383 строки
12 KiB
C++
383 строки
12 KiB
C++
/*
|
|
* Copyright (c) 2016 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "third_party/googletest/src/include/gtest/gtest.h"
|
|
|
|
#include "./aom_config.h"
|
|
|
|
#include "./aom_dsp_rtcd.h"
|
|
#include "./av1_rtcd.h"
|
|
|
|
#include "aom_dsp/aom_dsp_common.h"
|
|
|
|
#include "av1/common/enums.h"
|
|
|
|
#include "test/acm_random.h"
|
|
#include "test/function_equivalence_test.h"
|
|
#include "test/register_state_check.h"
|
|
|
|
#define WEDGE_WEIGHT_BITS 6
|
|
#define MAX_MASK_VALUE (1 << (WEDGE_WEIGHT_BITS))
|
|
|
|
using libaom_test::ACMRandom;
|
|
using libaom_test::FunctionEquivalenceTest;
|
|
|
|
namespace {
|
|
|
|
static const int16_t kInt13Max = (1 << 12) - 1;
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// av1_wedge_sse_from_residuals - functionality
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
class WedgeUtilsSSEFuncTest : public testing::Test {
|
|
protected:
|
|
WedgeUtilsSSEFuncTest() : rng_(ACMRandom::DeterministicSeed()) {}
|
|
|
|
static const int kIterations = 1000;
|
|
|
|
ACMRandom rng_;
|
|
};
|
|
|
|
static void equiv_blend_residuals(int16_t *r, const int16_t *r0,
|
|
const int16_t *r1, const uint8_t *m, int N) {
|
|
for (int i = 0; i < N; i++) {
|
|
const int32_t m0 = m[i];
|
|
const int32_t m1 = MAX_MASK_VALUE - m0;
|
|
const int16_t R = m0 * r0[i] + m1 * r1[i];
|
|
// Note that this rounding is designed to match the result
|
|
// you would get when actually blending the 2 predictors and computing
|
|
// the residuals.
|
|
r[i] = ROUND_POWER_OF_TWO(R - 1, WEDGE_WEIGHT_BITS);
|
|
}
|
|
}
|
|
|
|
static uint64_t equiv_sse_from_residuals(const int16_t *r0, const int16_t *r1,
|
|
const uint8_t *m, int N) {
|
|
uint64_t acc = 0;
|
|
for (int i = 0; i < N; i++) {
|
|
const int32_t m0 = m[i];
|
|
const int32_t m1 = MAX_MASK_VALUE - m0;
|
|
const int16_t R = m0 * r0[i] + m1 * r1[i];
|
|
const int32_t r = ROUND_POWER_OF_TWO(R - 1, WEDGE_WEIGHT_BITS);
|
|
acc += r * r;
|
|
}
|
|
return acc;
|
|
}
|
|
|
|
TEST_F(WedgeUtilsSSEFuncTest, ResidualBlendingEquiv) {
|
|
DECLARE_ALIGNED(32, uint8_t, s[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, uint8_t, p0[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, uint8_t, p1[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, uint8_t, p[MAX_SB_SQUARE]);
|
|
|
|
DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, int16_t, r_ref[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, int16_t, r_tst[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]);
|
|
|
|
for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) {
|
|
for (int i = 0; i < MAX_SB_SQUARE; ++i) {
|
|
s[i] = rng_.Rand8();
|
|
m[i] = rng_(MAX_MASK_VALUE + 1);
|
|
}
|
|
|
|
const int w = 1 << (rng_(MAX_SB_SIZE_LOG2 + 1 - 3) + 3);
|
|
const int h = 1 << (rng_(MAX_SB_SIZE_LOG2 + 1 - 3) + 3);
|
|
const int N = w * h;
|
|
|
|
for (int j = 0; j < N; j++) {
|
|
p0[j] = clamp(s[j] + rng_(33) - 16, 0, UINT8_MAX);
|
|
p1[j] = clamp(s[j] + rng_(33) - 16, 0, UINT8_MAX);
|
|
}
|
|
|
|
aom_blend_a64_mask(p, w, p0, w, p1, w, m, w, h, w, 0, 0);
|
|
|
|
aom_subtract_block(h, w, r0, w, s, w, p0, w);
|
|
aom_subtract_block(h, w, r1, w, s, w, p1, w);
|
|
|
|
aom_subtract_block(h, w, r_ref, w, s, w, p, w);
|
|
equiv_blend_residuals(r_tst, r0, r1, m, N);
|
|
|
|
for (int i = 0; i < N; ++i) ASSERT_EQ(r_ref[i], r_tst[i]);
|
|
|
|
uint64_t ref_sse = aom_sum_squares_i16(r_ref, N);
|
|
uint64_t tst_sse = equiv_sse_from_residuals(r0, r1, m, N);
|
|
|
|
ASSERT_EQ(ref_sse, tst_sse);
|
|
}
|
|
}
|
|
|
|
static uint64_t sse_from_residuals(const int16_t *r0, const int16_t *r1,
|
|
const uint8_t *m, int N) {
|
|
uint64_t acc = 0;
|
|
for (int i = 0; i < N; i++) {
|
|
const int32_t m0 = m[i];
|
|
const int32_t m1 = MAX_MASK_VALUE - m0;
|
|
const int32_t r = m0 * r0[i] + m1 * r1[i];
|
|
acc += r * r;
|
|
}
|
|
return ROUND_POWER_OF_TWO(acc, 2 * WEDGE_WEIGHT_BITS);
|
|
}
|
|
|
|
TEST_F(WedgeUtilsSSEFuncTest, ResidualBlendingMethod) {
|
|
DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, int16_t, d[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]);
|
|
|
|
for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) {
|
|
for (int i = 0; i < MAX_SB_SQUARE; ++i) {
|
|
r1[i] = rng_(2 * INT8_MAX - 2 * INT8_MIN + 1) + 2 * INT8_MIN;
|
|
d[i] = rng_(2 * INT8_MAX - 2 * INT8_MIN + 1) + 2 * INT8_MIN;
|
|
m[i] = rng_(MAX_MASK_VALUE + 1);
|
|
}
|
|
|
|
const int N = 64 * (rng_(MAX_SB_SQUARE / 64) + 1);
|
|
|
|
for (int i = 0; i < N; i++) r0[i] = r1[i] + d[i];
|
|
|
|
const uint64_t ref_res = sse_from_residuals(r0, r1, m, N);
|
|
const uint64_t tst_res = av1_wedge_sse_from_residuals(r1, d, m, N);
|
|
|
|
ASSERT_EQ(ref_res, tst_res);
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// av1_wedge_sse_from_residuals - optimizations
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
typedef uint64_t (*FSSE)(const int16_t *r1, const int16_t *d, const uint8_t *m,
|
|
int N);
|
|
typedef libaom_test::FuncParam<FSSE> TestFuncsFSSE;
|
|
|
|
class WedgeUtilsSSEOptTest : public FunctionEquivalenceTest<FSSE> {
|
|
protected:
|
|
static const int kIterations = 10000;
|
|
};
|
|
|
|
TEST_P(WedgeUtilsSSEOptTest, RandomValues) {
|
|
DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, int16_t, d[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]);
|
|
|
|
for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) {
|
|
for (int i = 0; i < MAX_SB_SQUARE; ++i) {
|
|
r1[i] = rng_(2 * kInt13Max + 1) - kInt13Max;
|
|
d[i] = rng_(2 * kInt13Max + 1) - kInt13Max;
|
|
m[i] = rng_(MAX_MASK_VALUE + 1);
|
|
}
|
|
|
|
const int N = 64 * (rng_(MAX_SB_SQUARE / 64) + 1);
|
|
|
|
const uint64_t ref_res = params_.ref_func(r1, d, m, N);
|
|
uint64_t tst_res;
|
|
ASM_REGISTER_STATE_CHECK(tst_res = params_.tst_func(r1, d, m, N));
|
|
|
|
ASSERT_EQ(ref_res, tst_res);
|
|
}
|
|
}
|
|
|
|
TEST_P(WedgeUtilsSSEOptTest, ExtremeValues) {
|
|
DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, int16_t, d[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]);
|
|
|
|
for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) {
|
|
if (rng_(2)) {
|
|
for (int i = 0; i < MAX_SB_SQUARE; ++i) r1[i] = kInt13Max;
|
|
} else {
|
|
for (int i = 0; i < MAX_SB_SQUARE; ++i) r1[i] = -kInt13Max;
|
|
}
|
|
|
|
if (rng_(2)) {
|
|
for (int i = 0; i < MAX_SB_SQUARE; ++i) d[i] = kInt13Max;
|
|
} else {
|
|
for (int i = 0; i < MAX_SB_SQUARE; ++i) d[i] = -kInt13Max;
|
|
}
|
|
|
|
for (int i = 0; i < MAX_SB_SQUARE; ++i) m[i] = MAX_MASK_VALUE;
|
|
|
|
const int N = 64 * (rng_(MAX_SB_SQUARE / 64) + 1);
|
|
|
|
const uint64_t ref_res = params_.ref_func(r1, d, m, N);
|
|
uint64_t tst_res;
|
|
ASM_REGISTER_STATE_CHECK(tst_res = params_.tst_func(r1, d, m, N));
|
|
|
|
ASSERT_EQ(ref_res, tst_res);
|
|
}
|
|
}
|
|
|
|
#if HAVE_SSE2
|
|
INSTANTIATE_TEST_CASE_P(
|
|
SSE2, WedgeUtilsSSEOptTest,
|
|
::testing::Values(TestFuncsFSSE(av1_wedge_sse_from_residuals_c,
|
|
av1_wedge_sse_from_residuals_sse2)));
|
|
|
|
#endif // HAVE_SSE2
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// av1_wedge_sign_from_residuals
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
typedef int (*FSign)(const int16_t *ds, const uint8_t *m, int N, int64_t limit);
|
|
typedef libaom_test::FuncParam<FSign> TestFuncsFSign;
|
|
|
|
class WedgeUtilsSignOptTest : public FunctionEquivalenceTest<FSign> {
|
|
protected:
|
|
static const int kIterations = 10000;
|
|
static const int kMaxSize = 8196; // Size limited by SIMD implementation.
|
|
};
|
|
|
|
TEST_P(WedgeUtilsSignOptTest, RandomValues) {
|
|
DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, int16_t, ds[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]);
|
|
|
|
for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) {
|
|
for (int i = 0; i < MAX_SB_SQUARE; ++i) {
|
|
r0[i] = rng_(2 * kInt13Max + 1) - kInt13Max;
|
|
r1[i] = rng_(2 * kInt13Max + 1) - kInt13Max;
|
|
m[i] = rng_(MAX_MASK_VALUE + 1);
|
|
}
|
|
|
|
const int maxN = AOMMIN(kMaxSize, MAX_SB_SQUARE);
|
|
const int N = 64 * (rng_(maxN / 64 - 1) + 1);
|
|
|
|
int64_t limit;
|
|
limit = (int64_t)aom_sum_squares_i16(r0, N);
|
|
limit -= (int64_t)aom_sum_squares_i16(r1, N);
|
|
limit *= (1 << WEDGE_WEIGHT_BITS) / 2;
|
|
|
|
for (int i = 0; i < N; i++)
|
|
ds[i] = clamp(r0[i] * r0[i] - r1[i] * r1[i], INT16_MIN, INT16_MAX);
|
|
|
|
const int ref_res = params_.ref_func(ds, m, N, limit);
|
|
int tst_res;
|
|
ASM_REGISTER_STATE_CHECK(tst_res = params_.tst_func(ds, m, N, limit));
|
|
|
|
ASSERT_EQ(ref_res, tst_res);
|
|
}
|
|
}
|
|
|
|
TEST_P(WedgeUtilsSignOptTest, ExtremeValues) {
|
|
DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, int16_t, ds[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]);
|
|
|
|
for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) {
|
|
switch (rng_(4)) {
|
|
case 0:
|
|
for (int i = 0; i < MAX_SB_SQUARE; ++i) {
|
|
r0[i] = 0;
|
|
r1[i] = kInt13Max;
|
|
}
|
|
break;
|
|
case 1:
|
|
for (int i = 0; i < MAX_SB_SQUARE; ++i) {
|
|
r0[i] = kInt13Max;
|
|
r1[i] = 0;
|
|
}
|
|
break;
|
|
case 2:
|
|
for (int i = 0; i < MAX_SB_SQUARE; ++i) {
|
|
r0[i] = 0;
|
|
r1[i] = -kInt13Max;
|
|
}
|
|
break;
|
|
default:
|
|
for (int i = 0; i < MAX_SB_SQUARE; ++i) {
|
|
r0[i] = -kInt13Max;
|
|
r1[i] = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
for (int i = 0; i < MAX_SB_SQUARE; ++i) m[i] = MAX_MASK_VALUE;
|
|
|
|
const int maxN = AOMMIN(kMaxSize, MAX_SB_SQUARE);
|
|
const int N = 64 * (rng_(maxN / 64 - 1) + 1);
|
|
|
|
int64_t limit;
|
|
limit = (int64_t)aom_sum_squares_i16(r0, N);
|
|
limit -= (int64_t)aom_sum_squares_i16(r1, N);
|
|
limit *= (1 << WEDGE_WEIGHT_BITS) / 2;
|
|
|
|
for (int i = 0; i < N; i++)
|
|
ds[i] = clamp(r0[i] * r0[i] - r1[i] * r1[i], INT16_MIN, INT16_MAX);
|
|
|
|
const int ref_res = params_.ref_func(ds, m, N, limit);
|
|
int tst_res;
|
|
ASM_REGISTER_STATE_CHECK(tst_res = params_.tst_func(ds, m, N, limit));
|
|
|
|
ASSERT_EQ(ref_res, tst_res);
|
|
}
|
|
}
|
|
|
|
#if HAVE_SSE2
|
|
|
|
INSTANTIATE_TEST_CASE_P(
|
|
SSE2, WedgeUtilsSignOptTest,
|
|
::testing::Values(TestFuncsFSign(av1_wedge_sign_from_residuals_c,
|
|
av1_wedge_sign_from_residuals_sse2)));
|
|
|
|
#endif // HAVE_SSE2
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// av1_wedge_compute_delta_squares
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
typedef void (*FDS)(int16_t *d, const int16_t *a, const int16_t *b, int N);
|
|
typedef libaom_test::FuncParam<FDS> TestFuncsFDS;
|
|
|
|
class WedgeUtilsDeltaSquaresOptTest : public FunctionEquivalenceTest<FDS> {
|
|
protected:
|
|
static const int kIterations = 10000;
|
|
};
|
|
|
|
TEST_P(WedgeUtilsDeltaSquaresOptTest, RandomValues) {
|
|
DECLARE_ALIGNED(32, int16_t, a[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, int16_t, b[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, int16_t, d_ref[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, int16_t, d_tst[MAX_SB_SQUARE]);
|
|
|
|
for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) {
|
|
for (int i = 0; i < MAX_SB_SQUARE; ++i) {
|
|
a[i] = rng_.Rand16();
|
|
b[i] = rng_(2 * INT16_MAX + 1) - INT16_MAX;
|
|
}
|
|
|
|
const int N = 64 * (rng_(MAX_SB_SQUARE / 64) + 1);
|
|
|
|
memset(&d_ref, INT16_MAX, sizeof(d_ref));
|
|
memset(&d_tst, INT16_MAX, sizeof(d_tst));
|
|
|
|
params_.ref_func(d_ref, a, b, N);
|
|
ASM_REGISTER_STATE_CHECK(params_.tst_func(d_tst, a, b, N));
|
|
|
|
for (int i = 0; i < MAX_SB_SQUARE; ++i) ASSERT_EQ(d_ref[i], d_tst[i]);
|
|
}
|
|
}
|
|
|
|
#if HAVE_SSE2
|
|
|
|
INSTANTIATE_TEST_CASE_P(
|
|
SSE2, WedgeUtilsDeltaSquaresOptTest,
|
|
::testing::Values(TestFuncsFDS(av1_wedge_compute_delta_squares_c,
|
|
av1_wedge_compute_delta_squares_sse2)));
|
|
|
|
#endif // HAVE_SSE2
|
|
|
|
} // namespace
|