342 строки
10 KiB
C++
342 строки
10 KiB
C++
/*
|
|
* Copyright (c) 2015 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#define AV1_FORCE_AOMBOOL_TREEWRITER
|
|
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <ctime>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "third_party/googletest/src/include/gtest/gtest.h"
|
|
|
|
#include "test/acm_random.h"
|
|
#include "av1/common/ans.h"
|
|
#include "av1/encoder/treewriter.h"
|
|
#include "aom_dsp/bitreader.h"
|
|
#include "aom_dsp/bitwriter.h"
|
|
|
|
namespace {
|
|
typedef std::vector<std::pair<uint8_t, bool> > PvVec;
|
|
|
|
PvVec abs_encode_build_vals(int iters) {
|
|
PvVec ret;
|
|
libaom_test::ACMRandom gen(0x30317076);
|
|
double entropy = 0;
|
|
for (int i = 0; i < iters; ++i) {
|
|
uint8_t p;
|
|
do {
|
|
p = gen.Rand8();
|
|
} while (p == 0); // zero is not a valid coding probability
|
|
bool b = gen.Rand8() < p;
|
|
ret.push_back(std::make_pair(static_cast<uint8_t>(p), b));
|
|
double d = p / 256.;
|
|
entropy += -d * log2(d) - (1 - d) * log2(1 - d);
|
|
}
|
|
printf("entropy %f\n", entropy);
|
|
return ret;
|
|
}
|
|
|
|
bool check_rabs(const PvVec &pv_vec, uint8_t *buf) {
|
|
AnsCoder a;
|
|
ans_write_init(&a, buf);
|
|
|
|
std::clock_t start = std::clock();
|
|
for (PvVec::const_reverse_iterator it = pv_vec.rbegin(); it != pv_vec.rend();
|
|
++it) {
|
|
rabs_write(&a, it->second, 256 - it->first);
|
|
}
|
|
std::clock_t enc_time = std::clock() - start;
|
|
int offset = ans_write_end(&a);
|
|
bool okay = true;
|
|
AnsDecoder d;
|
|
if (ans_read_init(&d, buf, offset)) return false;
|
|
start = std::clock();
|
|
for (PvVec::const_iterator it = pv_vec.begin(); it != pv_vec.end(); ++it) {
|
|
okay &= rabs_read(&d, 256 - it->first) == it->second;
|
|
}
|
|
std::clock_t dec_time = std::clock() - start;
|
|
if (!okay) return false;
|
|
printf("rABS size %d enc_time %f dec_time %f\n", offset,
|
|
static_cast<float>(enc_time) / CLOCKS_PER_SEC,
|
|
static_cast<float>(dec_time) / CLOCKS_PER_SEC);
|
|
return ans_read_end(&d);
|
|
}
|
|
|
|
bool check_rabs_asc(const PvVec &pv_vec, uint8_t *buf) {
|
|
AnsCoder a;
|
|
ans_write_init(&a, buf);
|
|
|
|
std::clock_t start = std::clock();
|
|
for (PvVec::const_reverse_iterator it = pv_vec.rbegin(); it != pv_vec.rend();
|
|
++it) {
|
|
rabs_asc_write(&a, it->second, 256 - it->first);
|
|
}
|
|
std::clock_t enc_time = std::clock() - start;
|
|
int offset = ans_write_end(&a);
|
|
bool okay = true;
|
|
AnsDecoder d;
|
|
if (ans_read_init(&d, buf, offset)) return false;
|
|
start = std::clock();
|
|
for (PvVec::const_iterator it = pv_vec.begin(); it != pv_vec.end(); ++it) {
|
|
okay &= rabs_asc_read(&d, 256 - it->first) == it->second;
|
|
}
|
|
std::clock_t dec_time = std::clock() - start;
|
|
if (!okay) return false;
|
|
printf("rABS (asc) size %d enc_time %f dec_time %f\n", offset,
|
|
static_cast<float>(enc_time) / CLOCKS_PER_SEC,
|
|
static_cast<float>(dec_time) / CLOCKS_PER_SEC);
|
|
return ans_read_end(&d);
|
|
}
|
|
|
|
bool check_uabs(const PvVec &pv_vec, uint8_t *buf) {
|
|
AnsCoder a;
|
|
ans_write_init(&a, buf);
|
|
|
|
std::clock_t start = std::clock();
|
|
for (PvVec::const_reverse_iterator it = pv_vec.rbegin(); it != pv_vec.rend();
|
|
++it) {
|
|
uabs_write(&a, it->second, 256 - it->first);
|
|
}
|
|
std::clock_t enc_time = std::clock() - start;
|
|
int offset = ans_write_end(&a);
|
|
bool okay = true;
|
|
AnsDecoder d;
|
|
if (ans_read_init(&d, buf, offset)) return false;
|
|
start = std::clock();
|
|
for (PvVec::const_iterator it = pv_vec.begin(); it != pv_vec.end(); ++it) {
|
|
okay &= uabs_read(&d, 256 - it->first) == it->second;
|
|
}
|
|
std::clock_t dec_time = std::clock() - start;
|
|
if (!okay) return false;
|
|
printf("uABS size %d enc_time %f dec_time %f\n", offset,
|
|
static_cast<float>(enc_time) / CLOCKS_PER_SEC,
|
|
static_cast<float>(dec_time) / CLOCKS_PER_SEC);
|
|
return ans_read_end(&d);
|
|
}
|
|
|
|
bool check_aombool(const PvVec &pv_vec, uint8_t *buf) {
|
|
aom_writer w;
|
|
aom_reader r;
|
|
aom_start_encode(&w, buf);
|
|
|
|
std::clock_t start = std::clock();
|
|
for (PvVec::const_iterator it = pv_vec.begin(); it != pv_vec.end(); ++it) {
|
|
aom_write(&w, it->second, 256 - it->first);
|
|
}
|
|
std::clock_t enc_time = std::clock() - start;
|
|
aom_stop_encode(&w);
|
|
bool okay = true;
|
|
aom_reader_init(&r, buf, w.pos, NULL, NULL);
|
|
start = std::clock();
|
|
for (PvVec::const_iterator it = pv_vec.begin(); it != pv_vec.end(); ++it) {
|
|
okay &= aom_read(&r, 256 - it->first) == it->second;
|
|
}
|
|
std::clock_t dec_time = std::clock() - start;
|
|
printf("AOM size %d enc_time %f dec_time %f\n", w.pos,
|
|
static_cast<float>(enc_time) / CLOCKS_PER_SEC,
|
|
static_cast<float>(dec_time) / CLOCKS_PER_SEC);
|
|
return okay;
|
|
}
|
|
|
|
// TODO(aconverse): replace this with a more representative distribution from
|
|
// the codec.
|
|
const rans_sym rans_sym_tab[] = {
|
|
{ 16 * 4, 0 * 4 },
|
|
{ 100 * 4, 16 * 4 },
|
|
{ 70 * 4, 116 * 4 },
|
|
{ 70 * 4, 186 * 4 },
|
|
};
|
|
const int kDistinctSyms = sizeof(rans_sym_tab) / sizeof(rans_sym_tab[0]);
|
|
|
|
std::vector<int> ans_encode_build_vals(const rans_sym *tab, int iters) {
|
|
std::vector<int> p_to_sym;
|
|
int i = 0;
|
|
while (p_to_sym.size() < rans_precision) {
|
|
p_to_sym.insert(p_to_sym.end(), tab[i].prob, i);
|
|
++i;
|
|
}
|
|
assert(p_to_sym.size() == rans_precision);
|
|
std::vector<int> ret;
|
|
libaom_test::ACMRandom gen(18543637);
|
|
for (int i = 0; i < iters; ++i) {
|
|
int sym = p_to_sym[gen.Rand8() * 4];
|
|
ret.push_back(sym);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void rans_build_dec_tab(const struct rans_sym sym_tab[], rans_dec_lut dec_tab) {
|
|
dec_tab[0] = 0;
|
|
for (int i = 1; dec_tab[i - 1] < rans_precision; ++i) {
|
|
dec_tab[i] = dec_tab[i - 1] + sym_tab[i - 1].prob;
|
|
}
|
|
}
|
|
|
|
bool check_rans(const std::vector<int> &sym_vec, const rans_sym *const tab,
|
|
uint8_t *buf) {
|
|
AnsCoder a;
|
|
ans_write_init(&a, buf);
|
|
rans_dec_lut dec_tab;
|
|
rans_build_dec_tab(tab, dec_tab);
|
|
|
|
std::clock_t start = std::clock();
|
|
for (std::vector<int>::const_reverse_iterator it = sym_vec.rbegin();
|
|
it != sym_vec.rend(); ++it) {
|
|
rans_write(&a, &tab[*it]);
|
|
}
|
|
std::clock_t enc_time = std::clock() - start;
|
|
int offset = ans_write_end(&a);
|
|
bool okay = true;
|
|
AnsDecoder d;
|
|
if (ans_read_init(&d, buf, offset)) return false;
|
|
start = std::clock();
|
|
for (std::vector<int>::const_iterator it = sym_vec.begin();
|
|
it != sym_vec.end(); ++it) {
|
|
okay &= rans_read(&d, dec_tab) == *it;
|
|
}
|
|
std::clock_t dec_time = std::clock() - start;
|
|
if (!okay) return false;
|
|
printf("rANS size %d enc_time %f dec_time %f\n", offset,
|
|
static_cast<float>(enc_time) / CLOCKS_PER_SEC,
|
|
static_cast<float>(dec_time) / CLOCKS_PER_SEC);
|
|
return ans_read_end(&d);
|
|
}
|
|
|
|
void build_tree(aom_tree_index *tree, int num_syms) {
|
|
aom_tree_index i;
|
|
int sym = 0;
|
|
for (i = 0; i < num_syms - 1; ++i) {
|
|
tree[2 * i] = sym--;
|
|
tree[2 * i + 1] = 2 * (i + 1);
|
|
}
|
|
tree[2 * i - 1] = sym;
|
|
}
|
|
|
|
/* The treep array contains the probabilities of nodes of a tree structured
|
|
* like:
|
|
* *
|
|
* / \
|
|
* -sym0 *
|
|
* / \
|
|
* -sym1 *
|
|
* / \
|
|
* -sym2 -sym3
|
|
*/
|
|
void tab2tree(const rans_sym *tab, int tab_size, aom_prob *treep) {
|
|
const unsigned basep = rans_precision;
|
|
unsigned pleft = basep;
|
|
for (int i = 0; i < tab_size - 1; ++i) {
|
|
unsigned prob = (tab[i].prob * basep + basep * 2) / (pleft * 4);
|
|
assert(prob > 0 && prob < 256);
|
|
treep[i] = prob;
|
|
pleft -= tab[i].prob;
|
|
}
|
|
}
|
|
|
|
struct sym_bools {
|
|
unsigned bits;
|
|
int len;
|
|
};
|
|
|
|
static void make_tree_bits_tab(sym_bools *tab, int num_syms) {
|
|
unsigned bits = 0;
|
|
int len = 0;
|
|
int i;
|
|
for (i = 0; i < num_syms - 1; ++i) {
|
|
bits *= 2;
|
|
++len;
|
|
tab[i].bits = bits;
|
|
tab[i].len = len;
|
|
++bits;
|
|
}
|
|
tab[i].bits = bits;
|
|
tab[i].len = len;
|
|
}
|
|
|
|
void build_tpb(aom_prob probs[/*num_syms*/],
|
|
aom_tree_index tree[/*2*num_syms*/],
|
|
sym_bools bit_len[/*num_syms*/],
|
|
const rans_sym sym_tab[/*num_syms*/], int num_syms) {
|
|
tab2tree(sym_tab, num_syms, probs);
|
|
build_tree(tree, num_syms);
|
|
make_tree_bits_tab(bit_len, num_syms);
|
|
}
|
|
|
|
bool check_aomtree(const std::vector<int> &sym_vec, const rans_sym *sym_tab,
|
|
uint8_t *buf) {
|
|
aom_writer w;
|
|
aom_reader r;
|
|
aom_start_encode(&w, buf);
|
|
|
|
aom_prob probs[kDistinctSyms];
|
|
aom_tree_index tree[2 * kDistinctSyms];
|
|
sym_bools bit_len[kDistinctSyms];
|
|
build_tpb(probs, tree, bit_len, sym_tab, kDistinctSyms);
|
|
|
|
std::clock_t start = std::clock();
|
|
for (std::vector<int>::const_iterator it = sym_vec.begin();
|
|
it != sym_vec.end(); ++it) {
|
|
av1_write_tree(&w, tree, probs, bit_len[*it].bits, bit_len[*it].len, 0);
|
|
}
|
|
std::clock_t enc_time = std::clock() - start;
|
|
aom_stop_encode(&w);
|
|
aom_reader_init(&r, buf, w.pos, NULL, NULL);
|
|
start = std::clock();
|
|
for (std::vector<int>::const_iterator it = sym_vec.begin();
|
|
it != sym_vec.end(); ++it) {
|
|
if (aom_read_tree(&r, tree, probs) != *it) return false;
|
|
}
|
|
std::clock_t dec_time = std::clock() - start;
|
|
printf("AOMtree size %u enc_time %f dec_time %f\n", w.pos,
|
|
static_cast<float>(enc_time) / CLOCKS_PER_SEC,
|
|
static_cast<float>(dec_time) / CLOCKS_PER_SEC);
|
|
return true;
|
|
}
|
|
|
|
class Av1AbsTest : public ::testing::Test {
|
|
protected:
|
|
static void SetUpTestCase() { pv_vec_ = abs_encode_build_vals(kNumBools); }
|
|
virtual void SetUp() { buf_ = new uint8_t[kNumBools / 8]; }
|
|
virtual void TearDown() { delete[] buf_; }
|
|
static const int kNumBools = 100000000;
|
|
static PvVec pv_vec_;
|
|
uint8_t *buf_;
|
|
};
|
|
PvVec Av1AbsTest::pv_vec_;
|
|
|
|
class Av1AnsTest : public ::testing::Test {
|
|
protected:
|
|
static void SetUpTestCase() {
|
|
sym_vec_ = ans_encode_build_vals(rans_sym_tab, kNumSyms);
|
|
}
|
|
virtual void SetUp() { buf_ = new uint8_t[kNumSyms / 2]; }
|
|
virtual void TearDown() { delete[] buf_; }
|
|
static const int kNumSyms = 25000000;
|
|
static std::vector<int> sym_vec_;
|
|
uint8_t *buf_;
|
|
};
|
|
std::vector<int> Av1AnsTest::sym_vec_;
|
|
|
|
TEST_F(Av1AbsTest, Avxbool) { EXPECT_TRUE(check_aombool(pv_vec_, buf_)); }
|
|
TEST_F(Av1AbsTest, Rabs) { EXPECT_TRUE(check_rabs(pv_vec_, buf_)); }
|
|
TEST_F(Av1AbsTest, RabsAsc) { EXPECT_TRUE(check_rabs_asc(pv_vec_, buf_)); }
|
|
TEST_F(Av1AbsTest, Uabs) { EXPECT_TRUE(check_uabs(pv_vec_, buf_)); }
|
|
|
|
TEST_F(Av1AnsTest, Rans) {
|
|
EXPECT_TRUE(check_rans(sym_vec_, rans_sym_tab, buf_));
|
|
}
|
|
TEST_F(Av1AnsTest, Avxtree) {
|
|
EXPECT_TRUE(check_aomtree(sym_vec_, rans_sym_tab, buf_));
|
|
}
|
|
} // namespace
|