aom/test/av1_inv_txfm2d_test.cc

158 строки
5.3 KiB
C++

/*
* Copyright (c) 2015 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "./av1_rtcd.h"
#include "test/acm_random.h"
#include "test/util.h"
#include "test/av1_txfm_test.h"
#include "av1/common/av1_inv_txfm2d_cfg.h"
using libaom_test::ACMRandom;
using libaom_test::input_base;
using libaom_test::bd;
using libaom_test::compute_avg_abs_error;
using libaom_test::Fwd_Txfm2d_Func;
using libaom_test::Inv_Txfm2d_Func;
namespace {
#if CONFIG_AOM_HIGHBITDEPTH
// AV1InvTxfm2dParam argument list:
// tx_type_, tx_size_, max_error_, max_avg_error_
typedef std::tr1::tuple<TX_TYPE, TX_SIZE, int, double> AV1InvTxfm2dParam;
class AV1InvTxfm2d : public ::testing::TestWithParam<AV1InvTxfm2dParam> {
public:
virtual void SetUp() {
tx_type_ = GET_PARAM(0);
tx_size_ = GET_PARAM(1);
max_error_ = GET_PARAM(2);
max_avg_error_ = GET_PARAM(3);
txfm1d_size_ = libaom_test::get_txfm1d_size(tx_size_);
txfm2d_size_ = txfm1d_size_ * txfm1d_size_;
count_ = 500;
input_ = reinterpret_cast<int16_t *>(
aom_memalign(16, sizeof(int16_t) * txfm2d_size_));
ref_input_ = reinterpret_cast<uint16_t *>(
aom_memalign(16, sizeof(uint16_t) * txfm2d_size_));
output_ = reinterpret_cast<int32_t *>(
aom_memalign(16, sizeof(int32_t) * txfm2d_size_));
}
void RunRoundtripCheck() {
const Fwd_Txfm2d_Func fwd_txfm_func =
libaom_test::fwd_txfm_func_ls[tx_size_];
const Inv_Txfm2d_Func inv_txfm_func =
libaom_test::inv_txfm_func_ls[tx_size_];
double avg_abs_error = 0;
ACMRandom rnd(ACMRandom::DeterministicSeed());
for (int ci = 0; ci < count_; ci++) {
for (int ni = 0; ni < txfm2d_size_; ++ni) {
if (ci == 0) {
int extreme_input = input_base - 1;
input_[ni] = extreme_input; // extreme case
ref_input_[ni] = 0;
} else {
input_[ni] = rnd.Rand16() % input_base;
ref_input_[ni] = 0;
}
}
fwd_txfm_func(input_, output_, txfm1d_size_, tx_type_, bd);
inv_txfm_func(output_, ref_input_, txfm1d_size_, tx_type_, bd);
for (int ni = 0; ni < txfm2d_size_; ++ni) {
EXPECT_GE(max_error_, abs(input_[ni] - ref_input_[ni]));
}
avg_abs_error += compute_avg_abs_error<int16_t, uint16_t>(
input_, ref_input_, txfm2d_size_);
}
avg_abs_error /= count_;
// max_abs_avg_error comes from upper bound of
// printf("txfm1d_size: %d accuracy_avg_abs_error: %f\n",
// txfm1d_size_, avg_abs_error);
EXPECT_GE(max_avg_error_, avg_abs_error);
}
virtual void TearDown() {
aom_free(input_);
aom_free(output_);
aom_free(ref_input_);
}
private:
int count_;
int max_error_;
double max_avg_error_;
TX_TYPE tx_type_;
TX_SIZE tx_size_;
int txfm1d_size_;
int txfm2d_size_;
int16_t *input_;
uint16_t *ref_input_;
int32_t *output_;
};
TEST_P(AV1InvTxfm2d, RunRoundtripCheck) { RunRoundtripCheck(); }
const AV1InvTxfm2dParam av1_inv_txfm2d_param[] = {
#if CONFIG_EXT_TX
AV1InvTxfm2dParam(FLIPADST_DCT, TX_4X4, 2, 0.002),
AV1InvTxfm2dParam(DCT_FLIPADST, TX_4X4, 2, 0.002),
AV1InvTxfm2dParam(FLIPADST_FLIPADST, TX_4X4, 2, 0.002),
AV1InvTxfm2dParam(ADST_FLIPADST, TX_4X4, 2, 0.002),
AV1InvTxfm2dParam(FLIPADST_ADST, TX_4X4, 2, 0.002),
AV1InvTxfm2dParam(FLIPADST_DCT, TX_8X8, 2, 0.02),
AV1InvTxfm2dParam(DCT_FLIPADST, TX_8X8, 2, 0.02),
AV1InvTxfm2dParam(FLIPADST_FLIPADST, TX_8X8, 2, 0.02),
AV1InvTxfm2dParam(ADST_FLIPADST, TX_8X8, 2, 0.02),
AV1InvTxfm2dParam(FLIPADST_ADST, TX_8X8, 2, 0.02),
AV1InvTxfm2dParam(FLIPADST_DCT, TX_16X16, 2, 0.04),
AV1InvTxfm2dParam(DCT_FLIPADST, TX_16X16, 2, 0.04),
AV1InvTxfm2dParam(FLIPADST_FLIPADST, TX_16X16, 11, 0.04),
AV1InvTxfm2dParam(ADST_FLIPADST, TX_16X16, 2, 0.04),
AV1InvTxfm2dParam(FLIPADST_ADST, TX_16X16, 2, 0.04),
AV1InvTxfm2dParam(FLIPADST_DCT, TX_32X32, 4, 0.4),
AV1InvTxfm2dParam(DCT_FLIPADST, TX_32X32, 4, 0.4),
AV1InvTxfm2dParam(FLIPADST_FLIPADST, TX_32X32, 4, 0.4),
AV1InvTxfm2dParam(ADST_FLIPADST, TX_32X32, 4, 0.4),
AV1InvTxfm2dParam(FLIPADST_ADST, TX_32X32, 4, 0.4),
#endif
AV1InvTxfm2dParam(DCT_DCT, TX_4X4, 2, 0.002),
AV1InvTxfm2dParam(ADST_DCT, TX_4X4, 2, 0.002),
AV1InvTxfm2dParam(DCT_ADST, TX_4X4, 2, 0.002),
AV1InvTxfm2dParam(ADST_ADST, TX_4X4, 2, 0.002),
AV1InvTxfm2dParam(DCT_DCT, TX_8X8, 2, 0.02),
AV1InvTxfm2dParam(ADST_DCT, TX_8X8, 2, 0.02),
AV1InvTxfm2dParam(DCT_ADST, TX_8X8, 2, 0.02),
AV1InvTxfm2dParam(ADST_ADST, TX_8X8, 2, 0.02),
AV1InvTxfm2dParam(DCT_DCT, TX_16X16, 2, 0.04),
AV1InvTxfm2dParam(ADST_DCT, TX_16X16, 2, 0.04),
AV1InvTxfm2dParam(DCT_ADST, TX_16X16, 2, 0.04),
AV1InvTxfm2dParam(ADST_ADST, TX_16X16, 2, 0.04),
AV1InvTxfm2dParam(DCT_DCT, TX_32X32, 4, 0.4),
AV1InvTxfm2dParam(ADST_DCT, TX_32X32, 4, 0.4),
AV1InvTxfm2dParam(DCT_ADST, TX_32X32, 4, 0.4),
AV1InvTxfm2dParam(ADST_ADST, TX_32X32, 4, 0.4)
};
INSTANTIATE_TEST_CASE_P(C, AV1InvTxfm2d,
::testing::ValuesIn(av1_inv_txfm2d_param));
#endif // CONFIG_AOM_HIGHBITDEPTH
} // namespace