + src_stride * 2));
__m128i D = _mm_cvtsi32_si128(*(const int *)(src + src_stride * 3));
// 00 10 01 11 02 12 03 13
const __m128i tr0_0 = _mm_unpacklo_epi8(A, B);
// 20 30 21 31 22 32 23 33
const __m128i tr0_1 = _mm_unpacklo_epi8(C, D);
// 00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33
A = _mm_unpacklo_epi16(tr0_0, tr0_1);
B = _mm_srli_si128(A, 4);
C = _mm_srli_si128(A, 8);
D = _mm_srli_si128(A, 12);
*(int *)(dst) = _mm_cvtsi128_si32(A);
*(int *)(dst + dst_stride) = _mm_cvtsi128_si32(B);
*(int *)(dst + dst_stride * 2) = _mm_cvtsi128_si32(C);
*(int *)(dst + dst_stride * 3) = _mm_cvtsi128_si32(D);
}
static void scaledconvolve_horiz_w4(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const InterpKernel *x_filters, int x0_q4,
int x_step_q4, int w, int h) {
DECLARE_ALIGNED(16, uint8_t, temp[4 * 4]);
int x, y, z;
src -= SUBPEL_TAPS / 2 - 1;
for (y = 0; y < h; y += 4) {
int x_q4 = x0_q4;
for (x = 0; x < w; x += 4) {
// process 4 src_x steps
for (z = 0; z < 4; ++z) {
const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK];
if (x_q4 & SUBPEL_MASK) {
filter_horiz_w4_ssse3(src_x, src_stride, temp + (z * 4), x_filter);
} else {
int i;
for (i = 0; i < 4; ++i) {
temp[z * 4 + i] = src_x[i * src_stride + 3];
}
}
x_q4 += x_step_q4;
}
// transpose the 4x4 filters values back to dst
transpose4x4_to_dst(temp, 4, dst + x, dst_stride);
}
src += src_stride * 4;
dst += dst_stride * 4;
}
}
static void filter_vert_w4_ssse3(const uint8_t *src_ptr, ptrdiff_t src_pitch,
uint8_t *dst, const int16_t *filter) {
const __m128i k_256 = _mm_set1_epi16(1 << 8);
const __m128i f_values = _mm_load_si128((const __m128i *)filter);
// pack and duplicate the filter values
const __m128i f1f0 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0200u));
const __m128i f3f2 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0604u));
const __m128i f5f4 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0a08u));
const __m128i f7f6 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0e0cu));
const __m128i A = _mm_cvtsi32_si128(*(const int *)src_ptr);
const __m128i B = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch));
const __m128i C = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch * 2));
const __m128i D = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch * 3));
const __m128i E = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch * 4));
const __m128i F = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch * 5));
const __m128i G = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch * 6));
const __m128i H = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch * 7));
const __m128i s1s0 = _mm_unpacklo_epi8(A, B);
const __m128i s3s2 = _mm_unpacklo_epi8(C, D);
const __m128i s5s4 = _mm_unpacklo_epi8(E, F);
const __m128i s7s6 = _mm_unpacklo_epi8(G, H);
// multiply 2 adjacent elements with the filter and add the result
const __m128i x0 = _mm_maddubs_epi16(s1s0, f1f0);
const __m128i x1 = _mm_maddubs_epi16(s3s2, f3f2);
const __m128i x2 = _mm_maddubs_epi16(s5s4, f5f4);
const __m128i x3 = _mm_maddubs_epi16(s7s6, f7f6);
// add and saturate the results together
const __m128i min_x2x1 = _mm_min_epi16(x2, x1);
const __m128i max_x2x1 = _mm_max_epi16(x2, x1);
__m128i temp = _mm_adds_epi16(x0, x3);
temp = _mm_adds_epi16(temp, min_x2x1);
temp = _mm_adds_epi16(temp, max_x2x1);
// round and shift by 7 bit each 16 bit
temp = _mm_mulhrs_epi16(temp, k_256);
// shrink to 8 bit each 16 bits
temp = _mm_packus_epi16(temp, temp);
// save only 4 bytes
*(int *)dst = _mm_cvtsi128_si32(temp);
}
static void scaledconvolve_vert_w4(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const InterpKernel *y_filters, int y0_q4,
int y_step_q4, int w, int h) {
int y;
int y_q4 = y0_q4;
src -= src_stride * (SUBPEL_TAPS / 2 - 1);
for (y = 0; y < h; ++y) {
const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
if (y_q4 & SUBPEL_MASK) {
filter_vert_w4_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter);
} else {
memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w);
}
y_q4 += y_step_q4;
}
}
static void filter_vert_w8_ssse3(const uint8_t *src_ptr, ptrdiff_t src_pitch,
uint8_t *dst, const int16_t *filter) {
const __m128i k_256 = _mm_set1_epi16(1 << 8);
const __m128i f_values = _mm_load_si128((const __m128i *)filter);
// pack and duplicate the filter values
const __m128i f1f0 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0200u));
const __m128i f3f2 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0604u));
const __m128i f5f4 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0a08u));
const __m128i f7f6 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0e0cu));
const __m128i A = _mm_loadl_epi64((const __m128i *)src_ptr);
const __m128i B = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch));
const __m128i C = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2));
const __m128i D = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3));
const __m128i E = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4));
const __m128i F = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5));
const __m128i G = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6));
const __m128i H = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 7));
const __m128i s1s0 = _mm_unpacklo_epi8(A, B);
const __m128i s3s2 = _mm_unpacklo_epi8(C, D);
const __m128i s5s4 = _mm_unpacklo_epi8(E, F);
const __m128i s7s6 = _mm_unpacklo_epi8(G, H);
// multiply 2 adjacent elements with the filter and add the result
const __m128i x0 = _mm_maddubs_epi16(s1s0, f1f0);
const __m128i x1 = _mm_maddubs_epi16(s3s2, f3f2);
const __m128i x2 = _mm_maddubs_epi16(s5s4, f5f4);
const __m128i x3 = _mm_maddubs_epi16(s7s6, f7f6);
// add and saturate the results together
const __m128i min_x2x1 = _mm_min_epi16(x2, x1);
const __m128i max_x2x1 = _mm_max_epi16(x2, x1);
__m128i temp = _mm_adds_epi16(x0, x3);
temp = _mm_adds_epi16(temp, min_x2x1);
temp = _mm_adds_epi16(temp, max_x2x1);
// round and shift by 7 bit each 16 bit
temp = _mm_mulhrs_epi16(temp, k_256);
// shrink to 8 bit each 16 bits
temp = _mm_packus_epi16(temp, temp);
// save only 8 bytes convolve result
_mm_storel_epi64((__m128i *)dst, temp);
}
static void scaledconvolve_vert_w8(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const InterpKernel *y_filters, int y0_q4,
int y_step_q4, int w, int h) {
int y;
int y_q4 = y0_q4;
src -= src_stride * (SUBPEL_TAPS / 2 - 1);
for (y = 0; y < h; ++y) {
const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
if (y_q4 & SUBPEL_MASK) {
filter_vert_w8_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter);
} else {
memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w);
}
y_q4 += y_step_q4;
}
}
static void filter_vert_w16_ssse3(const uint8_t *src_ptr, ptrdiff_t src_pitch,
uint8_t *dst, const int16_t *filter, int w) {
const __m128i k_256 = _mm_set1_epi16(1 << 8);
const __m128i f_values = _mm_load_si128((const __m128i *)filter);
// pack and duplicate the filter values
const __m128i f1f0 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0200u));
const __m128i f3f2 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0604u));
const __m128i f5f4 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0a08u));
const __m128i f7f6 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0e0cu));
int i;
for (i = 0; i < w; i += 16) {
const __m128i A = _mm_loadu_si128((const __m128i *)src_ptr);
const __m128i B = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch));
const __m128i C =
_mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 2));
const __m128i D =
_mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 3));
const __m128i E =
_mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 4));
const __m128i F =
_mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 5));
const __m128i G =
_mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6));
const __m128i H =
_mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7));
// merge the result together
const __m128i s1s0_lo = _mm_unpacklo_epi8(A, B);
const __m128i s7s6_lo = _mm_unpacklo_epi8(G, H);
const __m128i s1s0_hi = _mm_unpackhi_epi8(A, B);
const __m128i s7s6_hi = _mm_unpackhi_epi8(G, H);
// multiply 2 adjacent elements with the filter and add the result
const __m128i x0_lo = _mm_maddubs_epi16(s1s0_lo, f1f0);
const __m128i x3_lo = _mm_maddubs_epi16(s7s6_lo, f7f6);
const __m128i x0_hi = _mm_maddubs_epi16(s1s0_hi, f1f0);
const __m128i x3_hi = _mm_maddubs_epi16(s7s6_hi, f7f6);
// add and saturate the results together
const __m128i x3x0_lo = _mm_adds_epi16(x0_lo, x3_lo);
const __m128i x3x0_hi = _mm_adds_epi16(x0_hi, x3_hi);
// merge the result together
const __m128i s3s2_lo = _mm_unpacklo_epi8(C, D);
const __m128i s3s2_hi = _mm_unpackhi_epi8(C, D);
// multiply 2 adjacent elements with the filter and add the result
const __m128i x1_lo = _mm_maddubs_epi16(s3s2_lo, f3f2);
const __m128i x1_hi = _mm_maddubs_epi16(s3s2_hi, f3f2);
// merge the result together
const __m128i s5s4_lo = _mm_unpacklo_epi8(E, F);
const __m128i s5s4_hi = _mm_unpackhi_epi8(E, F);
// multiply 2 adjacent elements with the filter and add the result
const __m128i x2_lo = _mm_maddubs_epi16(s5s4_lo, f5f4);
const __m128i x2_hi = _mm_maddubs_epi16(s5s4_hi, f5f4);
// add and saturate the results together
__m128i temp_lo = _mm_adds_epi16(x3x0_lo, _mm_min_epi16(x1_lo, x2_lo));
__m128i temp_hi = _mm_adds_epi16(x3x0_hi, _mm_min_epi16(x1_hi, x2_hi));
// add and saturate the results together
temp_lo = _mm_adds_epi16(temp_lo, _mm_max_epi16(x1_lo, x2_lo));
temp_hi = _mm_adds_epi16(temp_hi, _mm_max_epi16(x1_hi, x2_hi));
// round and shift by 7 bit each 16 bit
temp_lo = _mm_mulhrs_epi16(temp_lo, k_256);
temp_hi = _mm_mulhrs_epi16(temp_hi, k_256);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve
// result
temp_hi = _mm_packus_epi16(temp_lo, temp_hi);
src_ptr += 16;
// save 16 bytes convolve result
_mm_store_si128((__m128i *)&dst[i], temp_hi);
}
}
static void scaledconvolve_vert_w16(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const InterpKernel *y_filters, int y0_q4,
int y_step_q4, int w, int h) {
int y;
int y_q4 = y0_q4;
src -= src_stride * (SUBPEL_TAPS / 2 - 1);
for (y = 0; y < h; ++y) {
const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
if (y_q4 & SUBPEL_MASK) {
filter_vert_w16_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter,
w);
} else {
memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w);
}
y_q4 += y_step_q4;
}
}
static void scaledconvolve2d(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const InterpKernel *const x_filters, int x0_q4,
int x_step_q4, const InterpKernel *const y_filters,
int y0_q4, int y_step_q4, int w, int h) {
// Note: Fixed size intermediate buffer, temp, places limits on parameters.
// 2d filtering proceeds in 2 steps:
// (1) Interpolate horizontally into an intermediate buffer, temp.
// (2) Interpolate temp vertically to derive the sub-pixel result.
// Deriving the maximum number of rows in the temp buffer (135):
// --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative).
// --Largest block size is 64x64 pixels.
// --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the
// original frame (in 1/16th pixel units).
// --Must round-up because block may be located at sub-pixel position.
// --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails.
// --((64 - 1) * 32 + 15) >> 4 + 8 = 135.
// --Require an additional 8 rows for the horiz_w8 transpose tail.
DECLARE_ALIGNED(16, uint8_t, temp[(MAX_EXT_SIZE + 8) * MAX_SB_SIZE]);
const int intermediate_height =
(((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS;
assert(w <= MAX_SB_SIZE);
assert(h <= MAX_SB_SIZE);
assert(y_step_q4 <= 32);
assert(x_step_q4 <= 32);
if (w >= 8) {
scaledconvolve_horiz_w8(src - src_stride * (SUBPEL_TAPS / 2 - 1),
src_stride, temp, MAX_SB_SIZE, x_filters, x0_q4,
x_step_q4, w, intermediate_height);
} else {
scaledconvolve_horiz_w4(src - src_stride * (SUBPEL_TAPS / 2 - 1),
src_stride, temp, MAX_SB_SIZE, x_filters, x0_q4,
x_step_q4, w, intermediate_height);
}
if (w >= 16) {
scaledconvolve_vert_w16(temp + MAX_SB_SIZE * (SUBPEL_TAPS / 2 - 1),
MAX_SB_SIZE, dst, dst_stride, y_filters, y0_q4,
y_step_q4, w, h);
} else if (w == 8) {
scaledconvolve_vert_w8(temp + MAX_SB_SIZE * (SUBPEL_TAPS / 2 - 1),
MAX_SB_SIZE, dst, dst_stride, y_filters, y0_q4,
y_step_q4, w, h);
} else {
scaledconvolve_vert_w4(temp + MAX_SB_SIZE * (SUBPEL_TAPS / 2 - 1),
MAX_SB_SIZE, dst, dst_stride, y_filters, y0_q4,
y_step_q4, w, h);
}
}
static const InterpKernel *get_filter_base(const int16_t *filter) {
// NOTE: This assumes that the filter table is 256-byte aligned.
// TODO(agrange) Modify to make independent of table alignment.
return (const InterpKernel *)(((intptr_t)filter) & ~((intptr_t)0xFF));
}
static int get_filter_offset(const int16_t *f, const InterpKernel *base) {
return (int)((const InterpKernel *)(intptr_t)f - base);
}
void aom_scaled_2d_ssse3(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
ptrdiff_t dst_stride, const int16_t *filter_x,
int x_step_q4, const int16_t *filter_y, int y_step_q4,
int w, int h) {
const InterpKernel *const filters_x = get_filter_base(filter_x);
const int x0_q4 = get_filter_offset(filter_x, filters_x);
const InterpKernel *const filters_y = get_filter_base(filter_y);
const int y0_q4 = get_filter_offset(filter_y, filters_y);
scaledconvolve2d(src, src_stride, dst, dst_stride, filters_x, x0_q4,
x_step_q4, filters_y, y0_q4, y_step_q4, w, h);
}
// void aom_convolve8_ssse3(const uint8_t *src, ptrdiff_t src_stride,
// uint8_t *dst, ptrdiff_t dst_stride,
// const int16_t *filter_x, int x_step_q4,
// const int16_t *filter_y, int y_step_q4,
// int w, int h);
// void aom_convolve8_avg_ssse3(const uint8_t *src, ptrdiff_t src_stride,
// uint8_t *dst, ptrdiff_t dst_stride,
// const int16_t *filter_x, int x_step_q4,
// const int16_t *filter_y, int y_step_q4,
// int w, int h);
FUN_CONV_2D(, ssse3);
FUN_CONV_2D(avg_, ssse3);
#if CONFIG_LOOP_RESTORATION
FUN_CONV_2D_NO_BILINEAR(add_src_, add_src_, ssse3);
#endif