921 строка
41 KiB
C
921 строка
41 KiB
C
/*
|
|
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
|
|
*
|
|
* This source code is subject to the terms of the BSD 2 Clause License and
|
|
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
|
|
* was not distributed with this source code in the LICENSE file, you can
|
|
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
|
|
* Media Patent License 1.0 was not distributed with this source code in the
|
|
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
|
|
*/
|
|
|
|
#include <tmmintrin.h>
|
|
|
|
#include "./aom_dsp_rtcd.h"
|
|
#include "aom_dsp/aom_filter.h"
|
|
#include "aom_dsp/x86/convolve.h"
|
|
#include "aom_mem/aom_mem.h"
|
|
#include "aom_ports/mem.h"
|
|
#include "aom_ports/emmintrin_compat.h"
|
|
|
|
// filters only for the 4_h8 convolution
|
|
DECLARE_ALIGNED(16, static const uint8_t, filt1_4_h8[16]) = {
|
|
0, 1, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 5, 6
|
|
};
|
|
|
|
DECLARE_ALIGNED(16, static const uint8_t, filt2_4_h8[16]) = {
|
|
4, 5, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 9, 10
|
|
};
|
|
|
|
// filters for 8_h8 and 16_h8
|
|
DECLARE_ALIGNED(16, static const uint8_t, filt1_global[16]) = {
|
|
0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8
|
|
};
|
|
|
|
DECLARE_ALIGNED(16, static const uint8_t, filt2_global[16]) = {
|
|
2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10
|
|
};
|
|
|
|
DECLARE_ALIGNED(16, static const uint8_t, filt3_global[16]) = {
|
|
4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12
|
|
};
|
|
|
|
DECLARE_ALIGNED(16, static const uint8_t, filt4_global[16]) = {
|
|
6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14
|
|
};
|
|
|
|
// These are reused by the avx2 intrinsics.
|
|
filter8_1dfunction aom_filter_block1d8_v8_intrin_ssse3;
|
|
filter8_1dfunction aom_filter_block1d8_h8_intrin_ssse3;
|
|
filter8_1dfunction aom_filter_block1d4_h8_intrin_ssse3;
|
|
|
|
void aom_filter_block1d4_h8_intrin_ssse3(
|
|
const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr,
|
|
ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
|
|
__m128i firstFilters, secondFilters, shuffle1, shuffle2;
|
|
__m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt4;
|
|
__m128i addFilterReg64, filtersReg, srcReg, minReg;
|
|
unsigned int i;
|
|
|
|
// create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
|
|
addFilterReg64 = _mm_set1_epi32((int)0x0400040u);
|
|
filtersReg = _mm_loadu_si128((const __m128i *)filter);
|
|
// converting the 16 bit (short) to 8 bit (byte) and have the same data
|
|
// in both lanes of 128 bit register.
|
|
filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
|
|
|
|
// duplicate only the first 16 bits in the filter into the first lane
|
|
firstFilters = _mm_shufflelo_epi16(filtersReg, 0);
|
|
// duplicate only the third 16 bit in the filter into the first lane
|
|
secondFilters = _mm_shufflelo_epi16(filtersReg, 0xAAu);
|
|
// duplicate only the seconds 16 bits in the filter into the second lane
|
|
// firstFilters: k0 k1 k0 k1 k0 k1 k0 k1 k2 k3 k2 k3 k2 k3 k2 k3
|
|
firstFilters = _mm_shufflehi_epi16(firstFilters, 0x55u);
|
|
// duplicate only the forth 16 bits in the filter into the second lane
|
|
// secondFilters: k4 k5 k4 k5 k4 k5 k4 k5 k6 k7 k6 k7 k6 k7 k6 k7
|
|
secondFilters = _mm_shufflehi_epi16(secondFilters, 0xFFu);
|
|
|
|
// loading the local filters
|
|
shuffle1 = _mm_load_si128((__m128i const *)filt1_4_h8);
|
|
shuffle2 = _mm_load_si128((__m128i const *)filt2_4_h8);
|
|
|
|
for (i = 0; i < output_height; i++) {
|
|
srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3));
|
|
|
|
// filter the source buffer
|
|
srcRegFilt1 = _mm_shuffle_epi8(srcReg, shuffle1);
|
|
srcRegFilt2 = _mm_shuffle_epi8(srcReg, shuffle2);
|
|
|
|
// multiply 2 adjacent elements with the filter and add the result
|
|
srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters);
|
|
srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters);
|
|
|
|
// extract the higher half of the lane
|
|
srcRegFilt3 = _mm_srli_si128(srcRegFilt1, 8);
|
|
srcRegFilt4 = _mm_srli_si128(srcRegFilt2, 8);
|
|
|
|
minReg = _mm_min_epi16(srcRegFilt3, srcRegFilt2);
|
|
|
|
// add and saturate all the results together
|
|
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4);
|
|
srcRegFilt3 = _mm_max_epi16(srcRegFilt3, srcRegFilt2);
|
|
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg);
|
|
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt3);
|
|
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64);
|
|
|
|
// shift by 7 bit each 16 bits
|
|
srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);
|
|
|
|
// shrink to 8 bit each 16 bits
|
|
srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1);
|
|
src_ptr += src_pixels_per_line;
|
|
|
|
// save only 4 bytes
|
|
*((int *)&output_ptr[0]) = _mm_cvtsi128_si32(srcRegFilt1);
|
|
|
|
output_ptr += output_pitch;
|
|
}
|
|
}
|
|
|
|
void aom_filter_block1d8_h8_intrin_ssse3(
|
|
const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr,
|
|
ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
|
|
__m128i firstFilters, secondFilters, thirdFilters, forthFilters, srcReg;
|
|
__m128i filt1Reg, filt2Reg, filt3Reg, filt4Reg;
|
|
__m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt4;
|
|
__m128i addFilterReg64, filtersReg, minReg;
|
|
unsigned int i;
|
|
|
|
// create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
|
|
addFilterReg64 = _mm_set1_epi32((int)0x0400040u);
|
|
filtersReg = _mm_loadu_si128((const __m128i *)filter);
|
|
// converting the 16 bit (short) to 8 bit (byte) and have the same data
|
|
// in both lanes of 128 bit register.
|
|
filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
|
|
|
|
// duplicate only the first 16 bits (first and second byte)
|
|
// across 128 bit register
|
|
firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u));
|
|
// duplicate only the second 16 bits (third and forth byte)
|
|
// across 128 bit register
|
|
secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u));
|
|
// duplicate only the third 16 bits (fifth and sixth byte)
|
|
// across 128 bit register
|
|
thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u));
|
|
// duplicate only the forth 16 bits (seventh and eighth byte)
|
|
// across 128 bit register
|
|
forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u));
|
|
|
|
filt1Reg = _mm_load_si128((__m128i const *)filt1_global);
|
|
filt2Reg = _mm_load_si128((__m128i const *)filt2_global);
|
|
filt3Reg = _mm_load_si128((__m128i const *)filt3_global);
|
|
filt4Reg = _mm_load_si128((__m128i const *)filt4_global);
|
|
|
|
for (i = 0; i < output_height; i++) {
|
|
srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3));
|
|
|
|
// filter the source buffer
|
|
srcRegFilt1 = _mm_shuffle_epi8(srcReg, filt1Reg);
|
|
srcRegFilt2 = _mm_shuffle_epi8(srcReg, filt2Reg);
|
|
|
|
// multiply 2 adjacent elements with the filter and add the result
|
|
srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters);
|
|
srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters);
|
|
|
|
// filter the source buffer
|
|
srcRegFilt3 = _mm_shuffle_epi8(srcReg, filt3Reg);
|
|
srcRegFilt4 = _mm_shuffle_epi8(srcReg, filt4Reg);
|
|
|
|
// multiply 2 adjacent elements with the filter and add the result
|
|
srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, thirdFilters);
|
|
srcRegFilt4 = _mm_maddubs_epi16(srcRegFilt4, forthFilters);
|
|
|
|
// add and saturate all the results together
|
|
minReg = _mm_min_epi16(srcRegFilt2, srcRegFilt3);
|
|
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4);
|
|
|
|
srcRegFilt2 = _mm_max_epi16(srcRegFilt2, srcRegFilt3);
|
|
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg);
|
|
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2);
|
|
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64);
|
|
|
|
// shift by 7 bit each 16 bits
|
|
srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);
|
|
|
|
// shrink to 8 bit each 16 bits
|
|
srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1);
|
|
|
|
src_ptr += src_pixels_per_line;
|
|
|
|
// save only 8 bytes
|
|
_mm_storel_epi64((__m128i *)&output_ptr[0], srcRegFilt1);
|
|
|
|
output_ptr += output_pitch;
|
|
}
|
|
}
|
|
|
|
void aom_filter_block1d8_v8_intrin_ssse3(
|
|
const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
|
|
ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) {
|
|
__m128i addFilterReg64, filtersReg, minReg;
|
|
__m128i firstFilters, secondFilters, thirdFilters, forthFilters;
|
|
__m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt5;
|
|
__m128i srcReg1, srcReg2, srcReg3, srcReg4, srcReg5, srcReg6, srcReg7;
|
|
__m128i srcReg8;
|
|
unsigned int i;
|
|
|
|
// create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
|
|
addFilterReg64 = _mm_set1_epi32((int)0x0400040u);
|
|
filtersReg = _mm_loadu_si128((const __m128i *)filter);
|
|
// converting the 16 bit (short) to 8 bit (byte) and have the same data
|
|
// in both lanes of 128 bit register.
|
|
filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
|
|
|
|
// duplicate only the first 16 bits in the filter
|
|
firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u));
|
|
// duplicate only the second 16 bits in the filter
|
|
secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u));
|
|
// duplicate only the third 16 bits in the filter
|
|
thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u));
|
|
// duplicate only the forth 16 bits in the filter
|
|
forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u));
|
|
|
|
// load the first 7 rows of 8 bytes
|
|
srcReg1 = _mm_loadl_epi64((const __m128i *)src_ptr);
|
|
srcReg2 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch));
|
|
srcReg3 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2));
|
|
srcReg4 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3));
|
|
srcReg5 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4));
|
|
srcReg6 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5));
|
|
srcReg7 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6));
|
|
|
|
for (i = 0; i < output_height; i++) {
|
|
// load the last 8 bytes
|
|
srcReg8 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 7));
|
|
|
|
// merge the result together
|
|
srcRegFilt1 = _mm_unpacklo_epi8(srcReg1, srcReg2);
|
|
srcRegFilt3 = _mm_unpacklo_epi8(srcReg3, srcReg4);
|
|
|
|
// merge the result together
|
|
srcRegFilt2 = _mm_unpacklo_epi8(srcReg5, srcReg6);
|
|
srcRegFilt5 = _mm_unpacklo_epi8(srcReg7, srcReg8);
|
|
|
|
// multiply 2 adjacent elements with the filter and add the result
|
|
srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters);
|
|
srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, secondFilters);
|
|
srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, thirdFilters);
|
|
srcRegFilt5 = _mm_maddubs_epi16(srcRegFilt5, forthFilters);
|
|
|
|
// add and saturate the results together
|
|
minReg = _mm_min_epi16(srcRegFilt2, srcRegFilt3);
|
|
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt5);
|
|
srcRegFilt2 = _mm_max_epi16(srcRegFilt2, srcRegFilt3);
|
|
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg);
|
|
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2);
|
|
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64);
|
|
|
|
// shift by 7 bit each 16 bit
|
|
srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);
|
|
|
|
// shrink to 8 bit each 16 bits
|
|
srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1);
|
|
|
|
src_ptr += src_pitch;
|
|
|
|
// shift down a row
|
|
srcReg1 = srcReg2;
|
|
srcReg2 = srcReg3;
|
|
srcReg3 = srcReg4;
|
|
srcReg4 = srcReg5;
|
|
srcReg5 = srcReg6;
|
|
srcReg6 = srcReg7;
|
|
srcReg7 = srcReg8;
|
|
|
|
// save only 8 bytes convolve result
|
|
_mm_storel_epi64((__m128i *)&output_ptr[0], srcRegFilt1);
|
|
|
|
output_ptr += out_pitch;
|
|
}
|
|
}
|
|
|
|
filter8_1dfunction aom_filter_block1d16_v8_ssse3;
|
|
filter8_1dfunction aom_filter_block1d16_h8_ssse3;
|
|
filter8_1dfunction aom_filter_block1d8_v8_ssse3;
|
|
filter8_1dfunction aom_filter_block1d8_h8_ssse3;
|
|
filter8_1dfunction aom_filter_block1d4_v8_ssse3;
|
|
filter8_1dfunction aom_filter_block1d4_h8_ssse3;
|
|
filter8_1dfunction aom_filter_block1d16_v8_avg_ssse3;
|
|
filter8_1dfunction aom_filter_block1d16_h8_avg_ssse3;
|
|
filter8_1dfunction aom_filter_block1d8_v8_avg_ssse3;
|
|
filter8_1dfunction aom_filter_block1d8_h8_avg_ssse3;
|
|
filter8_1dfunction aom_filter_block1d4_v8_avg_ssse3;
|
|
filter8_1dfunction aom_filter_block1d4_h8_avg_ssse3;
|
|
#if CONFIG_LOOP_RESTORATION
|
|
filter8_1dfunction aom_filter_block1d16_v8_add_src_ssse3;
|
|
filter8_1dfunction aom_filter_block1d16_h8_add_src_ssse3;
|
|
filter8_1dfunction aom_filter_block1d8_v8_add_src_ssse3;
|
|
filter8_1dfunction aom_filter_block1d8_h8_add_src_ssse3;
|
|
filter8_1dfunction aom_filter_block1d4_v8_add_src_ssse3;
|
|
filter8_1dfunction aom_filter_block1d4_h8_add_src_ssse3;
|
|
#endif
|
|
|
|
filter8_1dfunction aom_filter_block1d16_v2_ssse3;
|
|
filter8_1dfunction aom_filter_block1d16_h2_ssse3;
|
|
filter8_1dfunction aom_filter_block1d8_v2_ssse3;
|
|
filter8_1dfunction aom_filter_block1d8_h2_ssse3;
|
|
filter8_1dfunction aom_filter_block1d4_v2_ssse3;
|
|
filter8_1dfunction aom_filter_block1d4_h2_ssse3;
|
|
filter8_1dfunction aom_filter_block1d16_v2_avg_ssse3;
|
|
filter8_1dfunction aom_filter_block1d16_h2_avg_ssse3;
|
|
filter8_1dfunction aom_filter_block1d8_v2_avg_ssse3;
|
|
filter8_1dfunction aom_filter_block1d8_h2_avg_ssse3;
|
|
filter8_1dfunction aom_filter_block1d4_v2_avg_ssse3;
|
|
filter8_1dfunction aom_filter_block1d4_h2_avg_ssse3;
|
|
|
|
// void aom_convolve8_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride,
|
|
// uint8_t *dst, ptrdiff_t dst_stride,
|
|
// const int16_t *filter_x, int x_step_q4,
|
|
// const int16_t *filter_y, int y_step_q4,
|
|
// int w, int h);
|
|
// void aom_convolve8_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride,
|
|
// uint8_t *dst, ptrdiff_t dst_stride,
|
|
// const int16_t *filter_x, int x_step_q4,
|
|
// const int16_t *filter_y, int y_step_q4,
|
|
// int w, int h);
|
|
// void aom_convolve8_avg_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride,
|
|
// uint8_t *dst, ptrdiff_t dst_stride,
|
|
// const int16_t *filter_x, int x_step_q4,
|
|
// const int16_t *filter_y, int y_step_q4,
|
|
// int w, int h);
|
|
// void aom_convolve8_avg_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride,
|
|
// uint8_t *dst, ptrdiff_t dst_stride,
|
|
// const int16_t *filter_x, int x_step_q4,
|
|
// const int16_t *filter_y, int y_step_q4,
|
|
// int w, int h);
|
|
FUN_CONV_1D(horiz, x_step_q4, filter_x, h, src, , ssse3);
|
|
FUN_CONV_1D(vert, y_step_q4, filter_y, v, src - src_stride * 3, , ssse3);
|
|
FUN_CONV_1D(avg_horiz, x_step_q4, filter_x, h, src, avg_, ssse3);
|
|
FUN_CONV_1D(avg_vert, y_step_q4, filter_y, v, src - src_stride * 3, avg_,
|
|
ssse3);
|
|
|
|
#if CONFIG_LOOP_RESTORATION
|
|
FUN_CONV_1D_NO_BILINEAR(add_src_horiz, x_step_q4, filter_x, h, src, add_src_,
|
|
ssse3);
|
|
FUN_CONV_1D_NO_BILINEAR(add_src_vert, y_step_q4, filter_y, v,
|
|
src - src_stride * 3, add_src_, ssse3);
|
|
#endif
|
|
|
|
#define TRANSPOSE_8X8(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \
|
|
out2, out3, out4, out5, out6, out7) \
|
|
{ \
|
|
const __m128i tr0_0 = _mm_unpacklo_epi8(in0, in1); \
|
|
const __m128i tr0_1 = _mm_unpacklo_epi8(in2, in3); \
|
|
const __m128i tr0_2 = _mm_unpacklo_epi8(in4, in5); \
|
|
const __m128i tr0_3 = _mm_unpacklo_epi8(in6, in7); \
|
|
\
|
|
const __m128i tr1_0 = _mm_unpacklo_epi16(tr0_0, tr0_1); \
|
|
const __m128i tr1_1 = _mm_unpackhi_epi16(tr0_0, tr0_1); \
|
|
const __m128i tr1_2 = _mm_unpacklo_epi16(tr0_2, tr0_3); \
|
|
const __m128i tr1_3 = _mm_unpackhi_epi16(tr0_2, tr0_3); \
|
|
\
|
|
const __m128i tr2_0 = _mm_unpacklo_epi32(tr1_0, tr1_2); \
|
|
const __m128i tr2_1 = _mm_unpackhi_epi32(tr1_0, tr1_2); \
|
|
const __m128i tr2_2 = _mm_unpacklo_epi32(tr1_1, tr1_3); \
|
|
const __m128i tr2_3 = _mm_unpackhi_epi32(tr1_1, tr1_3); \
|
|
\
|
|
out0 = _mm_unpacklo_epi64(tr2_0, tr2_0); \
|
|
out1 = _mm_unpackhi_epi64(tr2_0, tr2_0); \
|
|
out2 = _mm_unpacklo_epi64(tr2_1, tr2_1); \
|
|
out3 = _mm_unpackhi_epi64(tr2_1, tr2_1); \
|
|
out4 = _mm_unpacklo_epi64(tr2_2, tr2_2); \
|
|
out5 = _mm_unpackhi_epi64(tr2_2, tr2_2); \
|
|
out6 = _mm_unpacklo_epi64(tr2_3, tr2_3); \
|
|
out7 = _mm_unpackhi_epi64(tr2_3, tr2_3); \
|
|
}
|
|
|
|
static void filter_horiz_w8_ssse3(const uint8_t *src_x, ptrdiff_t src_pitch,
|
|
uint8_t *dst, const int16_t *x_filter) {
|
|
const __m128i k_256 = _mm_set1_epi16(1 << 8);
|
|
const __m128i f_values = _mm_load_si128((const __m128i *)x_filter);
|
|
// pack and duplicate the filter values
|
|
const __m128i f1f0 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0200u));
|
|
const __m128i f3f2 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0604u));
|
|
const __m128i f5f4 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0a08u));
|
|
const __m128i f7f6 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0e0cu));
|
|
const __m128i A = _mm_loadl_epi64((const __m128i *)src_x);
|
|
const __m128i B = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch));
|
|
const __m128i C = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch * 2));
|
|
const __m128i D = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch * 3));
|
|
const __m128i E = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch * 4));
|
|
const __m128i F = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch * 5));
|
|
const __m128i G = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch * 6));
|
|
const __m128i H = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch * 7));
|
|
// 00 01 10 11 02 03 12 13 04 05 14 15 06 07 16 17
|
|
const __m128i tr0_0 = _mm_unpacklo_epi16(A, B);
|
|
// 20 21 30 31 22 23 32 33 24 25 34 35 26 27 36 37
|
|
const __m128i tr0_1 = _mm_unpacklo_epi16(C, D);
|
|
// 40 41 50 51 42 43 52 53 44 45 54 55 46 47 56 57
|
|
const __m128i tr0_2 = _mm_unpacklo_epi16(E, F);
|
|
// 60 61 70 71 62 63 72 73 64 65 74 75 66 67 76 77
|
|
const __m128i tr0_3 = _mm_unpacklo_epi16(G, H);
|
|
// 00 01 10 11 20 21 30 31 02 03 12 13 22 23 32 33
|
|
const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
|
|
// 04 05 14 15 24 25 34 35 06 07 16 17 26 27 36 37
|
|
const __m128i tr1_1 = _mm_unpackhi_epi32(tr0_0, tr0_1);
|
|
// 40 41 50 51 60 61 70 71 42 43 52 53 62 63 72 73
|
|
const __m128i tr1_2 = _mm_unpacklo_epi32(tr0_2, tr0_3);
|
|
// 44 45 54 55 64 65 74 75 46 47 56 57 66 67 76 77
|
|
const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
|
|
// 00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71
|
|
const __m128i s1s0 = _mm_unpacklo_epi64(tr1_0, tr1_2);
|
|
const __m128i s3s2 = _mm_unpackhi_epi64(tr1_0, tr1_2);
|
|
const __m128i s5s4 = _mm_unpacklo_epi64(tr1_1, tr1_3);
|
|
const __m128i s7s6 = _mm_unpackhi_epi64(tr1_1, tr1_3);
|
|
// multiply 2 adjacent elements with the filter and add the result
|
|
const __m128i x0 = _mm_maddubs_epi16(s1s0, f1f0);
|
|
const __m128i x1 = _mm_maddubs_epi16(s3s2, f3f2);
|
|
const __m128i x2 = _mm_maddubs_epi16(s5s4, f5f4);
|
|
const __m128i x3 = _mm_maddubs_epi16(s7s6, f7f6);
|
|
// add and saturate the results together
|
|
const __m128i min_x2x1 = _mm_min_epi16(x2, x1);
|
|
const __m128i max_x2x1 = _mm_max_epi16(x2, x1);
|
|
__m128i temp = _mm_adds_epi16(x0, x3);
|
|
temp = _mm_adds_epi16(temp, min_x2x1);
|
|
temp = _mm_adds_epi16(temp, max_x2x1);
|
|
// round and shift by 7 bit each 16 bit
|
|
temp = _mm_mulhrs_epi16(temp, k_256);
|
|
// shrink to 8 bit each 16 bits
|
|
temp = _mm_packus_epi16(temp, temp);
|
|
// save only 8 bytes convolve result
|
|
_mm_storel_epi64((__m128i *)dst, temp);
|
|
}
|
|
|
|
static void transpose8x8_to_dst(const uint8_t *src, ptrdiff_t src_stride,
|
|
uint8_t *dst, ptrdiff_t dst_stride) {
|
|
__m128i A, B, C, D, E, F, G, H;
|
|
|
|
A = _mm_loadl_epi64((const __m128i *)src);
|
|
B = _mm_loadl_epi64((const __m128i *)(src + src_stride));
|
|
C = _mm_loadl_epi64((const __m128i *)(src + src_stride * 2));
|
|
D = _mm_loadl_epi64((const __m128i *)(src + src_stride * 3));
|
|
E = _mm_loadl_epi64((const __m128i *)(src + src_stride * 4));
|
|
F = _mm_loadl_epi64((const __m128i *)(src + src_stride * 5));
|
|
G = _mm_loadl_epi64((const __m128i *)(src + src_stride * 6));
|
|
H = _mm_loadl_epi64((const __m128i *)(src + src_stride * 7));
|
|
|
|
TRANSPOSE_8X8(A, B, C, D, E, F, G, H, A, B, C, D, E, F, G, H);
|
|
|
|
_mm_storel_epi64((__m128i *)dst, A);
|
|
_mm_storel_epi64((__m128i *)(dst + dst_stride * 1), B);
|
|
_mm_storel_epi64((__m128i *)(dst + dst_stride * 2), C);
|
|
_mm_storel_epi64((__m128i *)(dst + dst_stride * 3), D);
|
|
_mm_storel_epi64((__m128i *)(dst + dst_stride * 4), E);
|
|
_mm_storel_epi64((__m128i *)(dst + dst_stride * 5), F);
|
|
_mm_storel_epi64((__m128i *)(dst + dst_stride * 6), G);
|
|
_mm_storel_epi64((__m128i *)(dst + dst_stride * 7), H);
|
|
}
|
|
|
|
static void scaledconvolve_horiz_w8(const uint8_t *src, ptrdiff_t src_stride,
|
|
uint8_t *dst, ptrdiff_t dst_stride,
|
|
const InterpKernel *x_filters, int x0_q4,
|
|
int x_step_q4, int w, int h) {
|
|
DECLARE_ALIGNED(16, uint8_t, temp[8 * 8]);
|
|
int x, y, z;
|
|
src -= SUBPEL_TAPS / 2 - 1;
|
|
|
|
// This function processes 8x8 areas. The intermediate height is not always
|
|
// a multiple of 8, so force it to be a multiple of 8 here.
|
|
y = h + (8 - (h & 0x7));
|
|
|
|
do {
|
|
int x_q4 = x0_q4;
|
|
for (x = 0; x < w; x += 8) {
|
|
// process 8 src_x steps
|
|
for (z = 0; z < 8; ++z) {
|
|
const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
|
|
const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK];
|
|
if (x_q4 & SUBPEL_MASK) {
|
|
filter_horiz_w8_ssse3(src_x, src_stride, temp + (z * 8), x_filter);
|
|
} else {
|
|
int i;
|
|
for (i = 0; i < 8; ++i) {
|
|
temp[z * 8 + i] = src_x[i * src_stride + 3];
|
|
}
|
|
}
|
|
x_q4 += x_step_q4;
|
|
}
|
|
|
|
// transpose the 8x8 filters values back to dst
|
|
transpose8x8_to_dst(temp, 8, dst + x, dst_stride);
|
|
}
|
|
|
|
src += src_stride * 8;
|
|
dst += dst_stride * 8;
|
|
} while (y -= 8);
|
|
}
|
|
|
|
static void filter_horiz_w4_ssse3(const uint8_t *src_ptr, ptrdiff_t src_pitch,
|
|
uint8_t *dst, const int16_t *filter) {
|
|
const __m128i k_256 = _mm_set1_epi16(1 << 8);
|
|
const __m128i f_values = _mm_load_si128((const __m128i *)filter);
|
|
// pack and duplicate the filter values
|
|
const __m128i f1f0 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0200u));
|
|
const __m128i f3f2 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0604u));
|
|
const __m128i f5f4 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0a08u));
|
|
const __m128i f7f6 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0e0cu));
|
|
const __m128i A = _mm_loadl_epi64((const __m128i *)src_ptr);
|
|
const __m128i B = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch));
|
|
const __m128i C = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2));
|
|
const __m128i D = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3));
|
|
// TRANSPOSE...
|
|
// 00 01 02 03 04 05 06 07
|
|
// 10 11 12 13 14 15 16 17
|
|
// 20 21 22 23 24 25 26 27
|
|
// 30 31 32 33 34 35 36 37
|
|
//
|
|
// TO
|
|
//
|
|
// 00 10 20 30
|
|
// 01 11 21 31
|
|
// 02 12 22 32
|
|
// 03 13 23 33
|
|
// 04 14 24 34
|
|
// 05 15 25 35
|
|
// 06 16 26 36
|
|
// 07 17 27 37
|
|
//
|
|
// 00 01 10 11 02 03 12 13 04 05 14 15 06 07 16 17
|
|
const __m128i tr0_0 = _mm_unpacklo_epi16(A, B);
|
|
// 20 21 30 31 22 23 32 33 24 25 34 35 26 27 36 37
|
|
const __m128i tr0_1 = _mm_unpacklo_epi16(C, D);
|
|
// 00 01 10 11 20 21 30 31 02 03 12 13 22 23 32 33
|
|
const __m128i s1s0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
|
|
// 04 05 14 15 24 25 34 35 06 07 16 17 26 27 36 37
|
|
const __m128i s5s4 = _mm_unpackhi_epi32(tr0_0, tr0_1);
|
|
// 02 03 12 13 22 23 32 33
|
|
const __m128i s3s2 = _mm_srli_si128(s1s0, 8);
|
|
// 06 07 16 17 26 27 36 37
|
|
const __m128i s7s6 = _mm_srli_si128(s5s4, 8);
|
|
// multiply 2 adjacent elements with the filter and add the result
|
|
const __m128i x0 = _mm_maddubs_epi16(s1s0, f1f0);
|
|
const __m128i x1 = _mm_maddubs_epi16(s3s2, f3f2);
|
|
const __m128i x2 = _mm_maddubs_epi16(s5s4, f5f4);
|
|
const __m128i x3 = _mm_maddubs_epi16(s7s6, f7f6);
|
|
// add and saturate the results together
|
|
const __m128i min_x2x1 = _mm_min_epi16(x2, x1);
|
|
const __m128i max_x2x1 = _mm_max_epi16(x2, x1);
|
|
__m128i temp = _mm_adds_epi16(x0, x3);
|
|
temp = _mm_adds_epi16(temp, min_x2x1);
|
|
temp = _mm_adds_epi16(temp, max_x2x1);
|
|
// round and shift by 7 bit each 16 bit
|
|
temp = _mm_mulhrs_epi16(temp, k_256);
|
|
// shrink to 8 bit each 16 bits
|
|
temp = _mm_packus_epi16(temp, temp);
|
|
// save only 4 bytes
|
|
*(int *)dst = _mm_cvtsi128_si32(temp);
|
|
}
|
|
|
|
static void transpose4x4_to_dst(const uint8_t *src, ptrdiff_t src_stride,
|
|
uint8_t *dst, ptrdiff_t dst_stride) {
|
|
__m128i A = _mm_cvtsi32_si128(*(const int *)src);
|
|
__m128i B = _mm_cvtsi32_si128(*(const int *)(src + src_stride));
|
|
__m128i C = _mm_cvtsi32_si128(*(const int *)(src + src_stride * 2));
|
|
__m128i D = _mm_cvtsi32_si128(*(const int *)(src + src_stride * 3));
|
|
// 00 10 01 11 02 12 03 13
|
|
const __m128i tr0_0 = _mm_unpacklo_epi8(A, B);
|
|
// 20 30 21 31 22 32 23 33
|
|
const __m128i tr0_1 = _mm_unpacklo_epi8(C, D);
|
|
// 00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33
|
|
A = _mm_unpacklo_epi16(tr0_0, tr0_1);
|
|
B = _mm_srli_si128(A, 4);
|
|
C = _mm_srli_si128(A, 8);
|
|
D = _mm_srli_si128(A, 12);
|
|
|
|
*(int *)(dst) = _mm_cvtsi128_si32(A);
|
|
*(int *)(dst + dst_stride) = _mm_cvtsi128_si32(B);
|
|
*(int *)(dst + dst_stride * 2) = _mm_cvtsi128_si32(C);
|
|
*(int *)(dst + dst_stride * 3) = _mm_cvtsi128_si32(D);
|
|
}
|
|
|
|
static void scaledconvolve_horiz_w4(const uint8_t *src, ptrdiff_t src_stride,
|
|
uint8_t *dst, ptrdiff_t dst_stride,
|
|
const InterpKernel *x_filters, int x0_q4,
|
|
int x_step_q4, int w, int h) {
|
|
DECLARE_ALIGNED(16, uint8_t, temp[4 * 4]);
|
|
int x, y, z;
|
|
src -= SUBPEL_TAPS / 2 - 1;
|
|
|
|
for (y = 0; y < h; y += 4) {
|
|
int x_q4 = x0_q4;
|
|
for (x = 0; x < w; x += 4) {
|
|
// process 4 src_x steps
|
|
for (z = 0; z < 4; ++z) {
|
|
const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
|
|
const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK];
|
|
if (x_q4 & SUBPEL_MASK) {
|
|
filter_horiz_w4_ssse3(src_x, src_stride, temp + (z * 4), x_filter);
|
|
} else {
|
|
int i;
|
|
for (i = 0; i < 4; ++i) {
|
|
temp[z * 4 + i] = src_x[i * src_stride + 3];
|
|
}
|
|
}
|
|
x_q4 += x_step_q4;
|
|
}
|
|
|
|
// transpose the 4x4 filters values back to dst
|
|
transpose4x4_to_dst(temp, 4, dst + x, dst_stride);
|
|
}
|
|
|
|
src += src_stride * 4;
|
|
dst += dst_stride * 4;
|
|
}
|
|
}
|
|
|
|
static void filter_vert_w4_ssse3(const uint8_t *src_ptr, ptrdiff_t src_pitch,
|
|
uint8_t *dst, const int16_t *filter) {
|
|
const __m128i k_256 = _mm_set1_epi16(1 << 8);
|
|
const __m128i f_values = _mm_load_si128((const __m128i *)filter);
|
|
// pack and duplicate the filter values
|
|
const __m128i f1f0 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0200u));
|
|
const __m128i f3f2 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0604u));
|
|
const __m128i f5f4 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0a08u));
|
|
const __m128i f7f6 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0e0cu));
|
|
const __m128i A = _mm_cvtsi32_si128(*(const int *)src_ptr);
|
|
const __m128i B = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch));
|
|
const __m128i C = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch * 2));
|
|
const __m128i D = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch * 3));
|
|
const __m128i E = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch * 4));
|
|
const __m128i F = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch * 5));
|
|
const __m128i G = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch * 6));
|
|
const __m128i H = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch * 7));
|
|
const __m128i s1s0 = _mm_unpacklo_epi8(A, B);
|
|
const __m128i s3s2 = _mm_unpacklo_epi8(C, D);
|
|
const __m128i s5s4 = _mm_unpacklo_epi8(E, F);
|
|
const __m128i s7s6 = _mm_unpacklo_epi8(G, H);
|
|
// multiply 2 adjacent elements with the filter and add the result
|
|
const __m128i x0 = _mm_maddubs_epi16(s1s0, f1f0);
|
|
const __m128i x1 = _mm_maddubs_epi16(s3s2, f3f2);
|
|
const __m128i x2 = _mm_maddubs_epi16(s5s4, f5f4);
|
|
const __m128i x3 = _mm_maddubs_epi16(s7s6, f7f6);
|
|
// add and saturate the results together
|
|
const __m128i min_x2x1 = _mm_min_epi16(x2, x1);
|
|
const __m128i max_x2x1 = _mm_max_epi16(x2, x1);
|
|
__m128i temp = _mm_adds_epi16(x0, x3);
|
|
temp = _mm_adds_epi16(temp, min_x2x1);
|
|
temp = _mm_adds_epi16(temp, max_x2x1);
|
|
// round and shift by 7 bit each 16 bit
|
|
temp = _mm_mulhrs_epi16(temp, k_256);
|
|
// shrink to 8 bit each 16 bits
|
|
temp = _mm_packus_epi16(temp, temp);
|
|
// save only 4 bytes
|
|
*(int *)dst = _mm_cvtsi128_si32(temp);
|
|
}
|
|
|
|
static void scaledconvolve_vert_w4(const uint8_t *src, ptrdiff_t src_stride,
|
|
uint8_t *dst, ptrdiff_t dst_stride,
|
|
const InterpKernel *y_filters, int y0_q4,
|
|
int y_step_q4, int w, int h) {
|
|
int y;
|
|
int y_q4 = y0_q4;
|
|
|
|
src -= src_stride * (SUBPEL_TAPS / 2 - 1);
|
|
for (y = 0; y < h; ++y) {
|
|
const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
|
|
const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
|
|
|
|
if (y_q4 & SUBPEL_MASK) {
|
|
filter_vert_w4_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter);
|
|
} else {
|
|
memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w);
|
|
}
|
|
|
|
y_q4 += y_step_q4;
|
|
}
|
|
}
|
|
|
|
static void filter_vert_w8_ssse3(const uint8_t *src_ptr, ptrdiff_t src_pitch,
|
|
uint8_t *dst, const int16_t *filter) {
|
|
const __m128i k_256 = _mm_set1_epi16(1 << 8);
|
|
const __m128i f_values = _mm_load_si128((const __m128i *)filter);
|
|
// pack and duplicate the filter values
|
|
const __m128i f1f0 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0200u));
|
|
const __m128i f3f2 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0604u));
|
|
const __m128i f5f4 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0a08u));
|
|
const __m128i f7f6 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0e0cu));
|
|
const __m128i A = _mm_loadl_epi64((const __m128i *)src_ptr);
|
|
const __m128i B = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch));
|
|
const __m128i C = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2));
|
|
const __m128i D = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3));
|
|
const __m128i E = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4));
|
|
const __m128i F = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5));
|
|
const __m128i G = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6));
|
|
const __m128i H = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 7));
|
|
const __m128i s1s0 = _mm_unpacklo_epi8(A, B);
|
|
const __m128i s3s2 = _mm_unpacklo_epi8(C, D);
|
|
const __m128i s5s4 = _mm_unpacklo_epi8(E, F);
|
|
const __m128i s7s6 = _mm_unpacklo_epi8(G, H);
|
|
// multiply 2 adjacent elements with the filter and add the result
|
|
const __m128i x0 = _mm_maddubs_epi16(s1s0, f1f0);
|
|
const __m128i x1 = _mm_maddubs_epi16(s3s2, f3f2);
|
|
const __m128i x2 = _mm_maddubs_epi16(s5s4, f5f4);
|
|
const __m128i x3 = _mm_maddubs_epi16(s7s6, f7f6);
|
|
// add and saturate the results together
|
|
const __m128i min_x2x1 = _mm_min_epi16(x2, x1);
|
|
const __m128i max_x2x1 = _mm_max_epi16(x2, x1);
|
|
__m128i temp = _mm_adds_epi16(x0, x3);
|
|
temp = _mm_adds_epi16(temp, min_x2x1);
|
|
temp = _mm_adds_epi16(temp, max_x2x1);
|
|
// round and shift by 7 bit each 16 bit
|
|
temp = _mm_mulhrs_epi16(temp, k_256);
|
|
// shrink to 8 bit each 16 bits
|
|
temp = _mm_packus_epi16(temp, temp);
|
|
// save only 8 bytes convolve result
|
|
_mm_storel_epi64((__m128i *)dst, temp);
|
|
}
|
|
|
|
static void scaledconvolve_vert_w8(const uint8_t *src, ptrdiff_t src_stride,
|
|
uint8_t *dst, ptrdiff_t dst_stride,
|
|
const InterpKernel *y_filters, int y0_q4,
|
|
int y_step_q4, int w, int h) {
|
|
int y;
|
|
int y_q4 = y0_q4;
|
|
|
|
src -= src_stride * (SUBPEL_TAPS / 2 - 1);
|
|
for (y = 0; y < h; ++y) {
|
|
const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
|
|
const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
|
|
if (y_q4 & SUBPEL_MASK) {
|
|
filter_vert_w8_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter);
|
|
} else {
|
|
memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w);
|
|
}
|
|
y_q4 += y_step_q4;
|
|
}
|
|
}
|
|
|
|
static void filter_vert_w16_ssse3(const uint8_t *src_ptr, ptrdiff_t src_pitch,
|
|
uint8_t *dst, const int16_t *filter, int w) {
|
|
const __m128i k_256 = _mm_set1_epi16(1 << 8);
|
|
const __m128i f_values = _mm_load_si128((const __m128i *)filter);
|
|
// pack and duplicate the filter values
|
|
const __m128i f1f0 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0200u));
|
|
const __m128i f3f2 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0604u));
|
|
const __m128i f5f4 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0a08u));
|
|
const __m128i f7f6 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0e0cu));
|
|
int i;
|
|
|
|
for (i = 0; i < w; i += 16) {
|
|
const __m128i A = _mm_loadu_si128((const __m128i *)src_ptr);
|
|
const __m128i B = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch));
|
|
const __m128i C =
|
|
_mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 2));
|
|
const __m128i D =
|
|
_mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 3));
|
|
const __m128i E =
|
|
_mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 4));
|
|
const __m128i F =
|
|
_mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 5));
|
|
const __m128i G =
|
|
_mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6));
|
|
const __m128i H =
|
|
_mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7));
|
|
// merge the result together
|
|
const __m128i s1s0_lo = _mm_unpacklo_epi8(A, B);
|
|
const __m128i s7s6_lo = _mm_unpacklo_epi8(G, H);
|
|
const __m128i s1s0_hi = _mm_unpackhi_epi8(A, B);
|
|
const __m128i s7s6_hi = _mm_unpackhi_epi8(G, H);
|
|
// multiply 2 adjacent elements with the filter and add the result
|
|
const __m128i x0_lo = _mm_maddubs_epi16(s1s0_lo, f1f0);
|
|
const __m128i x3_lo = _mm_maddubs_epi16(s7s6_lo, f7f6);
|
|
const __m128i x0_hi = _mm_maddubs_epi16(s1s0_hi, f1f0);
|
|
const __m128i x3_hi = _mm_maddubs_epi16(s7s6_hi, f7f6);
|
|
// add and saturate the results together
|
|
const __m128i x3x0_lo = _mm_adds_epi16(x0_lo, x3_lo);
|
|
const __m128i x3x0_hi = _mm_adds_epi16(x0_hi, x3_hi);
|
|
// merge the result together
|
|
const __m128i s3s2_lo = _mm_unpacklo_epi8(C, D);
|
|
const __m128i s3s2_hi = _mm_unpackhi_epi8(C, D);
|
|
// multiply 2 adjacent elements with the filter and add the result
|
|
const __m128i x1_lo = _mm_maddubs_epi16(s3s2_lo, f3f2);
|
|
const __m128i x1_hi = _mm_maddubs_epi16(s3s2_hi, f3f2);
|
|
// merge the result together
|
|
const __m128i s5s4_lo = _mm_unpacklo_epi8(E, F);
|
|
const __m128i s5s4_hi = _mm_unpackhi_epi8(E, F);
|
|
// multiply 2 adjacent elements with the filter and add the result
|
|
const __m128i x2_lo = _mm_maddubs_epi16(s5s4_lo, f5f4);
|
|
const __m128i x2_hi = _mm_maddubs_epi16(s5s4_hi, f5f4);
|
|
// add and saturate the results together
|
|
__m128i temp_lo = _mm_adds_epi16(x3x0_lo, _mm_min_epi16(x1_lo, x2_lo));
|
|
__m128i temp_hi = _mm_adds_epi16(x3x0_hi, _mm_min_epi16(x1_hi, x2_hi));
|
|
|
|
// add and saturate the results together
|
|
temp_lo = _mm_adds_epi16(temp_lo, _mm_max_epi16(x1_lo, x2_lo));
|
|
temp_hi = _mm_adds_epi16(temp_hi, _mm_max_epi16(x1_hi, x2_hi));
|
|
// round and shift by 7 bit each 16 bit
|
|
temp_lo = _mm_mulhrs_epi16(temp_lo, k_256);
|
|
temp_hi = _mm_mulhrs_epi16(temp_hi, k_256);
|
|
// shrink to 8 bit each 16 bits, the first lane contain the first
|
|
// convolve result and the second lane contain the second convolve
|
|
// result
|
|
temp_hi = _mm_packus_epi16(temp_lo, temp_hi);
|
|
src_ptr += 16;
|
|
// save 16 bytes convolve result
|
|
_mm_store_si128((__m128i *)&dst[i], temp_hi);
|
|
}
|
|
}
|
|
|
|
static void scaledconvolve_vert_w16(const uint8_t *src, ptrdiff_t src_stride,
|
|
uint8_t *dst, ptrdiff_t dst_stride,
|
|
const InterpKernel *y_filters, int y0_q4,
|
|
int y_step_q4, int w, int h) {
|
|
int y;
|
|
int y_q4 = y0_q4;
|
|
|
|
src -= src_stride * (SUBPEL_TAPS / 2 - 1);
|
|
for (y = 0; y < h; ++y) {
|
|
const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
|
|
const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
|
|
if (y_q4 & SUBPEL_MASK) {
|
|
filter_vert_w16_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter,
|
|
w);
|
|
} else {
|
|
memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w);
|
|
}
|
|
y_q4 += y_step_q4;
|
|
}
|
|
}
|
|
|
|
static void scaledconvolve2d(const uint8_t *src, ptrdiff_t src_stride,
|
|
uint8_t *dst, ptrdiff_t dst_stride,
|
|
const InterpKernel *const x_filters, int x0_q4,
|
|
int x_step_q4, const InterpKernel *const y_filters,
|
|
int y0_q4, int y_step_q4, int w, int h) {
|
|
// Note: Fixed size intermediate buffer, temp, places limits on parameters.
|
|
// 2d filtering proceeds in 2 steps:
|
|
// (1) Interpolate horizontally into an intermediate buffer, temp.
|
|
// (2) Interpolate temp vertically to derive the sub-pixel result.
|
|
// Deriving the maximum number of rows in the temp buffer (135):
|
|
// --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative).
|
|
// --Largest block size is 64x64 pixels.
|
|
// --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the
|
|
// original frame (in 1/16th pixel units).
|
|
// --Must round-up because block may be located at sub-pixel position.
|
|
// --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails.
|
|
// --((64 - 1) * 32 + 15) >> 4 + 8 = 135.
|
|
// --Require an additional 8 rows for the horiz_w8 transpose tail.
|
|
DECLARE_ALIGNED(16, uint8_t, temp[(MAX_EXT_SIZE + 8) * MAX_SB_SIZE]);
|
|
const int intermediate_height =
|
|
(((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS;
|
|
|
|
assert(w <= MAX_SB_SIZE);
|
|
assert(h <= MAX_SB_SIZE);
|
|
assert(y_step_q4 <= 32);
|
|
assert(x_step_q4 <= 32);
|
|
|
|
if (w >= 8) {
|
|
scaledconvolve_horiz_w8(src - src_stride * (SUBPEL_TAPS / 2 - 1),
|
|
src_stride, temp, MAX_SB_SIZE, x_filters, x0_q4,
|
|
x_step_q4, w, intermediate_height);
|
|
} else {
|
|
scaledconvolve_horiz_w4(src - src_stride * (SUBPEL_TAPS / 2 - 1),
|
|
src_stride, temp, MAX_SB_SIZE, x_filters, x0_q4,
|
|
x_step_q4, w, intermediate_height);
|
|
}
|
|
|
|
if (w >= 16) {
|
|
scaledconvolve_vert_w16(temp + MAX_SB_SIZE * (SUBPEL_TAPS / 2 - 1),
|
|
MAX_SB_SIZE, dst, dst_stride, y_filters, y0_q4,
|
|
y_step_q4, w, h);
|
|
} else if (w == 8) {
|
|
scaledconvolve_vert_w8(temp + MAX_SB_SIZE * (SUBPEL_TAPS / 2 - 1),
|
|
MAX_SB_SIZE, dst, dst_stride, y_filters, y0_q4,
|
|
y_step_q4, w, h);
|
|
} else {
|
|
scaledconvolve_vert_w4(temp + MAX_SB_SIZE * (SUBPEL_TAPS / 2 - 1),
|
|
MAX_SB_SIZE, dst, dst_stride, y_filters, y0_q4,
|
|
y_step_q4, w, h);
|
|
}
|
|
}
|
|
|
|
static const InterpKernel *get_filter_base(const int16_t *filter) {
|
|
// NOTE: This assumes that the filter table is 256-byte aligned.
|
|
// TODO(agrange) Modify to make independent of table alignment.
|
|
return (const InterpKernel *)(((intptr_t)filter) & ~((intptr_t)0xFF));
|
|
}
|
|
|
|
static int get_filter_offset(const int16_t *f, const InterpKernel *base) {
|
|
return (int)((const InterpKernel *)(intptr_t)f - base);
|
|
}
|
|
|
|
void aom_scaled_2d_ssse3(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
|
|
ptrdiff_t dst_stride, const int16_t *filter_x,
|
|
int x_step_q4, const int16_t *filter_y, int y_step_q4,
|
|
int w, int h) {
|
|
const InterpKernel *const filters_x = get_filter_base(filter_x);
|
|
const int x0_q4 = get_filter_offset(filter_x, filters_x);
|
|
|
|
const InterpKernel *const filters_y = get_filter_base(filter_y);
|
|
const int y0_q4 = get_filter_offset(filter_y, filters_y);
|
|
|
|
scaledconvolve2d(src, src_stride, dst, dst_stride, filters_x, x0_q4,
|
|
x_step_q4, filters_y, y0_q4, y_step_q4, w, h);
|
|
}
|
|
|
|
// void aom_convolve8_ssse3(const uint8_t *src, ptrdiff_t src_stride,
|
|
// uint8_t *dst, ptrdiff_t dst_stride,
|
|
// const int16_t *filter_x, int x_step_q4,
|
|
// const int16_t *filter_y, int y_step_q4,
|
|
// int w, int h);
|
|
// void aom_convolve8_avg_ssse3(const uint8_t *src, ptrdiff_t src_stride,
|
|
// uint8_t *dst, ptrdiff_t dst_stride,
|
|
// const int16_t *filter_x, int x_step_q4,
|
|
// const int16_t *filter_y, int y_step_q4,
|
|
// int w, int h);
|
|
FUN_CONV_2D(, ssse3);
|
|
FUN_CONV_2D(avg_, ssse3);
|
|
#if CONFIG_LOOP_RESTORATION
|
|
FUN_CONV_2D_NO_BILINEAR(add_src_, add_src_, ssse3);
|
|
#endif
|