745 строки
28 KiB
C
745 строки
28 KiB
C
/*
|
|
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <limits.h>
|
|
|
|
#include "denoising.h"
|
|
|
|
#include "vp8/common/reconinter.h"
|
|
#include "vpx/vpx_integer.h"
|
|
#include "vpx_mem/vpx_mem.h"
|
|
#include "vp8_rtcd.h"
|
|
|
|
static const unsigned int NOISE_MOTION_THRESHOLD = 25 * 25;
|
|
/* SSE_DIFF_THRESHOLD is selected as ~95% confidence assuming
|
|
* var(noise) ~= 100.
|
|
*/
|
|
static const unsigned int SSE_DIFF_THRESHOLD = 16 * 16 * 20;
|
|
static const unsigned int SSE_THRESHOLD = 16 * 16 * 40;
|
|
static const unsigned int SSE_THRESHOLD_HIGH = 16 * 16 * 60;
|
|
|
|
/*
|
|
* The filter function was modified to reduce the computational complexity.
|
|
* Step 1:
|
|
* Instead of applying tap coefficients for each pixel, we calculated the
|
|
* pixel adjustments vs. pixel diff value ahead of time.
|
|
* adjustment = filtered_value - current_raw
|
|
* = (filter_coefficient * diff + 128) >> 8
|
|
* where
|
|
* filter_coefficient = (255 << 8) / (256 + ((absdiff * 330) >> 3));
|
|
* filter_coefficient += filter_coefficient /
|
|
* (3 + motion_magnitude_adjustment);
|
|
* filter_coefficient is clamped to 0 ~ 255.
|
|
*
|
|
* Step 2:
|
|
* The adjustment vs. diff curve becomes flat very quick when diff increases.
|
|
* This allowed us to use only several levels to approximate the curve without
|
|
* changing the filtering algorithm too much.
|
|
* The adjustments were further corrected by checking the motion magnitude.
|
|
* The levels used are:
|
|
* diff adjustment w/o motion correction adjustment w/ motion correction
|
|
* [-255, -16] -6 -7
|
|
* [-15, -8] -4 -5
|
|
* [-7, -4] -3 -4
|
|
* [-3, 3] diff diff
|
|
* [4, 7] 3 4
|
|
* [8, 15] 4 5
|
|
* [16, 255] 6 7
|
|
*/
|
|
|
|
int vp8_denoiser_filter_c(unsigned char *mc_running_avg_y, int mc_avg_y_stride,
|
|
unsigned char *running_avg_y, int avg_y_stride,
|
|
unsigned char *sig, int sig_stride,
|
|
unsigned int motion_magnitude,
|
|
int increase_denoising)
|
|
{
|
|
unsigned char *running_avg_y_start = running_avg_y;
|
|
unsigned char *sig_start = sig;
|
|
int sum_diff_thresh;
|
|
int r, c;
|
|
int sum_diff = 0;
|
|
int adj_val[3] = {3, 4, 6};
|
|
int shift_inc1 = 0;
|
|
int shift_inc2 = 1;
|
|
int col_sum[16] = {0, 0, 0, 0,
|
|
0, 0, 0, 0,
|
|
0, 0, 0, 0,
|
|
0, 0, 0, 0};
|
|
/* If motion_magnitude is small, making the denoiser more aggressive by
|
|
* increasing the adjustment for each level. Add another increment for
|
|
* blocks that are labeled for increase denoising. */
|
|
if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD)
|
|
{
|
|
if (increase_denoising) {
|
|
shift_inc1 = 1;
|
|
shift_inc2 = 2;
|
|
}
|
|
adj_val[0] += shift_inc2;
|
|
adj_val[1] += shift_inc2;
|
|
adj_val[2] += shift_inc2;
|
|
}
|
|
|
|
for (r = 0; r < 16; ++r)
|
|
{
|
|
for (c = 0; c < 16; ++c)
|
|
{
|
|
int diff = 0;
|
|
int adjustment = 0;
|
|
int absdiff = 0;
|
|
|
|
diff = mc_running_avg_y[c] - sig[c];
|
|
absdiff = abs(diff);
|
|
|
|
// When |diff| <= |3 + shift_inc1|, use pixel value from
|
|
// last denoised raw.
|
|
if (absdiff <= 3 + shift_inc1)
|
|
{
|
|
running_avg_y[c] = mc_running_avg_y[c];
|
|
col_sum[c] += diff;
|
|
}
|
|
else
|
|
{
|
|
if (absdiff >= 4 + shift_inc1 && absdiff <= 7)
|
|
adjustment = adj_val[0];
|
|
else if (absdiff >= 8 && absdiff <= 15)
|
|
adjustment = adj_val[1];
|
|
else
|
|
adjustment = adj_val[2];
|
|
|
|
if (diff > 0)
|
|
{
|
|
if ((sig[c] + adjustment) > 255)
|
|
running_avg_y[c] = 255;
|
|
else
|
|
running_avg_y[c] = sig[c] + adjustment;
|
|
|
|
col_sum[c] += adjustment;
|
|
}
|
|
else
|
|
{
|
|
if ((sig[c] - adjustment) < 0)
|
|
running_avg_y[c] = 0;
|
|
else
|
|
running_avg_y[c] = sig[c] - adjustment;
|
|
|
|
col_sum[c] -= adjustment;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Update pointers for next iteration. */
|
|
sig += sig_stride;
|
|
mc_running_avg_y += mc_avg_y_stride;
|
|
running_avg_y += avg_y_stride;
|
|
}
|
|
|
|
for (c = 0; c < 16; ++c) {
|
|
// Below we clip the value in the same way which SSE code use.
|
|
// When adopting aggressive denoiser, the adj_val for each pixel
|
|
// could be at most 8 (this is current max adjustment of the map).
|
|
// In SSE code, we calculate the sum of adj_val for
|
|
// the columns, so the sum could be upto 128(16 rows). However,
|
|
// the range of the value is -128 ~ 127 in SSE code, that's why
|
|
// we do this change in C code.
|
|
// We don't do this for UV denoiser, since there are only 8 rows,
|
|
// and max adjustments <= 8, so the sum of the columns will not
|
|
// exceed 64.
|
|
if (col_sum[c] >= 128) {
|
|
col_sum[c] = 127;
|
|
}
|
|
sum_diff += col_sum[c];
|
|
}
|
|
|
|
sum_diff_thresh= SUM_DIFF_THRESHOLD;
|
|
if (increase_denoising) sum_diff_thresh = SUM_DIFF_THRESHOLD_HIGH;
|
|
if (abs(sum_diff) > sum_diff_thresh) {
|
|
// Before returning to copy the block (i.e., apply no denoising), check
|
|
// if we can still apply some (weaker) temporal filtering to this block,
|
|
// that would otherwise not be denoised at all. Simplest is to apply
|
|
// an additional adjustment to running_avg_y to bring it closer to sig.
|
|
// The adjustment is capped by a maximum delta, and chosen such that
|
|
// in most cases the resulting sum_diff will be within the
|
|
// accceptable range given by sum_diff_thresh.
|
|
|
|
// The delta is set by the excess of absolute pixel diff over threshold.
|
|
int delta = ((abs(sum_diff) - sum_diff_thresh) >> 8) + 1;
|
|
// Only apply the adjustment for max delta up to 3.
|
|
if (delta < 4) {
|
|
sig -= sig_stride * 16;
|
|
mc_running_avg_y -= mc_avg_y_stride * 16;
|
|
running_avg_y -= avg_y_stride * 16;
|
|
for (r = 0; r < 16; ++r) {
|
|
for (c = 0; c < 16; ++c) {
|
|
int diff = mc_running_avg_y[c] - sig[c];
|
|
int adjustment = abs(diff);
|
|
if (adjustment > delta)
|
|
adjustment = delta;
|
|
if (diff > 0) {
|
|
// Bring denoised signal down.
|
|
if (running_avg_y[c] - adjustment < 0)
|
|
running_avg_y[c] = 0;
|
|
else
|
|
running_avg_y[c] = running_avg_y[c] - adjustment;
|
|
col_sum[c] -= adjustment;
|
|
} else if (diff < 0) {
|
|
// Bring denoised signal up.
|
|
if (running_avg_y[c] + adjustment > 255)
|
|
running_avg_y[c] = 255;
|
|
else
|
|
running_avg_y[c] = running_avg_y[c] + adjustment;
|
|
col_sum[c] += adjustment;
|
|
}
|
|
}
|
|
// TODO(marpan): Check here if abs(sum_diff) has gone below the
|
|
// threshold sum_diff_thresh, and if so, we can exit the row loop.
|
|
sig += sig_stride;
|
|
mc_running_avg_y += mc_avg_y_stride;
|
|
running_avg_y += avg_y_stride;
|
|
}
|
|
|
|
sum_diff = 0;
|
|
for (c = 0; c < 16; ++c) {
|
|
if (col_sum[c] >= 128) {
|
|
col_sum[c] = 127;
|
|
}
|
|
sum_diff += col_sum[c];
|
|
}
|
|
|
|
if (abs(sum_diff) > sum_diff_thresh)
|
|
return COPY_BLOCK;
|
|
} else {
|
|
return COPY_BLOCK;
|
|
}
|
|
}
|
|
|
|
vp8_copy_mem16x16(running_avg_y_start, avg_y_stride, sig_start, sig_stride);
|
|
return FILTER_BLOCK;
|
|
}
|
|
|
|
int vp8_denoiser_filter_uv_c(unsigned char *mc_running_avg_uv,
|
|
int mc_avg_uv_stride,
|
|
unsigned char *running_avg_uv,
|
|
int avg_uv_stride,
|
|
unsigned char *sig,
|
|
int sig_stride,
|
|
unsigned int motion_magnitude,
|
|
int increase_denoising) {
|
|
unsigned char *running_avg_uv_start = running_avg_uv;
|
|
unsigned char *sig_start = sig;
|
|
int sum_diff_thresh;
|
|
int r, c;
|
|
int sum_diff = 0;
|
|
int sum_block = 0;
|
|
int adj_val[3] = {3, 4, 6};
|
|
int shift_inc1 = 0;
|
|
int shift_inc2 = 1;
|
|
/* If motion_magnitude is small, making the denoiser more aggressive by
|
|
* increasing the adjustment for each level. Add another increment for
|
|
* blocks that are labeled for increase denoising. */
|
|
if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD_UV) {
|
|
if (increase_denoising) {
|
|
shift_inc1 = 1;
|
|
shift_inc2 = 2;
|
|
}
|
|
adj_val[0] += shift_inc2;
|
|
adj_val[1] += shift_inc2;
|
|
adj_val[2] += shift_inc2;
|
|
}
|
|
|
|
// Avoid denoising color signal if its close to average level.
|
|
for (r = 0; r < 8; ++r) {
|
|
for (c = 0; c < 8; ++c) {
|
|
sum_block += sig[c];
|
|
}
|
|
sig += sig_stride;
|
|
}
|
|
if (abs(sum_block - (128 * 8 * 8)) < SUM_DIFF_FROM_AVG_THRESH_UV) {
|
|
return COPY_BLOCK;
|
|
}
|
|
|
|
sig -= sig_stride * 8;
|
|
for (r = 0; r < 8; ++r) {
|
|
for (c = 0; c < 8; ++c) {
|
|
int diff = 0;
|
|
int adjustment = 0;
|
|
int absdiff = 0;
|
|
|
|
diff = mc_running_avg_uv[c] - sig[c];
|
|
absdiff = abs(diff);
|
|
|
|
// When |diff| <= |3 + shift_inc1|, use pixel value from
|
|
// last denoised raw.
|
|
if (absdiff <= 3 + shift_inc1) {
|
|
running_avg_uv[c] = mc_running_avg_uv[c];
|
|
sum_diff += diff;
|
|
} else {
|
|
if (absdiff >= 4 && absdiff <= 7)
|
|
adjustment = adj_val[0];
|
|
else if (absdiff >= 8 && absdiff <= 15)
|
|
adjustment = adj_val[1];
|
|
else
|
|
adjustment = adj_val[2];
|
|
if (diff > 0) {
|
|
if ((sig[c] + adjustment) > 255)
|
|
running_avg_uv[c] = 255;
|
|
else
|
|
running_avg_uv[c] = sig[c] + adjustment;
|
|
sum_diff += adjustment;
|
|
} else {
|
|
if ((sig[c] - adjustment) < 0)
|
|
running_avg_uv[c] = 0;
|
|
else
|
|
running_avg_uv[c] = sig[c] - adjustment;
|
|
sum_diff -= adjustment;
|
|
}
|
|
}
|
|
}
|
|
/* Update pointers for next iteration. */
|
|
sig += sig_stride;
|
|
mc_running_avg_uv += mc_avg_uv_stride;
|
|
running_avg_uv += avg_uv_stride;
|
|
}
|
|
|
|
sum_diff_thresh= SUM_DIFF_THRESHOLD_UV;
|
|
if (increase_denoising) sum_diff_thresh = SUM_DIFF_THRESHOLD_HIGH_UV;
|
|
if (abs(sum_diff) > sum_diff_thresh) {
|
|
// Before returning to copy the block (i.e., apply no denoising), check
|
|
// if we can still apply some (weaker) temporal filtering to this block,
|
|
// that would otherwise not be denoised at all. Simplest is to apply
|
|
// an additional adjustment to running_avg_y to bring it closer to sig.
|
|
// The adjustment is capped by a maximum delta, and chosen such that
|
|
// in most cases the resulting sum_diff will be within the
|
|
// accceptable range given by sum_diff_thresh.
|
|
|
|
// The delta is set by the excess of absolute pixel diff over threshold.
|
|
int delta = ((abs(sum_diff) - sum_diff_thresh) >> 8) + 1;
|
|
// Only apply the adjustment for max delta up to 3.
|
|
if (delta < 4) {
|
|
sig -= sig_stride * 8;
|
|
mc_running_avg_uv -= mc_avg_uv_stride * 8;
|
|
running_avg_uv -= avg_uv_stride * 8;
|
|
for (r = 0; r < 8; ++r) {
|
|
for (c = 0; c < 8; ++c) {
|
|
int diff = mc_running_avg_uv[c] - sig[c];
|
|
int adjustment = abs(diff);
|
|
if (adjustment > delta)
|
|
adjustment = delta;
|
|
if (diff > 0) {
|
|
// Bring denoised signal down.
|
|
if (running_avg_uv[c] - adjustment < 0)
|
|
running_avg_uv[c] = 0;
|
|
else
|
|
running_avg_uv[c] = running_avg_uv[c] - adjustment;
|
|
sum_diff -= adjustment;
|
|
} else if (diff < 0) {
|
|
// Bring denoised signal up.
|
|
if (running_avg_uv[c] + adjustment > 255)
|
|
running_avg_uv[c] = 255;
|
|
else
|
|
running_avg_uv[c] = running_avg_uv[c] + adjustment;
|
|
sum_diff += adjustment;
|
|
}
|
|
}
|
|
// TODO(marpan): Check here if abs(sum_diff) has gone below the
|
|
// threshold sum_diff_thresh, and if so, we can exit the row loop.
|
|
sig += sig_stride;
|
|
mc_running_avg_uv += mc_avg_uv_stride;
|
|
running_avg_uv += avg_uv_stride;
|
|
}
|
|
if (abs(sum_diff) > sum_diff_thresh)
|
|
return COPY_BLOCK;
|
|
} else {
|
|
return COPY_BLOCK;
|
|
}
|
|
}
|
|
|
|
vp8_copy_mem8x8(running_avg_uv_start, avg_uv_stride, sig_start,
|
|
sig_stride);
|
|
return FILTER_BLOCK;
|
|
}
|
|
|
|
void vp8_denoiser_set_parameters(VP8_DENOISER *denoiser, int mode) {
|
|
assert(mode > 0); // Denoiser is allocated only if mode > 0.
|
|
if (mode == 1) {
|
|
denoiser->denoiser_mode = kDenoiserOnYOnly;
|
|
} else if (mode == 2) {
|
|
denoiser->denoiser_mode = kDenoiserOnYUV;
|
|
} else if (mode == 3) {
|
|
denoiser->denoiser_mode = kDenoiserOnYUVAggressive;
|
|
} else {
|
|
denoiser->denoiser_mode = kDenoiserOnYUV;
|
|
}
|
|
if (denoiser->denoiser_mode != kDenoiserOnYUVAggressive) {
|
|
denoiser->denoise_pars.scale_sse_thresh = 1;
|
|
denoiser->denoise_pars.scale_motion_thresh = 8;
|
|
denoiser->denoise_pars.scale_increase_filter = 0;
|
|
denoiser->denoise_pars.denoise_mv_bias = 95;
|
|
denoiser->denoise_pars.pickmode_mv_bias = 100;
|
|
denoiser->denoise_pars.qp_thresh = 0;
|
|
denoiser->denoise_pars.consec_zerolast = UINT_MAX;
|
|
denoiser->denoise_pars.spatial_blur = 0;
|
|
} else {
|
|
denoiser->denoise_pars.scale_sse_thresh = 2;
|
|
denoiser->denoise_pars.scale_motion_thresh = 16;
|
|
denoiser->denoise_pars.scale_increase_filter = 1;
|
|
denoiser->denoise_pars.denoise_mv_bias = 60;
|
|
denoiser->denoise_pars.pickmode_mv_bias = 75;
|
|
denoiser->denoise_pars.qp_thresh = 80;
|
|
denoiser->denoise_pars.consec_zerolast = 15;
|
|
denoiser->denoise_pars.spatial_blur = 0;
|
|
}
|
|
}
|
|
|
|
int vp8_denoiser_allocate(VP8_DENOISER *denoiser, int width, int height,
|
|
int num_mb_rows, int num_mb_cols, int mode)
|
|
{
|
|
int i;
|
|
assert(denoiser);
|
|
denoiser->num_mb_cols = num_mb_cols;
|
|
|
|
for (i = 0; i < MAX_REF_FRAMES; i++)
|
|
{
|
|
denoiser->yv12_running_avg[i].flags = 0;
|
|
|
|
if (vp8_yv12_alloc_frame_buffer(&(denoiser->yv12_running_avg[i]), width,
|
|
height, VP8BORDERINPIXELS)
|
|
< 0)
|
|
{
|
|
vp8_denoiser_free(denoiser);
|
|
return 1;
|
|
}
|
|
memset(denoiser->yv12_running_avg[i].buffer_alloc, 0,
|
|
denoiser->yv12_running_avg[i].frame_size);
|
|
|
|
}
|
|
denoiser->yv12_mc_running_avg.flags = 0;
|
|
|
|
if (vp8_yv12_alloc_frame_buffer(&(denoiser->yv12_mc_running_avg), width,
|
|
height, VP8BORDERINPIXELS) < 0)
|
|
{
|
|
vp8_denoiser_free(denoiser);
|
|
return 1;
|
|
}
|
|
|
|
memset(denoiser->yv12_mc_running_avg.buffer_alloc, 0,
|
|
denoiser->yv12_mc_running_avg.frame_size);
|
|
|
|
if (vp8_yv12_alloc_frame_buffer(&denoiser->yv12_last_source, width,
|
|
height, VP8BORDERINPIXELS) < 0) {
|
|
vp8_denoiser_free(denoiser);
|
|
return 1;
|
|
}
|
|
memset(denoiser->yv12_last_source.buffer_alloc, 0,
|
|
denoiser->yv12_last_source.frame_size);
|
|
|
|
denoiser->denoise_state = vpx_calloc((num_mb_rows * num_mb_cols), 1);
|
|
memset(denoiser->denoise_state, 0, (num_mb_rows * num_mb_cols));
|
|
vp8_denoiser_set_parameters(denoiser, mode);
|
|
denoiser->nmse_source_diff = 0;
|
|
denoiser->nmse_source_diff_count = 0;
|
|
denoiser->qp_avg = 0;
|
|
// QP threshold below which we can go up to aggressive mode.
|
|
denoiser->qp_threshold_up = 80;
|
|
// QP threshold above which we can go back down to normal mode.
|
|
// For now keep this second threshold high, so not used currently.
|
|
denoiser->qp_threshold_down = 128;
|
|
// Bitrate thresholds and noise metric (nmse) thresholds for switching to
|
|
// aggressive mode.
|
|
// TODO(marpan): Adjust thresholds, including effect on resolution.
|
|
denoiser->bitrate_threshold = 400000; // (bits/sec).
|
|
denoiser->threshold_aggressive_mode = 80;
|
|
if (width * height > 1280 * 720) {
|
|
denoiser->bitrate_threshold = 3000000;
|
|
denoiser->threshold_aggressive_mode = 200;
|
|
} else if (width * height > 960 * 540) {
|
|
denoiser->bitrate_threshold = 1200000;
|
|
denoiser->threshold_aggressive_mode = 120;
|
|
} else if (width * height > 640 * 480) {
|
|
denoiser->bitrate_threshold = 600000;
|
|
denoiser->threshold_aggressive_mode = 100;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
void vp8_denoiser_free(VP8_DENOISER *denoiser)
|
|
{
|
|
int i;
|
|
assert(denoiser);
|
|
|
|
for (i = 0; i < MAX_REF_FRAMES ; i++)
|
|
{
|
|
vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_running_avg[i]);
|
|
}
|
|
vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_mc_running_avg);
|
|
vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_last_source);
|
|
vpx_free(denoiser->denoise_state);
|
|
}
|
|
|
|
void vp8_denoiser_denoise_mb(VP8_DENOISER *denoiser,
|
|
MACROBLOCK *x,
|
|
unsigned int best_sse,
|
|
unsigned int zero_mv_sse,
|
|
int recon_yoffset,
|
|
int recon_uvoffset,
|
|
loop_filter_info_n *lfi_n,
|
|
int mb_row,
|
|
int mb_col,
|
|
int block_index)
|
|
|
|
{
|
|
int mv_row;
|
|
int mv_col;
|
|
unsigned int motion_threshold;
|
|
unsigned int motion_magnitude2;
|
|
unsigned int sse_thresh;
|
|
int sse_diff_thresh = 0;
|
|
// Spatial loop filter: only applied selectively based on
|
|
// temporal filter state of block relative to top/left neighbors.
|
|
int apply_spatial_loop_filter = 1;
|
|
MV_REFERENCE_FRAME frame = x->best_reference_frame;
|
|
MV_REFERENCE_FRAME zero_frame = x->best_zeromv_reference_frame;
|
|
|
|
enum vp8_denoiser_decision decision = FILTER_BLOCK;
|
|
enum vp8_denoiser_decision decision_u = COPY_BLOCK;
|
|
enum vp8_denoiser_decision decision_v = COPY_BLOCK;
|
|
|
|
if (zero_frame)
|
|
{
|
|
YV12_BUFFER_CONFIG *src = &denoiser->yv12_running_avg[frame];
|
|
YV12_BUFFER_CONFIG *dst = &denoiser->yv12_mc_running_avg;
|
|
YV12_BUFFER_CONFIG saved_pre,saved_dst;
|
|
MB_MODE_INFO saved_mbmi;
|
|
MACROBLOCKD *filter_xd = &x->e_mbd;
|
|
MB_MODE_INFO *mbmi = &filter_xd->mode_info_context->mbmi;
|
|
int sse_diff = 0;
|
|
// Bias on zero motion vector sse.
|
|
const int zero_bias = denoiser->denoise_pars.denoise_mv_bias;
|
|
zero_mv_sse = (unsigned int)((int64_t)zero_mv_sse * zero_bias / 100);
|
|
sse_diff = zero_mv_sse - best_sse;
|
|
|
|
saved_mbmi = *mbmi;
|
|
|
|
/* Use the best MV for the compensation. */
|
|
mbmi->ref_frame = x->best_reference_frame;
|
|
mbmi->mode = x->best_sse_inter_mode;
|
|
mbmi->mv = x->best_sse_mv;
|
|
mbmi->need_to_clamp_mvs = x->need_to_clamp_best_mvs;
|
|
mv_col = x->best_sse_mv.as_mv.col;
|
|
mv_row = x->best_sse_mv.as_mv.row;
|
|
// Bias to zero_mv if small amount of motion.
|
|
// Note sse_diff_thresh is intialized to zero, so this ensures
|
|
// we will always choose zero_mv for denoising if
|
|
// zero_mv_see <= best_sse (i.e., sse_diff <= 0).
|
|
if ((unsigned int)(mv_row * mv_row + mv_col * mv_col)
|
|
<= NOISE_MOTION_THRESHOLD)
|
|
sse_diff_thresh = (int)SSE_DIFF_THRESHOLD;
|
|
|
|
if (frame == INTRA_FRAME ||
|
|
sse_diff <= sse_diff_thresh)
|
|
{
|
|
/*
|
|
* Handle intra blocks as referring to last frame with zero motion
|
|
* and let the absolute pixel difference affect the filter factor.
|
|
* Also consider small amount of motion as being random walk due
|
|
* to noise, if it doesn't mean that we get a much bigger error.
|
|
* Note that any changes to the mode info only affects the
|
|
* denoising.
|
|
*/
|
|
x->denoise_zeromv = 1;
|
|
mbmi->ref_frame =
|
|
x->best_zeromv_reference_frame;
|
|
|
|
src = &denoiser->yv12_running_avg[zero_frame];
|
|
|
|
mbmi->mode = ZEROMV;
|
|
mbmi->mv.as_int = 0;
|
|
x->best_sse_inter_mode = ZEROMV;
|
|
x->best_sse_mv.as_int = 0;
|
|
best_sse = zero_mv_sse;
|
|
}
|
|
|
|
saved_pre = filter_xd->pre;
|
|
saved_dst = filter_xd->dst;
|
|
|
|
/* Compensate the running average. */
|
|
filter_xd->pre.y_buffer = src->y_buffer + recon_yoffset;
|
|
filter_xd->pre.u_buffer = src->u_buffer + recon_uvoffset;
|
|
filter_xd->pre.v_buffer = src->v_buffer + recon_uvoffset;
|
|
/* Write the compensated running average to the destination buffer. */
|
|
filter_xd->dst.y_buffer = dst->y_buffer + recon_yoffset;
|
|
filter_xd->dst.u_buffer = dst->u_buffer + recon_uvoffset;
|
|
filter_xd->dst.v_buffer = dst->v_buffer + recon_uvoffset;
|
|
|
|
if (!x->skip)
|
|
{
|
|
vp8_build_inter_predictors_mb(filter_xd);
|
|
}
|
|
else
|
|
{
|
|
vp8_build_inter16x16_predictors_mb(filter_xd,
|
|
filter_xd->dst.y_buffer,
|
|
filter_xd->dst.u_buffer,
|
|
filter_xd->dst.v_buffer,
|
|
filter_xd->dst.y_stride,
|
|
filter_xd->dst.uv_stride);
|
|
}
|
|
filter_xd->pre = saved_pre;
|
|
filter_xd->dst = saved_dst;
|
|
*mbmi = saved_mbmi;
|
|
|
|
}
|
|
|
|
mv_row = x->best_sse_mv.as_mv.row;
|
|
mv_col = x->best_sse_mv.as_mv.col;
|
|
motion_magnitude2 = mv_row * mv_row + mv_col * mv_col;
|
|
motion_threshold = denoiser->denoise_pars.scale_motion_thresh *
|
|
NOISE_MOTION_THRESHOLD;
|
|
|
|
// If block is considered to be skin area, lower the motion threshold.
|
|
// In current version set threshold = 0, so only denoise zero mv on skin.
|
|
if (x->is_skin)
|
|
motion_threshold = 0;
|
|
|
|
if (motion_magnitude2 <
|
|
denoiser->denoise_pars.scale_increase_filter * NOISE_MOTION_THRESHOLD)
|
|
x->increase_denoising = 1;
|
|
|
|
sse_thresh = denoiser->denoise_pars.scale_sse_thresh * SSE_THRESHOLD;
|
|
if (x->increase_denoising)
|
|
sse_thresh = denoiser->denoise_pars.scale_sse_thresh * SSE_THRESHOLD_HIGH;
|
|
|
|
if (best_sse > sse_thresh || motion_magnitude2 > motion_threshold)
|
|
decision = COPY_BLOCK;
|
|
|
|
if (decision == FILTER_BLOCK)
|
|
{
|
|
unsigned char *mc_running_avg_y =
|
|
denoiser->yv12_mc_running_avg.y_buffer + recon_yoffset;
|
|
int mc_avg_y_stride = denoiser->yv12_mc_running_avg.y_stride;
|
|
unsigned char *running_avg_y =
|
|
denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset;
|
|
int avg_y_stride = denoiser->yv12_running_avg[INTRA_FRAME].y_stride;
|
|
|
|
/* Filter. */
|
|
decision = vp8_denoiser_filter(mc_running_avg_y, mc_avg_y_stride,
|
|
running_avg_y, avg_y_stride,
|
|
x->thismb, 16, motion_magnitude2,
|
|
x->increase_denoising);
|
|
denoiser->denoise_state[block_index] = motion_magnitude2 > 0 ?
|
|
kFilterNonZeroMV : kFilterZeroMV;
|
|
// Only denoise UV for zero motion, and if y channel was denoised.
|
|
if (denoiser->denoiser_mode != kDenoiserOnYOnly &&
|
|
motion_magnitude2 == 0 &&
|
|
decision == FILTER_BLOCK) {
|
|
unsigned char *mc_running_avg_u =
|
|
denoiser->yv12_mc_running_avg.u_buffer + recon_uvoffset;
|
|
unsigned char *running_avg_u =
|
|
denoiser->yv12_running_avg[INTRA_FRAME].u_buffer + recon_uvoffset;
|
|
unsigned char *mc_running_avg_v =
|
|
denoiser->yv12_mc_running_avg.v_buffer + recon_uvoffset;
|
|
unsigned char *running_avg_v =
|
|
denoiser->yv12_running_avg[INTRA_FRAME].v_buffer + recon_uvoffset;
|
|
int mc_avg_uv_stride = denoiser->yv12_mc_running_avg.uv_stride;
|
|
int avg_uv_stride = denoiser->yv12_running_avg[INTRA_FRAME].uv_stride;
|
|
int signal_stride = x->block[16].src_stride;
|
|
decision_u =
|
|
vp8_denoiser_filter_uv(mc_running_avg_u, mc_avg_uv_stride,
|
|
running_avg_u, avg_uv_stride,
|
|
x->block[16].src + *x->block[16].base_src,
|
|
signal_stride, motion_magnitude2, 0);
|
|
decision_v =
|
|
vp8_denoiser_filter_uv(mc_running_avg_v, mc_avg_uv_stride,
|
|
running_avg_v, avg_uv_stride,
|
|
x->block[20].src + *x->block[20].base_src,
|
|
signal_stride, motion_magnitude2, 0);
|
|
}
|
|
}
|
|
if (decision == COPY_BLOCK)
|
|
{
|
|
/* No filtering of this block; it differs too much from the predictor,
|
|
* or the motion vector magnitude is considered too big.
|
|
*/
|
|
x->denoise_zeromv = 0;
|
|
vp8_copy_mem16x16(
|
|
x->thismb, 16,
|
|
denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset,
|
|
denoiser->yv12_running_avg[INTRA_FRAME].y_stride);
|
|
denoiser->denoise_state[block_index] = kNoFilter;
|
|
}
|
|
if (denoiser->denoiser_mode != kDenoiserOnYOnly) {
|
|
if (decision_u == COPY_BLOCK) {
|
|
vp8_copy_mem8x8(
|
|
x->block[16].src + *x->block[16].base_src, x->block[16].src_stride,
|
|
denoiser->yv12_running_avg[INTRA_FRAME].u_buffer + recon_uvoffset,
|
|
denoiser->yv12_running_avg[INTRA_FRAME].uv_stride);
|
|
}
|
|
if (decision_v == COPY_BLOCK) {
|
|
vp8_copy_mem8x8(
|
|
x->block[20].src + *x->block[20].base_src, x->block[16].src_stride,
|
|
denoiser->yv12_running_avg[INTRA_FRAME].v_buffer + recon_uvoffset,
|
|
denoiser->yv12_running_avg[INTRA_FRAME].uv_stride);
|
|
}
|
|
}
|
|
// Option to selectively deblock the denoised signal, for y channel only.
|
|
if (apply_spatial_loop_filter) {
|
|
loop_filter_info lfi;
|
|
int apply_filter_col = 0;
|
|
int apply_filter_row = 0;
|
|
int apply_filter = 0;
|
|
int y_stride = denoiser->yv12_running_avg[INTRA_FRAME].y_stride;
|
|
int uv_stride =denoiser->yv12_running_avg[INTRA_FRAME].uv_stride;
|
|
|
|
// Fix filter level to some nominal value for now.
|
|
int filter_level = 48;
|
|
|
|
int hev_index = lfi_n->hev_thr_lut[INTER_FRAME][filter_level];
|
|
lfi.mblim = lfi_n->mblim[filter_level];
|
|
lfi.blim = lfi_n->blim[filter_level];
|
|
lfi.lim = lfi_n->lim[filter_level];
|
|
lfi.hev_thr = lfi_n->hev_thr[hev_index];
|
|
|
|
// Apply filter if there is a difference in the denoiser filter state
|
|
// between the current and left/top block, or if non-zero motion vector
|
|
// is used for the motion-compensated filtering.
|
|
if (mb_col > 0) {
|
|
apply_filter_col = !((denoiser->denoise_state[block_index] ==
|
|
denoiser->denoise_state[block_index - 1]) &&
|
|
denoiser->denoise_state[block_index] != kFilterNonZeroMV);
|
|
if (apply_filter_col) {
|
|
// Filter left vertical edge.
|
|
apply_filter = 1;
|
|
vp8_loop_filter_mbv(
|
|
denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset,
|
|
NULL, NULL, y_stride, uv_stride, &lfi);
|
|
}
|
|
}
|
|
if (mb_row > 0) {
|
|
apply_filter_row = !((denoiser->denoise_state[block_index] ==
|
|
denoiser->denoise_state[block_index - denoiser->num_mb_cols]) &&
|
|
denoiser->denoise_state[block_index] != kFilterNonZeroMV);
|
|
if (apply_filter_row) {
|
|
// Filter top horizontal edge.
|
|
apply_filter = 1;
|
|
vp8_loop_filter_mbh(
|
|
denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset,
|
|
NULL, NULL, y_stride, uv_stride, &lfi);
|
|
}
|
|
}
|
|
if (apply_filter) {
|
|
// Update the signal block |x|. Pixel changes are only to top and/or
|
|
// left boundary pixels: can we avoid full block copy here.
|
|
vp8_copy_mem16x16(
|
|
denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset,
|
|
y_stride, x->thismb, 16);
|
|
}
|
|
}
|
|
}
|