138 строки
3.7 KiB
C++
138 строки
3.7 KiB
C++
/*
|
|
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "third_party/googletest/src/include/gtest/gtest.h"
|
|
|
|
extern "C" {
|
|
#include "vp9_rtcd.h"
|
|
}
|
|
|
|
#include "acm_random.h"
|
|
#include "vpx/vpx_integer.h"
|
|
|
|
using libvpx_test::ACMRandom;
|
|
|
|
namespace {
|
|
|
|
#ifdef _MSC_VER
|
|
static int round(double x) {
|
|
if(x < 0)
|
|
return (int)ceil(x - 0.5);
|
|
else
|
|
return (int)floor(x + 0.5);
|
|
}
|
|
#endif
|
|
|
|
void reference_dct_1d(double input[8], double output[8]) {
|
|
const double kPi = 3.141592653589793238462643383279502884;
|
|
const double kInvSqrt2 = 0.707106781186547524400844362104;
|
|
for (int k = 0; k < 8; k++) {
|
|
output[k] = 0.0;
|
|
for (int n = 0; n < 8; n++)
|
|
output[k] += input[n]*cos(kPi*(2*n+1)*k/16.0);
|
|
if (k == 0)
|
|
output[k] = output[k]*kInvSqrt2;
|
|
}
|
|
}
|
|
|
|
void reference_dct_2d(int16_t input[64], double output[64]) {
|
|
// First transform columns
|
|
for (int i = 0; i < 8; ++i) {
|
|
double temp_in[8], temp_out[8];
|
|
for (int j = 0; j < 8; ++j)
|
|
temp_in[j] = input[j*8 + i];
|
|
reference_dct_1d(temp_in, temp_out);
|
|
for (int j = 0; j < 8; ++j)
|
|
output[j*8 + i] = temp_out[j];
|
|
}
|
|
// Then transform rows
|
|
for (int i = 0; i < 8; ++i) {
|
|
double temp_in[8], temp_out[8];
|
|
for (int j = 0; j < 8; ++j)
|
|
temp_in[j] = output[j + i*8];
|
|
reference_dct_1d(temp_in, temp_out);
|
|
for (int j = 0; j < 8; ++j)
|
|
output[j + i*8] = temp_out[j];
|
|
}
|
|
// Scale by some magic number
|
|
for (int i = 0; i < 64; ++i)
|
|
output[i] *= 2;
|
|
}
|
|
|
|
void reference_idct_1d(double input[8], double output[8]) {
|
|
const double kPi = 3.141592653589793238462643383279502884;
|
|
const double kSqrt2 = 1.414213562373095048801688724209698;
|
|
for (int k = 0; k < 8; k++) {
|
|
output[k] = 0.0;
|
|
for (int n = 0; n < 8; n++) {
|
|
output[k] += input[n]*cos(kPi*(2*k+1)*n/16.0);
|
|
if (n == 0)
|
|
output[k] = output[k]/kSqrt2;
|
|
}
|
|
}
|
|
}
|
|
|
|
void reference_idct_2d(double input[64], int16_t output[64]) {
|
|
double out[64], out2[64];
|
|
// First transform rows
|
|
for (int i = 0; i < 8; ++i) {
|
|
double temp_in[8], temp_out[8];
|
|
for (int j = 0; j < 8; ++j)
|
|
temp_in[j] = input[j + i*8];
|
|
reference_idct_1d(temp_in, temp_out);
|
|
for (int j = 0; j < 8; ++j)
|
|
out[j + i*8] = temp_out[j];
|
|
}
|
|
// Then transform columns
|
|
for (int i = 0; i < 8; ++i) {
|
|
double temp_in[8], temp_out[8];
|
|
for (int j = 0; j < 8; ++j)
|
|
temp_in[j] = out[j*8 + i];
|
|
reference_idct_1d(temp_in, temp_out);
|
|
for (int j = 0; j < 8; ++j)
|
|
out2[j*8 + i] = temp_out[j];
|
|
}
|
|
for (int i = 0; i < 64; ++i)
|
|
output[i] = round(out2[i]/32);
|
|
}
|
|
|
|
TEST(VP9Idct8x8Test, AccuracyCheck) {
|
|
ACMRandom rnd(ACMRandom::DeterministicSeed());
|
|
const int count_test_block = 10000;
|
|
for (int i = 0; i < count_test_block; ++i) {
|
|
int16_t input[64], coeff[64];
|
|
int16_t output_c[64];
|
|
double output_r[64];
|
|
|
|
// Initialize a test block with input range [-255, 255].
|
|
for (int j = 0; j < 64; ++j)
|
|
input[j] = rnd.Rand8() - rnd.Rand8();
|
|
|
|
const int pitch = 16;
|
|
reference_dct_2d(input, output_r);
|
|
for (int j = 0; j < 64; ++j)
|
|
coeff[j] = round(output_r[j]);
|
|
vp9_short_idct8x8_c(coeff, output_c, pitch);
|
|
for (int j = 0; j < 64; ++j) {
|
|
const int diff = output_c[j] -input[j];
|
|
const int error = diff * diff;
|
|
EXPECT_GE(1, error)
|
|
<< "Error: 8x8 FDCT/IDCT has error " << error
|
|
<< " at index " << j;
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace
|