aom/vp10/common/entropy.c

1098 строки
45 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vp10/common/entropy.h"
#include "vp10/common/blockd.h"
#include "vp10/common/onyxc_int.h"
#include "vp10/common/entropymode.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx/vpx_integer.h"
// Unconstrained Node Tree
const vpx_tree_index vp10_coef_con_tree[TREE_SIZE(ENTROPY_TOKENS)] = {
2, 6, // 0 = LOW_VAL
-TWO_TOKEN, 4, // 1 = TWO
-THREE_TOKEN, -FOUR_TOKEN, // 2 = THREE
8, 10, // 3 = HIGH_LOW
-CATEGORY1_TOKEN, -CATEGORY2_TOKEN, // 4 = CAT_ONE
12, 14, // 5 = CAT_THREEFOUR
-CATEGORY3_TOKEN, -CATEGORY4_TOKEN, // 6 = CAT_THREE
-CATEGORY5_TOKEN, -CATEGORY6_TOKEN // 7 = CAT_FIVE
};
const vpx_prob vp10_cat1_prob[] = { 159 };
const vpx_prob vp10_cat2_prob[] = { 165, 145 };
const vpx_prob vp10_cat3_prob[] = { 173, 148, 140 };
const vpx_prob vp10_cat4_prob[] = { 176, 155, 140, 135 };
const vpx_prob vp10_cat5_prob[] = { 180, 157, 141, 134, 130 };
const vpx_prob vp10_cat6_prob[] = {
254, 254, 254, 252, 249, 243, 230, 196, 177, 153, 140, 133, 130, 129
};
#if CONFIG_VP9_HIGHBITDEPTH
const vpx_prob vp10_cat1_prob_high10[] = { 159 };
const vpx_prob vp10_cat2_prob_high10[] = { 165, 145 };
const vpx_prob vp10_cat3_prob_high10[] = { 173, 148, 140 };
const vpx_prob vp10_cat4_prob_high10[] = { 176, 155, 140, 135 };
const vpx_prob vp10_cat5_prob_high10[] = { 180, 157, 141, 134, 130 };
const vpx_prob vp10_cat6_prob_high10[] = {
255, 255, 254, 254, 254, 252, 249, 243,
230, 196, 177, 153, 140, 133, 130, 129
};
const vpx_prob vp10_cat1_prob_high12[] = { 159 };
const vpx_prob vp10_cat2_prob_high12[] = { 165, 145 };
const vpx_prob vp10_cat3_prob_high12[] = { 173, 148, 140 };
const vpx_prob vp10_cat4_prob_high12[] = { 176, 155, 140, 135 };
const vpx_prob vp10_cat5_prob_high12[] = { 180, 157, 141, 134, 130 };
const vpx_prob vp10_cat6_prob_high12[] = {
255, 255, 255, 255, 254, 254, 254, 252, 249,
243, 230, 196, 177, 153, 140, 133, 130, 129
};
#endif
const uint8_t vp10_coefband_trans_8x8plus[1024] = {
0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 5,
// beyond MAXBAND_INDEX+1 all values are filled as 5
5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
};
const uint8_t vp10_coefband_trans_4x4[16] = {
0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5,
};
const uint8_t vp10_pt_energy_class[ENTROPY_TOKENS] = {
0, 1, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5
};
// Model obtained from a 2-sided zero-centered distribution derived
// from a Pareto distribution. The cdf of the distribution is:
// cdf(x) = 0.5 + 0.5 * sgn(x) * [1 - {alpha/(alpha + |x|)} ^ beta]
//
// For a given beta and a given probablity of the 1-node, the alpha
// is first solved, and then the {alpha, beta} pair is used to generate
// the probabilities for the rest of the nodes.
// beta = 8
// Every odd line in this table can be generated from the even lines
// by averaging :
// vp10_pareto8_full[l][node] = (vp10_pareto8_full[l-1][node] +
// vp10_pareto8_full[l+1][node] ) >> 1;
const vpx_prob vp10_pareto8_full[COEFF_PROB_MODELS][MODEL_NODES] = {
{ 3, 86, 128, 6, 86, 23, 88, 29},
{ 6, 86, 128, 11, 87, 42, 91, 52},
{ 9, 86, 129, 17, 88, 61, 94, 76},
{ 12, 86, 129, 22, 88, 77, 97, 93},
{ 15, 87, 129, 28, 89, 93, 100, 110},
{ 17, 87, 129, 33, 90, 105, 103, 123},
{ 20, 88, 130, 38, 91, 118, 106, 136},
{ 23, 88, 130, 43, 91, 128, 108, 146},
{ 26, 89, 131, 48, 92, 139, 111, 156},
{ 28, 89, 131, 53, 93, 147, 114, 163},
{ 31, 90, 131, 58, 94, 156, 117, 171},
{ 34, 90, 131, 62, 94, 163, 119, 177},
{ 37, 90, 132, 66, 95, 171, 122, 184},
{ 39, 90, 132, 70, 96, 177, 124, 189},
{ 42, 91, 132, 75, 97, 183, 127, 194},
{ 44, 91, 132, 79, 97, 188, 129, 198},
{ 47, 92, 133, 83, 98, 193, 132, 202},
{ 49, 92, 133, 86, 99, 197, 134, 205},
{ 52, 93, 133, 90, 100, 201, 137, 208},
{ 54, 93, 133, 94, 100, 204, 139, 211},
{ 57, 94, 134, 98, 101, 208, 142, 214},
{ 59, 94, 134, 101, 102, 211, 144, 216},
{ 62, 94, 135, 105, 103, 214, 146, 218},
{ 64, 94, 135, 108, 103, 216, 148, 220},
{ 66, 95, 135, 111, 104, 219, 151, 222},
{ 68, 95, 135, 114, 105, 221, 153, 223},
{ 71, 96, 136, 117, 106, 224, 155, 225},
{ 73, 96, 136, 120, 106, 225, 157, 226},
{ 76, 97, 136, 123, 107, 227, 159, 228},
{ 78, 97, 136, 126, 108, 229, 160, 229},
{ 80, 98, 137, 129, 109, 231, 162, 231},
{ 82, 98, 137, 131, 109, 232, 164, 232},
{ 84, 98, 138, 134, 110, 234, 166, 233},
{ 86, 98, 138, 137, 111, 235, 168, 234},
{ 89, 99, 138, 140, 112, 236, 170, 235},
{ 91, 99, 138, 142, 112, 237, 171, 235},
{ 93, 100, 139, 145, 113, 238, 173, 236},
{ 95, 100, 139, 147, 114, 239, 174, 237},
{ 97, 101, 140, 149, 115, 240, 176, 238},
{ 99, 101, 140, 151, 115, 241, 177, 238},
{101, 102, 140, 154, 116, 242, 179, 239},
{103, 102, 140, 156, 117, 242, 180, 239},
{105, 103, 141, 158, 118, 243, 182, 240},
{107, 103, 141, 160, 118, 243, 183, 240},
{109, 104, 141, 162, 119, 244, 185, 241},
{111, 104, 141, 164, 119, 244, 186, 241},
{113, 104, 142, 166, 120, 245, 187, 242},
{114, 104, 142, 168, 121, 245, 188, 242},
{116, 105, 143, 170, 122, 246, 190, 243},
{118, 105, 143, 171, 122, 246, 191, 243},
{120, 106, 143, 173, 123, 247, 192, 244},
{121, 106, 143, 175, 124, 247, 193, 244},
{123, 107, 144, 177, 125, 248, 195, 244},
{125, 107, 144, 178, 125, 248, 196, 244},
{127, 108, 145, 180, 126, 249, 197, 245},
{128, 108, 145, 181, 127, 249, 198, 245},
{130, 109, 145, 183, 128, 249, 199, 245},
{132, 109, 145, 184, 128, 249, 200, 245},
{134, 110, 146, 186, 129, 250, 201, 246},
{135, 110, 146, 187, 130, 250, 202, 246},
{137, 111, 147, 189, 131, 251, 203, 246},
{138, 111, 147, 190, 131, 251, 204, 246},
{140, 112, 147, 192, 132, 251, 205, 247},
{141, 112, 147, 193, 132, 251, 206, 247},
{143, 113, 148, 194, 133, 251, 207, 247},
{144, 113, 148, 195, 134, 251, 207, 247},
{146, 114, 149, 197, 135, 252, 208, 248},
{147, 114, 149, 198, 135, 252, 209, 248},
{149, 115, 149, 199, 136, 252, 210, 248},
{150, 115, 149, 200, 137, 252, 210, 248},
{152, 115, 150, 201, 138, 252, 211, 248},
{153, 115, 150, 202, 138, 252, 212, 248},
{155, 116, 151, 204, 139, 253, 213, 249},
{156, 116, 151, 205, 139, 253, 213, 249},
{158, 117, 151, 206, 140, 253, 214, 249},
{159, 117, 151, 207, 141, 253, 215, 249},
{161, 118, 152, 208, 142, 253, 216, 249},
{162, 118, 152, 209, 142, 253, 216, 249},
{163, 119, 153, 210, 143, 253, 217, 249},
{164, 119, 153, 211, 143, 253, 217, 249},
{166, 120, 153, 212, 144, 254, 218, 250},
{167, 120, 153, 212, 145, 254, 219, 250},
{168, 121, 154, 213, 146, 254, 220, 250},
{169, 121, 154, 214, 146, 254, 220, 250},
{171, 122, 155, 215, 147, 254, 221, 250},
{172, 122, 155, 216, 147, 254, 221, 250},
{173, 123, 155, 217, 148, 254, 222, 250},
{174, 123, 155, 217, 149, 254, 222, 250},
{176, 124, 156, 218, 150, 254, 223, 250},
{177, 124, 156, 219, 150, 254, 223, 250},
{178, 125, 157, 220, 151, 254, 224, 251},
{179, 125, 157, 220, 151, 254, 224, 251},
{180, 126, 157, 221, 152, 254, 225, 251},
{181, 126, 157, 221, 152, 254, 225, 251},
{183, 127, 158, 222, 153, 254, 226, 251},
{184, 127, 158, 223, 154, 254, 226, 251},
{185, 128, 159, 224, 155, 255, 227, 251},
{186, 128, 159, 224, 155, 255, 227, 251},
{187, 129, 160, 225, 156, 255, 228, 251},
{188, 130, 160, 225, 156, 255, 228, 251},
{189, 131, 160, 226, 157, 255, 228, 251},
{190, 131, 160, 226, 158, 255, 228, 251},
{191, 132, 161, 227, 159, 255, 229, 251},
{192, 132, 161, 227, 159, 255, 229, 251},
{193, 133, 162, 228, 160, 255, 230, 252},
{194, 133, 162, 229, 160, 255, 230, 252},
{195, 134, 163, 230, 161, 255, 231, 252},
{196, 134, 163, 230, 161, 255, 231, 252},
{197, 135, 163, 231, 162, 255, 231, 252},
{198, 135, 163, 231, 162, 255, 231, 252},
{199, 136, 164, 232, 163, 255, 232, 252},
{200, 136, 164, 232, 164, 255, 232, 252},
{201, 137, 165, 233, 165, 255, 233, 252},
{201, 137, 165, 233, 165, 255, 233, 252},
{202, 138, 166, 233, 166, 255, 233, 252},
{203, 138, 166, 233, 166, 255, 233, 252},
{204, 139, 166, 234, 167, 255, 234, 252},
{205, 139, 166, 234, 167, 255, 234, 252},
{206, 140, 167, 235, 168, 255, 235, 252},
{206, 140, 167, 235, 168, 255, 235, 252},
{207, 141, 168, 236, 169, 255, 235, 252},
{208, 141, 168, 236, 170, 255, 235, 252},
{209, 142, 169, 237, 171, 255, 236, 252},
{209, 143, 169, 237, 171, 255, 236, 252},
{210, 144, 169, 237, 172, 255, 236, 252},
{211, 144, 169, 237, 172, 255, 236, 252},
{212, 145, 170, 238, 173, 255, 237, 252},
{213, 145, 170, 238, 173, 255, 237, 252},
{214, 146, 171, 239, 174, 255, 237, 253},
{214, 146, 171, 239, 174, 255, 237, 253},
{215, 147, 172, 240, 175, 255, 238, 253},
{215, 147, 172, 240, 175, 255, 238, 253},
{216, 148, 173, 240, 176, 255, 238, 253},
{217, 148, 173, 240, 176, 255, 238, 253},
{218, 149, 173, 241, 177, 255, 239, 253},
{218, 149, 173, 241, 178, 255, 239, 253},
{219, 150, 174, 241, 179, 255, 239, 253},
{219, 151, 174, 241, 179, 255, 239, 253},
{220, 152, 175, 242, 180, 255, 240, 253},
{221, 152, 175, 242, 180, 255, 240, 253},
{222, 153, 176, 242, 181, 255, 240, 253},
{222, 153, 176, 242, 181, 255, 240, 253},
{223, 154, 177, 243, 182, 255, 240, 253},
{223, 154, 177, 243, 182, 255, 240, 253},
{224, 155, 178, 244, 183, 255, 241, 253},
{224, 155, 178, 244, 183, 255, 241, 253},
{225, 156, 178, 244, 184, 255, 241, 253},
{225, 157, 178, 244, 184, 255, 241, 253},
{226, 158, 179, 244, 185, 255, 242, 253},
{227, 158, 179, 244, 185, 255, 242, 253},
{228, 159, 180, 245, 186, 255, 242, 253},
{228, 159, 180, 245, 186, 255, 242, 253},
{229, 160, 181, 245, 187, 255, 242, 253},
{229, 160, 181, 245, 187, 255, 242, 253},
{230, 161, 182, 246, 188, 255, 243, 253},
{230, 162, 182, 246, 188, 255, 243, 253},
{231, 163, 183, 246, 189, 255, 243, 253},
{231, 163, 183, 246, 189, 255, 243, 253},
{232, 164, 184, 247, 190, 255, 243, 253},
{232, 164, 184, 247, 190, 255, 243, 253},
{233, 165, 185, 247, 191, 255, 244, 253},
{233, 165, 185, 247, 191, 255, 244, 253},
{234, 166, 185, 247, 192, 255, 244, 253},
{234, 167, 185, 247, 192, 255, 244, 253},
{235, 168, 186, 248, 193, 255, 244, 253},
{235, 168, 186, 248, 193, 255, 244, 253},
{236, 169, 187, 248, 194, 255, 244, 253},
{236, 169, 187, 248, 194, 255, 244, 253},
{236, 170, 188, 248, 195, 255, 245, 253},
{236, 170, 188, 248, 195, 255, 245, 253},
{237, 171, 189, 249, 196, 255, 245, 254},
{237, 172, 189, 249, 196, 255, 245, 254},
{238, 173, 190, 249, 197, 255, 245, 254},
{238, 173, 190, 249, 197, 255, 245, 254},
{239, 174, 191, 249, 198, 255, 245, 254},
{239, 174, 191, 249, 198, 255, 245, 254},
{240, 175, 192, 249, 199, 255, 246, 254},
{240, 176, 192, 249, 199, 255, 246, 254},
{240, 177, 193, 250, 200, 255, 246, 254},
{240, 177, 193, 250, 200, 255, 246, 254},
{241, 178, 194, 250, 201, 255, 246, 254},
{241, 178, 194, 250, 201, 255, 246, 254},
{242, 179, 195, 250, 202, 255, 246, 254},
{242, 180, 195, 250, 202, 255, 246, 254},
{242, 181, 196, 250, 203, 255, 247, 254},
{242, 181, 196, 250, 203, 255, 247, 254},
{243, 182, 197, 251, 204, 255, 247, 254},
{243, 183, 197, 251, 204, 255, 247, 254},
{244, 184, 198, 251, 205, 255, 247, 254},
{244, 184, 198, 251, 205, 255, 247, 254},
{244, 185, 199, 251, 206, 255, 247, 254},
{244, 185, 199, 251, 206, 255, 247, 254},
{245, 186, 200, 251, 207, 255, 247, 254},
{245, 187, 200, 251, 207, 255, 247, 254},
{246, 188, 201, 252, 207, 255, 248, 254},
{246, 188, 201, 252, 207, 255, 248, 254},
{246, 189, 202, 252, 208, 255, 248, 254},
{246, 190, 202, 252, 208, 255, 248, 254},
{247, 191, 203, 252, 209, 255, 248, 254},
{247, 191, 203, 252, 209, 255, 248, 254},
{247, 192, 204, 252, 210, 255, 248, 254},
{247, 193, 204, 252, 210, 255, 248, 254},
{248, 194, 205, 252, 211, 255, 248, 254},
{248, 194, 205, 252, 211, 255, 248, 254},
{248, 195, 206, 252, 212, 255, 249, 254},
{248, 196, 206, 252, 212, 255, 249, 254},
{249, 197, 207, 253, 213, 255, 249, 254},
{249, 197, 207, 253, 213, 255, 249, 254},
{249, 198, 208, 253, 214, 255, 249, 254},
{249, 199, 209, 253, 214, 255, 249, 254},
{250, 200, 210, 253, 215, 255, 249, 254},
{250, 200, 210, 253, 215, 255, 249, 254},
{250, 201, 211, 253, 215, 255, 249, 254},
{250, 202, 211, 253, 215, 255, 249, 254},
{250, 203, 212, 253, 216, 255, 249, 254},
{250, 203, 212, 253, 216, 255, 249, 254},
{251, 204, 213, 253, 217, 255, 250, 254},
{251, 205, 213, 253, 217, 255, 250, 254},
{251, 206, 214, 254, 218, 255, 250, 254},
{251, 206, 215, 254, 218, 255, 250, 254},
{252, 207, 216, 254, 219, 255, 250, 254},
{252, 208, 216, 254, 219, 255, 250, 254},
{252, 209, 217, 254, 220, 255, 250, 254},
{252, 210, 217, 254, 220, 255, 250, 254},
{252, 211, 218, 254, 221, 255, 250, 254},
{252, 212, 218, 254, 221, 255, 250, 254},
{253, 213, 219, 254, 222, 255, 250, 254},
{253, 213, 220, 254, 222, 255, 250, 254},
{253, 214, 221, 254, 223, 255, 250, 254},
{253, 215, 221, 254, 223, 255, 250, 254},
{253, 216, 222, 254, 224, 255, 251, 254},
{253, 217, 223, 254, 224, 255, 251, 254},
{253, 218, 224, 254, 225, 255, 251, 254},
{253, 219, 224, 254, 225, 255, 251, 254},
{254, 220, 225, 254, 225, 255, 251, 254},
{254, 221, 226, 254, 225, 255, 251, 254},
{254, 222, 227, 255, 226, 255, 251, 254},
{254, 223, 227, 255, 226, 255, 251, 254},
{254, 224, 228, 255, 227, 255, 251, 254},
{254, 225, 229, 255, 227, 255, 251, 254},
{254, 226, 230, 255, 228, 255, 251, 254},
{254, 227, 230, 255, 229, 255, 251, 254},
{255, 228, 231, 255, 230, 255, 251, 254},
{255, 229, 232, 255, 230, 255, 251, 254},
{255, 230, 233, 255, 231, 255, 252, 254},
{255, 231, 234, 255, 231, 255, 252, 254},
{255, 232, 235, 255, 232, 255, 252, 254},
{255, 233, 236, 255, 232, 255, 252, 254},
{255, 235, 237, 255, 233, 255, 252, 254},
{255, 236, 238, 255, 234, 255, 252, 254},
{255, 238, 240, 255, 235, 255, 252, 255},
{255, 239, 241, 255, 235, 255, 252, 254},
{255, 241, 243, 255, 236, 255, 252, 254},
{255, 243, 245, 255, 237, 255, 252, 254},
{255, 246, 247, 255, 239, 255, 253, 255},
};
#if CONFIG_ANS
// Model obtained from a 2-sided zero-centerd distribuition derived
// from a Pareto distribution. The cdf of the distribution is:
// cdf(x) = 0.5 + 0.5 * sgn(x) * [1 - {alpha/(alpha + |x|)} ^ beta]
//
// For a given beta and a given probablity of the 1-node, the alpha
// is first solved, and then the {alpha, beta} pair is used to generate
// the probabilities for the rest of the nodes.
//
// beta = 8
// Values for tokens ONE_TOKEN through CATEGORY6_TOKEN included here.
// ZERO_TOKEN and EOB_TOKEN are coded as flags outside this coder.
const vpx_prob vp10_pareto8_token_probs[COEFF_PROB_MODELS]
[ENTROPY_TOKENS - 2] = {
{1, 1, 1, 1, 2, 4, 8, 14, 26, 198},
{2, 2, 2, 2, 4, 7, 14, 26, 42, 155},
{3, 3, 3, 3, 6, 11, 20, 34, 51, 122},
{4, 4, 4, 4, 7, 14, 25, 41, 56, 97},
{5, 5, 5, 5, 9, 17, 30, 46, 58, 76},
{6, 6, 6, 5, 11, 20, 34, 50, 57, 61},
{7, 7, 7, 6, 12, 22, 37, 53, 56, 49},
{8, 8, 7, 7, 14, 25, 40, 54, 53, 40},
{9, 9, 8, 8, 15, 27, 43, 55, 50, 32},
{10, 10, 9, 9, 16, 29, 45, 55, 47, 26},
{11, 10, 10, 10, 18, 31, 47, 55, 43, 21},
{12, 11, 11, 10, 19, 32, 48, 55, 40, 18},
{13, 12, 12, 11, 20, 34, 49, 54, 37, 14},
{14, 13, 12, 12, 21, 35, 50, 53, 34, 12},
{15, 14, 13, 12, 22, 37, 51, 51, 31, 10},
{16, 15, 14, 13, 23, 38, 51, 50, 28, 8},
{17, 16, 15, 13, 24, 39, 51, 48, 26, 7},
{18, 17, 15, 14, 25, 40, 52, 46, 23, 6},
{19, 17, 16, 15, 26, 41, 51, 45, 21, 5},
{20, 18, 17, 15, 27, 42, 51, 43, 19, 4},
{21, 19, 17, 16, 28, 42, 51, 41, 18, 3},
{22, 20, 18, 16, 28, 43, 51, 39, 16, 3},
{23, 21, 19, 17, 29, 43, 50, 37, 14, 3},
{24, 22, 19, 17, 30, 44, 49, 36, 13, 2},
{25, 22, 20, 18, 30, 44, 49, 34, 12, 2},
{26, 23, 20, 18, 31, 44, 48, 33, 11, 2},
{27, 24, 21, 19, 31, 45, 47, 31, 10, 1},
{28, 25, 22, 19, 32, 45, 46, 29, 9, 1},
{29, 25, 22, 20, 32, 45, 46, 28, 8, 1},
{30, 26, 23, 20, 33, 45, 45, 26, 7, 1},
{31, 27, 23, 20, 33, 45, 44, 25, 7, 1},
{32, 27, 24, 21, 33, 45, 43, 24, 6, 1},
{33, 28, 24, 21, 34, 44, 42, 23, 6, 1},
{34, 29, 25, 21, 34, 44, 41, 22, 5, 1},
{35, 30, 25, 22, 34, 44, 40, 20, 5, 1},
{36, 30, 26, 22, 35, 44, 39, 19, 4, 1},
{37, 31, 26, 22, 35, 44, 38, 18, 4, 1},
{38, 32, 27, 22, 35, 43, 37, 17, 4, 1},
{39, 33, 27, 23, 35, 43, 36, 16, 3, 1},
{40, 33, 27, 23, 35, 43, 35, 16, 3, 1},
{41, 34, 28, 23, 35, 42, 34, 15, 3, 1},
{42, 35, 28, 23, 36, 42, 33, 14, 2, 1},
{43, 35, 29, 24, 35, 42, 32, 13, 2, 1},
{44, 36, 29, 24, 36, 41, 31, 12, 2, 1},
{45, 36, 29, 24, 36, 41, 30, 12, 2, 1},
{46, 37, 30, 24, 35, 40, 30, 11, 2, 1},
{47, 37, 30, 24, 36, 40, 29, 10, 2, 1},
{48, 38, 30, 24, 36, 40, 28, 10, 1, 1},
{49, 39, 31, 24, 36, 39, 27, 9, 1, 1},
{50, 39, 31, 25, 35, 39, 26, 9, 1, 1},
{51, 40, 31, 25, 36, 38, 25, 8, 1, 1},
{52, 40, 31, 25, 35, 38, 25, 8, 1, 1},
{53, 41, 32, 25, 35, 37, 24, 7, 1, 1},
{54, 41, 32, 25, 35, 37, 23, 7, 1, 1},
{55, 42, 32, 25, 35, 36, 22, 7, 1, 1},
{56, 42, 33, 25, 35, 35, 22, 6, 1, 1},
{57, 43, 33, 25, 34, 35, 21, 6, 1, 1},
{58, 43, 33, 25, 35, 34, 20, 6, 1, 1},
{59, 44, 33, 25, 34, 34, 20, 5, 1, 1},
{60, 45, 33, 25, 34, 33, 19, 5, 1, 1},
{61, 45, 33, 25, 34, 33, 18, 5, 1, 1},
{62, 45, 34, 25, 34, 32, 18, 4, 1, 1},
{63, 46, 34, 25, 33, 32, 17, 4, 1, 1},
{64, 46, 34, 25, 33, 31, 17, 4, 1, 1},
{65, 47, 34, 25, 33, 30, 16, 4, 1, 1},
{66, 47, 34, 25, 33, 30, 15, 4, 1, 1},
{67, 48, 34, 25, 33, 29, 15, 3, 1, 1},
{68, 48, 35, 25, 32, 29, 14, 3, 1, 1},
{69, 48, 35, 25, 32, 28, 14, 3, 1, 1},
{70, 49, 35, 25, 32, 27, 13, 3, 1, 1},
{71, 49, 35, 25, 31, 27, 13, 3, 1, 1},
{72, 49, 35, 25, 31, 27, 12, 3, 1, 1},
{73, 50, 35, 25, 31, 26, 12, 2, 1, 1},
{74, 50, 35, 25, 31, 25, 12, 2, 1, 1},
{75, 51, 35, 25, 30, 25, 11, 2, 1, 1},
{76, 51, 35, 25, 30, 24, 11, 2, 1, 1},
{77, 51, 35, 25, 30, 24, 10, 2, 1, 1},
{78, 52, 35, 24, 29, 24, 10, 2, 1, 1},
{79, 52, 35, 24, 29, 23, 10, 2, 1, 1},
{80, 52, 35, 24, 29, 23, 9, 2, 1, 1},
{81, 53, 35, 24, 28, 22, 9, 2, 1, 1},
{82, 53, 35, 24, 28, 22, 9, 1, 1, 1},
{83, 54, 35, 24, 28, 21, 8, 1, 1, 1},
{84, 54, 35, 24, 27, 21, 8, 1, 1, 1},
{85, 54, 35, 24, 27, 20, 8, 1, 1, 1},
{86, 54, 35, 24, 27, 20, 7, 1, 1, 1},
{87, 55, 35, 23, 27, 19, 7, 1, 1, 1},
{88, 55, 35, 23, 26, 19, 7, 1, 1, 1},
{89, 55, 35, 23, 26, 18, 7, 1, 1, 1},
{90, 55, 35, 23, 26, 18, 6, 1, 1, 1},
{91, 56, 35, 23, 25, 17, 6, 1, 1, 1},
{92, 56, 35, 22, 25, 17, 6, 1, 1, 1},
{93, 56, 35, 22, 24, 17, 6, 1, 1, 1},
{94, 57, 35, 22, 24, 16, 5, 1, 1, 1},
{95, 56, 35, 22, 24, 16, 5, 1, 1, 1},
{96, 57, 35, 22, 23, 15, 5, 1, 1, 1},
{97, 56, 35, 22, 23, 15, 5, 1, 1, 1},
{98, 57, 34, 21, 23, 15, 5, 1, 1, 1},
{99, 57, 35, 21, 23, 14, 4, 1, 1, 1},
{100, 58, 34, 21, 22, 14, 4, 1, 1, 1},
{101, 57, 34, 21, 22, 14, 4, 1, 1, 1},
{102, 58, 34, 21, 21, 13, 4, 1, 1, 1},
{103, 57, 34, 21, 21, 13, 4, 1, 1, 1},
{104, 57, 34, 20, 21, 13, 4, 1, 1, 1},
{105, 58, 34, 20, 20, 12, 4, 1, 1, 1},
{106, 58, 34, 20, 20, 12, 3, 1, 1, 1},
{107, 58, 33, 20, 20, 12, 3, 1, 1, 1},
{108, 59, 33, 20, 19, 11, 3, 1, 1, 1},
{109, 59, 33, 19, 19, 11, 3, 1, 1, 1},
{110, 58, 33, 19, 19, 11, 3, 1, 1, 1},
{111, 59, 33, 19, 18, 10, 3, 1, 1, 1},
{112, 58, 33, 19, 18, 10, 3, 1, 1, 1},
{113, 58, 32, 19, 18, 10, 3, 1, 1, 1},
{114, 59, 32, 18, 18, 10, 2, 1, 1, 1},
{115, 60, 32, 18, 17, 9, 2, 1, 1, 1},
{116, 59, 32, 18, 17, 9, 2, 1, 1, 1},
{117, 59, 32, 18, 16, 9, 2, 1, 1, 1},
{118, 59, 31, 18, 16, 9, 2, 1, 1, 1},
{119, 59, 32, 17, 16, 8, 2, 1, 1, 1},
{120, 59, 31, 17, 16, 8, 2, 1, 1, 1},
{121, 59, 31, 17, 15, 8, 2, 1, 1, 1},
{122, 59, 30, 17, 15, 8, 2, 1, 1, 1},
{123, 59, 30, 17, 15, 7, 2, 1, 1, 1},
{124, 59, 30, 16, 15, 7, 2, 1, 1, 1},
{125, 59, 30, 16, 14, 7, 2, 1, 1, 1},
{126, 59, 30, 16, 14, 7, 1, 1, 1, 1},
{127, 59, 30, 16, 14, 6, 1, 1, 1, 1},
{128, 59, 30, 16, 13, 6, 1, 1, 1, 1},
{129, 59, 30, 15, 13, 6, 1, 1, 1, 1},
{130, 59, 29, 15, 13, 6, 1, 1, 1, 1},
{131, 59, 29, 15, 12, 6, 1, 1, 1, 1},
{132, 59, 28, 15, 12, 6, 1, 1, 1, 1},
{133, 59, 28, 15, 12, 5, 1, 1, 1, 1},
{134, 59, 28, 14, 12, 5, 1, 1, 1, 1},
{135, 59, 28, 14, 11, 5, 1, 1, 1, 1},
{136, 58, 28, 14, 11, 5, 1, 1, 1, 1},
{137, 58, 27, 14, 11, 5, 1, 1, 1, 1},
{138, 58, 27, 13, 11, 5, 1, 1, 1, 1},
{139, 58, 27, 13, 11, 4, 1, 1, 1, 1},
{140, 58, 27, 13, 10, 4, 1, 1, 1, 1},
{141, 58, 26, 13, 10, 4, 1, 1, 1, 1},
{142, 57, 26, 13, 10, 4, 1, 1, 1, 1},
{143, 57, 26, 12, 10, 4, 1, 1, 1, 1},
{144, 57, 26, 12, 9, 4, 1, 1, 1, 1},
{145, 57, 25, 12, 9, 4, 1, 1, 1, 1},
{146, 57, 25, 12, 9, 3, 1, 1, 1, 1},
{147, 57, 25, 11, 9, 3, 1, 1, 1, 1},
{148, 57, 25, 11, 8, 3, 1, 1, 1, 1},
{149, 57, 24, 11, 8, 3, 1, 1, 1, 1},
{150, 56, 24, 11, 8, 3, 1, 1, 1, 1},
{151, 56, 23, 11, 8, 3, 1, 1, 1, 1},
{152, 56, 23, 10, 8, 3, 1, 1, 1, 1},
{153, 56, 23, 10, 7, 3, 1, 1, 1, 1},
{154, 55, 23, 10, 7, 3, 1, 1, 1, 1},
{155, 55, 22, 10, 7, 3, 1, 1, 1, 1},
{156, 55, 22, 10, 7, 2, 1, 1, 1, 1},
{157, 54, 22, 10, 7, 2, 1, 1, 1, 1},
{158, 54, 22, 9, 7, 2, 1, 1, 1, 1},
{159, 55, 21, 9, 6, 2, 1, 1, 1, 1},
{160, 54, 21, 9, 6, 2, 1, 1, 1, 1},
{161, 53, 21, 9, 6, 2, 1, 1, 1, 1},
{162, 53, 20, 9, 6, 2, 1, 1, 1, 1},
{163, 53, 20, 8, 6, 2, 1, 1, 1, 1},
{164, 53, 20, 8, 5, 2, 1, 1, 1, 1},
{165, 52, 20, 8, 5, 2, 1, 1, 1, 1},
{166, 52, 19, 8, 5, 2, 1, 1, 1, 1},
{167, 51, 19, 8, 5, 2, 1, 1, 1, 1},
{168, 51, 19, 7, 5, 2, 1, 1, 1, 1},
{169, 51, 19, 7, 5, 1, 1, 1, 1, 1},
{170, 51, 18, 7, 5, 1, 1, 1, 1, 1},
{171, 51, 18, 7, 4, 1, 1, 1, 1, 1},
{172, 50, 18, 7, 4, 1, 1, 1, 1, 1},
{173, 50, 17, 7, 4, 1, 1, 1, 1, 1},
{174, 49, 17, 7, 4, 1, 1, 1, 1, 1},
{175, 49, 17, 6, 4, 1, 1, 1, 1, 1},
{176, 49, 16, 6, 4, 1, 1, 1, 1, 1},
{177, 48, 16, 6, 4, 1, 1, 1, 1, 1},
{178, 47, 16, 6, 4, 1, 1, 1, 1, 1},
{179, 47, 16, 6, 3, 1, 1, 1, 1, 1},
{180, 47, 15, 6, 3, 1, 1, 1, 1, 1},
{181, 47, 15, 5, 3, 1, 1, 1, 1, 1},
{182, 46, 15, 5, 3, 1, 1, 1, 1, 1},
{183, 46, 14, 5, 3, 1, 1, 1, 1, 1},
{184, 45, 14, 5, 3, 1, 1, 1, 1, 1},
{185, 44, 14, 5, 3, 1, 1, 1, 1, 1},
{186, 44, 13, 5, 3, 1, 1, 1, 1, 1},
{187, 43, 13, 5, 3, 1, 1, 1, 1, 1},
{188, 44, 13, 4, 2, 1, 1, 1, 1, 1},
{189, 43, 13, 4, 2, 1, 1, 1, 1, 1},
{190, 43, 12, 4, 2, 1, 1, 1, 1, 1},
{191, 42, 12, 4, 2, 1, 1, 1, 1, 1},
{192, 41, 12, 4, 2, 1, 1, 1, 1, 1},
{193, 41, 11, 4, 2, 1, 1, 1, 1, 1},
{194, 40, 11, 4, 2, 1, 1, 1, 1, 1},
{195, 39, 11, 4, 2, 1, 1, 1, 1, 1},
{196, 39, 11, 3, 2, 1, 1, 1, 1, 1},
{197, 39, 10, 3, 2, 1, 1, 1, 1, 1},
{198, 38, 10, 3, 2, 1, 1, 1, 1, 1},
{199, 37, 10, 3, 2, 1, 1, 1, 1, 1},
{200, 37, 10, 3, 1, 1, 1, 1, 1, 1},
{201, 37, 9, 3, 1, 1, 1, 1, 1, 1},
{202, 36, 9, 3, 1, 1, 1, 1, 1, 1},
{203, 35, 9, 3, 1, 1, 1, 1, 1, 1},
{204, 35, 8, 3, 1, 1, 1, 1, 1, 1},
{205, 35, 8, 2, 1, 1, 1, 1, 1, 1},
{206, 34, 8, 2, 1, 1, 1, 1, 1, 1},
{207, 33, 8, 2, 1, 1, 1, 1, 1, 1},
{208, 32, 8, 2, 1, 1, 1, 1, 1, 1},
{209, 32, 7, 2, 1, 1, 1, 1, 1, 1},
{210, 31, 7, 2, 1, 1, 1, 1, 1, 1},
{211, 30, 7, 2, 1, 1, 1, 1, 1, 1},
{212, 30, 6, 2, 1, 1, 1, 1, 1, 1},
{213, 29, 6, 2, 1, 1, 1, 1, 1, 1},
{214, 28, 6, 2, 1, 1, 1, 1, 1, 1},
{215, 27, 6, 2, 1, 1, 1, 1, 1, 1},
{216, 27, 6, 1, 1, 1, 1, 1, 1, 1},
{217, 27, 5, 1, 1, 1, 1, 1, 1, 1},
{218, 26, 5, 1, 1, 1, 1, 1, 1, 1},
{219, 25, 5, 1, 1, 1, 1, 1, 1, 1},
{220, 24, 5, 1, 1, 1, 1, 1, 1, 1},
{221, 24, 4, 1, 1, 1, 1, 1, 1, 1},
{222, 23, 4, 1, 1, 1, 1, 1, 1, 1},
{223, 22, 4, 1, 1, 1, 1, 1, 1, 1},
{224, 21, 4, 1, 1, 1, 1, 1, 1, 1},
{225, 20, 4, 1, 1, 1, 1, 1, 1, 1},
{226, 20, 3, 1, 1, 1, 1, 1, 1, 1},
{227, 19, 3, 1, 1, 1, 1, 1, 1, 1},
{228, 18, 3, 1, 1, 1, 1, 1, 1, 1},
{229, 17, 3, 1, 1, 1, 1, 1, 1, 1},
{230, 16, 3, 1, 1, 1, 1, 1, 1, 1},
{231, 16, 2, 1, 1, 1, 1, 1, 1, 1},
{232, 15, 2, 1, 1, 1, 1, 1, 1, 1},
{233, 14, 2, 1, 1, 1, 1, 1, 1, 1},
{234, 13, 2, 1, 1, 1, 1, 1, 1, 1},
{235, 12, 2, 1, 1, 1, 1, 1, 1, 1},
{236, 11, 2, 1, 1, 1, 1, 1, 1, 1},
{237, 11, 1, 1, 1, 1, 1, 1, 1, 1},
{238, 10, 1, 1, 1, 1, 1, 1, 1, 1},
{239, 9, 1, 1, 1, 1, 1, 1, 1, 1},
{240, 8, 1, 1, 1, 1, 1, 1, 1, 1},
{241, 7, 1, 1, 1, 1, 1, 1, 1, 1},
{242, 6, 1, 1, 1, 1, 1, 1, 1, 1},
{243, 5, 1, 1, 1, 1, 1, 1, 1, 1},
{244, 4, 1, 1, 1, 1, 1, 1, 1, 1},
{245, 3, 1, 1, 1, 1, 1, 1, 1, 1},
{246, 2, 1, 1, 1, 1, 1, 1, 1, 1},
{247, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{247, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{247, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{247, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{247, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{247, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{247, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{247, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{247, 1, 1, 1, 1, 1, 1, 1, 1, 1},
};
void vp10_build_pareto8_cdf_tab(
const vpx_prob token_probs[COEFF_PROB_MODELS][ENTROPY_TOKENS - 2],
rans_dec_lut cdf_tab[COEFF_PROB_MODELS]) {
int p;
for (p = 0; p < COEFF_PROB_MODELS; ++p) {
rans_build_cdf_from_pdf(token_probs[p], cdf_tab[p]);
}
}
#endif // CONFIG_ANS
static const vp10_coeff_probs_model default_coef_probs_4x4[PLANE_TYPES] = {
{ // Y plane
{ // Intra
{ // Band 0
{ 195, 29, 183 }, { 84, 49, 136 }, { 8, 42, 71 }
}, { // Band 1
{ 31, 107, 169 }, { 35, 99, 159 }, { 17, 82, 140 },
{ 8, 66, 114 }, { 2, 44, 76 }, { 1, 19, 32 }
}, { // Band 2
{ 40, 132, 201 }, { 29, 114, 187 }, { 13, 91, 157 },
{ 7, 75, 127 }, { 3, 58, 95 }, { 1, 28, 47 }
}, { // Band 3
{ 69, 142, 221 }, { 42, 122, 201 }, { 15, 91, 159 },
{ 6, 67, 121 }, { 1, 42, 77 }, { 1, 17, 31 }
}, { // Band 4
{ 102, 148, 228 }, { 67, 117, 204 }, { 17, 82, 154 },
{ 6, 59, 114 }, { 2, 39, 75 }, { 1, 15, 29 }
}, { // Band 5
{ 156, 57, 233 }, { 119, 57, 212 }, { 58, 48, 163 },
{ 29, 40, 124 }, { 12, 30, 81 }, { 3, 12, 31 }
}
}, { // Inter
{ // Band 0
{ 191, 107, 226 }, { 124, 117, 204 }, { 25, 99, 155 }
}, { // Band 1
{ 29, 148, 210 }, { 37, 126, 194 }, { 8, 93, 157 },
{ 2, 68, 118 }, { 1, 39, 69 }, { 1, 17, 33 }
}, { // Band 2
{ 41, 151, 213 }, { 27, 123, 193 }, { 3, 82, 144 },
{ 1, 58, 105 }, { 1, 32, 60 }, { 1, 13, 26 }
}, { // Band 3
{ 59, 159, 220 }, { 23, 126, 198 }, { 4, 88, 151 },
{ 1, 66, 114 }, { 1, 38, 71 }, { 1, 18, 34 }
}, { // Band 4
{ 114, 136, 232 }, { 51, 114, 207 }, { 11, 83, 155 },
{ 3, 56, 105 }, { 1, 33, 65 }, { 1, 17, 34 }
}, { // Band 5
{ 149, 65, 234 }, { 121, 57, 215 }, { 61, 49, 166 },
{ 28, 36, 114 }, { 12, 25, 76 }, { 3, 16, 42 }
}
}
}, { // UV plane
{ // Intra
{ // Band 0
{ 214, 49, 220 }, { 132, 63, 188 }, { 42, 65, 137 }
}, { // Band 1
{ 85, 137, 221 }, { 104, 131, 216 }, { 49, 111, 192 },
{ 21, 87, 155 }, { 2, 49, 87 }, { 1, 16, 28 }
}, { // Band 2
{ 89, 163, 230 }, { 90, 137, 220 }, { 29, 100, 183 },
{ 10, 70, 135 }, { 2, 42, 81 }, { 1, 17, 33 }
}, { // Band 3
{ 108, 167, 237 }, { 55, 133, 222 }, { 15, 97, 179 },
{ 4, 72, 135 }, { 1, 45, 85 }, { 1, 19, 38 }
}, { // Band 4
{ 124, 146, 240 }, { 66, 124, 224 }, { 17, 88, 175 },
{ 4, 58, 122 }, { 1, 36, 75 }, { 1, 18, 37 }
}, { // Band 5
{ 141, 79, 241 }, { 126, 70, 227 }, { 66, 58, 182 },
{ 30, 44, 136 }, { 12, 34, 96 }, { 2, 20, 47 }
}
}, { // Inter
{ // Band 0
{ 229, 99, 249 }, { 143, 111, 235 }, { 46, 109, 192 }
}, { // Band 1
{ 82, 158, 236 }, { 94, 146, 224 }, { 25, 117, 191 },
{ 9, 87, 149 }, { 3, 56, 99 }, { 1, 33, 57 }
}, { // Band 2
{ 83, 167, 237 }, { 68, 145, 222 }, { 10, 103, 177 },
{ 2, 72, 131 }, { 1, 41, 79 }, { 1, 20, 39 }
}, { // Band 3
{ 99, 167, 239 }, { 47, 141, 224 }, { 10, 104, 178 },
{ 2, 73, 133 }, { 1, 44, 85 }, { 1, 22, 47 }
}, { // Band 4
{ 127, 145, 243 }, { 71, 129, 228 }, { 17, 93, 177 },
{ 3, 61, 124 }, { 1, 41, 84 }, { 1, 21, 52 }
}, { // Band 5
{ 157, 78, 244 }, { 140, 72, 231 }, { 69, 58, 184 },
{ 31, 44, 137 }, { 14, 38, 105 }, { 8, 23, 61 }
}
}
}
};
static const vp10_coeff_probs_model default_coef_probs_8x8[PLANE_TYPES] = {
{ // Y plane
{ // Intra
{ // Band 0
{ 125, 34, 187 }, { 52, 41, 133 }, { 6, 31, 56 }
}, { // Band 1
{ 37, 109, 153 }, { 51, 102, 147 }, { 23, 87, 128 },
{ 8, 67, 101 }, { 1, 41, 63 }, { 1, 19, 29 }
}, { // Band 2
{ 31, 154, 185 }, { 17, 127, 175 }, { 6, 96, 145 },
{ 2, 73, 114 }, { 1, 51, 82 }, { 1, 28, 45 }
}, { // Band 3
{ 23, 163, 200 }, { 10, 131, 185 }, { 2, 93, 148 },
{ 1, 67, 111 }, { 1, 41, 69 }, { 1, 14, 24 }
}, { // Band 4
{ 29, 176, 217 }, { 12, 145, 201 }, { 3, 101, 156 },
{ 1, 69, 111 }, { 1, 39, 63 }, { 1, 14, 23 }
}, { // Band 5
{ 57, 192, 233 }, { 25, 154, 215 }, { 6, 109, 167 },
{ 3, 78, 118 }, { 1, 48, 69 }, { 1, 21, 29 }
}
}, { // Inter
{ // Band 0
{ 202, 105, 245 }, { 108, 106, 216 }, { 18, 90, 144 }
}, { // Band 1
{ 33, 172, 219 }, { 64, 149, 206 }, { 14, 117, 177 },
{ 5, 90, 141 }, { 2, 61, 95 }, { 1, 37, 57 }
}, { // Band 2
{ 33, 179, 220 }, { 11, 140, 198 }, { 1, 89, 148 },
{ 1, 60, 104 }, { 1, 33, 57 }, { 1, 12, 21 }
}, { // Band 3
{ 30, 181, 221 }, { 8, 141, 198 }, { 1, 87, 145 },
{ 1, 58, 100 }, { 1, 31, 55 }, { 1, 12, 20 }
}, { // Band 4
{ 32, 186, 224 }, { 7, 142, 198 }, { 1, 86, 143 },
{ 1, 58, 100 }, { 1, 31, 55 }, { 1, 12, 22 }
}, { // Band 5
{ 57, 192, 227 }, { 20, 143, 204 }, { 3, 96, 154 },
{ 1, 68, 112 }, { 1, 42, 69 }, { 1, 19, 32 }
}
}
}, { // UV plane
{ // Intra
{ // Band 0
{ 212, 35, 215 }, { 113, 47, 169 }, { 29, 48, 105 }
}, { // Band 1
{ 74, 129, 203 }, { 106, 120, 203 }, { 49, 107, 178 },
{ 19, 84, 144 }, { 4, 50, 84 }, { 1, 15, 25 }
}, { // Band 2
{ 71, 172, 217 }, { 44, 141, 209 }, { 15, 102, 173 },
{ 6, 76, 133 }, { 2, 51, 89 }, { 1, 24, 42 }
}, { // Band 3
{ 64, 185, 231 }, { 31, 148, 216 }, { 8, 103, 175 },
{ 3, 74, 131 }, { 1, 46, 81 }, { 1, 18, 30 }
}, { // Band 4
{ 65, 196, 235 }, { 25, 157, 221 }, { 5, 105, 174 },
{ 1, 67, 120 }, { 1, 38, 69 }, { 1, 15, 30 }
}, { // Band 5
{ 65, 204, 238 }, { 30, 156, 224 }, { 7, 107, 177 },
{ 2, 70, 124 }, { 1, 42, 73 }, { 1, 18, 34 }
}
}, { // Inter
{ // Band 0
{ 225, 86, 251 }, { 144, 104, 235 }, { 42, 99, 181 }
}, { // Band 1
{ 85, 175, 239 }, { 112, 165, 229 }, { 29, 136, 200 },
{ 12, 103, 162 }, { 6, 77, 123 }, { 2, 53, 84 }
}, { // Band 2
{ 75, 183, 239 }, { 30, 155, 221 }, { 3, 106, 171 },
{ 1, 74, 128 }, { 1, 44, 76 }, { 1, 17, 28 }
}, { // Band 3
{ 73, 185, 240 }, { 27, 159, 222 }, { 2, 107, 172 },
{ 1, 75, 127 }, { 1, 42, 73 }, { 1, 17, 29 }
}, { // Band 4
{ 62, 190, 238 }, { 21, 159, 222 }, { 2, 107, 172 },
{ 1, 72, 122 }, { 1, 40, 71 }, { 1, 18, 32 }
}, { // Band 5
{ 61, 199, 240 }, { 27, 161, 226 }, { 4, 113, 180 },
{ 1, 76, 129 }, { 1, 46, 80 }, { 1, 23, 41 }
}
}
}
};
static const vp10_coeff_probs_model default_coef_probs_16x16[PLANE_TYPES] = {
{ // Y plane
{ // Intra
{ // Band 0
{ 7, 27, 153 }, { 5, 30, 95 }, { 1, 16, 30 }
}, { // Band 1
{ 50, 75, 127 }, { 57, 75, 124 }, { 27, 67, 108 },
{ 10, 54, 86 }, { 1, 33, 52 }, { 1, 12, 18 }
}, { // Band 2
{ 43, 125, 151 }, { 26, 108, 148 }, { 7, 83, 122 },
{ 2, 59, 89 }, { 1, 38, 60 }, { 1, 17, 27 }
}, { // Band 3
{ 23, 144, 163 }, { 13, 112, 154 }, { 2, 75, 117 },
{ 1, 50, 81 }, { 1, 31, 51 }, { 1, 14, 23 }
}, { // Band 4
{ 18, 162, 185 }, { 6, 123, 171 }, { 1, 78, 125 },
{ 1, 51, 86 }, { 1, 31, 54 }, { 1, 14, 23 }
}, { // Band 5
{ 15, 199, 227 }, { 3, 150, 204 }, { 1, 91, 146 },
{ 1, 55, 95 }, { 1, 30, 53 }, { 1, 11, 20 }
}
}, { // Inter
{ // Band 0
{ 19, 55, 240 }, { 19, 59, 196 }, { 3, 52, 105 }
}, { // Band 1
{ 41, 166, 207 }, { 104, 153, 199 }, { 31, 123, 181 },
{ 14, 101, 152 }, { 5, 72, 106 }, { 1, 36, 52 }
}, { // Band 2
{ 35, 176, 211 }, { 12, 131, 190 }, { 2, 88, 144 },
{ 1, 60, 101 }, { 1, 36, 60 }, { 1, 16, 28 }
}, { // Band 3
{ 28, 183, 213 }, { 8, 134, 191 }, { 1, 86, 142 },
{ 1, 56, 96 }, { 1, 30, 53 }, { 1, 12, 20 }
}, { // Band 4
{ 20, 190, 215 }, { 4, 135, 192 }, { 1, 84, 139 },
{ 1, 53, 91 }, { 1, 28, 49 }, { 1, 11, 20 }
}, { // Band 5
{ 13, 196, 216 }, { 2, 137, 192 }, { 1, 86, 143 },
{ 1, 57, 99 }, { 1, 32, 56 }, { 1, 13, 24 }
}
}
}, { // UV plane
{ // Intra
{ // Band 0
{ 211, 29, 217 }, { 96, 47, 156 }, { 22, 43, 87 }
}, { // Band 1
{ 78, 120, 193 }, { 111, 116, 186 }, { 46, 102, 164 },
{ 15, 80, 128 }, { 2, 49, 76 }, { 1, 18, 28 }
}, { // Band 2
{ 71, 161, 203 }, { 42, 132, 192 }, { 10, 98, 150 },
{ 3, 69, 109 }, { 1, 44, 70 }, { 1, 18, 29 }
}, { // Band 3
{ 57, 186, 211 }, { 30, 140, 196 }, { 4, 93, 146 },
{ 1, 62, 102 }, { 1, 38, 65 }, { 1, 16, 27 }
}, { // Band 4
{ 47, 199, 217 }, { 14, 145, 196 }, { 1, 88, 142 },
{ 1, 57, 98 }, { 1, 36, 62 }, { 1, 15, 26 }
}, { // Band 5
{ 26, 219, 229 }, { 5, 155, 207 }, { 1, 94, 151 },
{ 1, 60, 104 }, { 1, 36, 62 }, { 1, 16, 28 }
}
}, { // Inter
{ // Band 0
{ 233, 29, 248 }, { 146, 47, 220 }, { 43, 52, 140 }
}, { // Band 1
{ 100, 163, 232 }, { 179, 161, 222 }, { 63, 142, 204 },
{ 37, 113, 174 }, { 26, 89, 137 }, { 18, 68, 97 }
}, { // Band 2
{ 85, 181, 230 }, { 32, 146, 209 }, { 7, 100, 164 },
{ 3, 71, 121 }, { 1, 45, 77 }, { 1, 18, 30 }
}, { // Band 3
{ 65, 187, 230 }, { 20, 148, 207 }, { 2, 97, 159 },
{ 1, 68, 116 }, { 1, 40, 70 }, { 1, 14, 29 }
}, { // Band 4
{ 40, 194, 227 }, { 8, 147, 204 }, { 1, 94, 155 },
{ 1, 65, 112 }, { 1, 39, 66 }, { 1, 14, 26 }
}, { // Band 5
{ 16, 208, 228 }, { 3, 151, 207 }, { 1, 98, 160 },
{ 1, 67, 117 }, { 1, 41, 74 }, { 1, 17, 31 }
}
}
}
};
static const vp10_coeff_probs_model default_coef_probs_32x32[PLANE_TYPES] = {
{ // Y plane
{ // Intra
{ // Band 0
{ 17, 38, 140 }, { 7, 34, 80 }, { 1, 17, 29 }
}, { // Band 1
{ 37, 75, 128 }, { 41, 76, 128 }, { 26, 66, 116 },
{ 12, 52, 94 }, { 2, 32, 55 }, { 1, 10, 16 }
}, { // Band 2
{ 50, 127, 154 }, { 37, 109, 152 }, { 16, 82, 121 },
{ 5, 59, 85 }, { 1, 35, 54 }, { 1, 13, 20 }
}, { // Band 3
{ 40, 142, 167 }, { 17, 110, 157 }, { 2, 71, 112 },
{ 1, 44, 72 }, { 1, 27, 45 }, { 1, 11, 17 }
}, { // Band 4
{ 30, 175, 188 }, { 9, 124, 169 }, { 1, 74, 116 },
{ 1, 48, 78 }, { 1, 30, 49 }, { 1, 11, 18 }
}, { // Band 5
{ 10, 222, 223 }, { 2, 150, 194 }, { 1, 83, 128 },
{ 1, 48, 79 }, { 1, 27, 45 }, { 1, 11, 17 }
}
}, { // Inter
{ // Band 0
{ 36, 41, 235 }, { 29, 36, 193 }, { 10, 27, 111 }
}, { // Band 1
{ 85, 165, 222 }, { 177, 162, 215 }, { 110, 135, 195 },
{ 57, 113, 168 }, { 23, 83, 120 }, { 10, 49, 61 }
}, { // Band 2
{ 85, 190, 223 }, { 36, 139, 200 }, { 5, 90, 146 },
{ 1, 60, 103 }, { 1, 38, 65 }, { 1, 18, 30 }
}, { // Band 3
{ 72, 202, 223 }, { 23, 141, 199 }, { 2, 86, 140 },
{ 1, 56, 97 }, { 1, 36, 61 }, { 1, 16, 27 }
}, { // Band 4
{ 55, 218, 225 }, { 13, 145, 200 }, { 1, 86, 141 },
{ 1, 57, 99 }, { 1, 35, 61 }, { 1, 13, 22 }
}, { // Band 5
{ 15, 235, 212 }, { 1, 132, 184 }, { 1, 84, 139 },
{ 1, 57, 97 }, { 1, 34, 56 }, { 1, 14, 23 }
}
}
}, { // UV plane
{ // Intra
{ // Band 0
{ 181, 21, 201 }, { 61, 37, 123 }, { 10, 38, 71 }
}, { // Band 1
{ 47, 106, 172 }, { 95, 104, 173 }, { 42, 93, 159 },
{ 18, 77, 131 }, { 4, 50, 81 }, { 1, 17, 23 }
}, { // Band 2
{ 62, 147, 199 }, { 44, 130, 189 }, { 28, 102, 154 },
{ 18, 75, 115 }, { 2, 44, 65 }, { 1, 12, 19 }
}, { // Band 3
{ 55, 153, 210 }, { 24, 130, 194 }, { 3, 93, 146 },
{ 1, 61, 97 }, { 1, 31, 50 }, { 1, 10, 16 }
}, { // Band 4
{ 49, 186, 223 }, { 17, 148, 204 }, { 1, 96, 142 },
{ 1, 53, 83 }, { 1, 26, 44 }, { 1, 11, 17 }
}, { // Band 5
{ 13, 217, 212 }, { 2, 136, 180 }, { 1, 78, 124 },
{ 1, 50, 83 }, { 1, 29, 49 }, { 1, 14, 23 }
}
}, { // Inter
{ // Band 0
{ 197, 13, 247 }, { 82, 17, 222 }, { 25, 17, 162 }
}, { // Band 1
{ 126, 186, 247 }, { 234, 191, 243 }, { 176, 177, 234 },
{ 104, 158, 220 }, { 66, 128, 186 }, { 55, 90, 137 }
}, { // Band 2
{ 111, 197, 242 }, { 46, 158, 219 }, { 9, 104, 171 },
{ 2, 65, 125 }, { 1, 44, 80 }, { 1, 17, 91 }
}, { // Band 3
{ 104, 208, 245 }, { 39, 168, 224 }, { 3, 109, 162 },
{ 1, 79, 124 }, { 1, 50, 102 }, { 1, 43, 102 }
}, { // Band 4
{ 84, 220, 246 }, { 31, 177, 231 }, { 2, 115, 180 },
{ 1, 79, 134 }, { 1, 55, 77 }, { 1, 60, 79 }
}, { // Band 5
{ 43, 243, 240 }, { 8, 180, 217 }, { 1, 115, 166 },
{ 1, 84, 121 }, { 1, 51, 67 }, { 1, 16, 6 }
}
}
}
};
static void extend_to_full_distribution(vpx_prob *probs, vpx_prob p) {
assert(p != 0);
memcpy(probs, vp10_pareto8_full[p - 1], MODEL_NODES * sizeof(vpx_prob));
}
void vp10_model_to_full_probs(const vpx_prob *model, vpx_prob *full) {
if (full != model)
memcpy(full, model, sizeof(vpx_prob) * UNCONSTRAINED_NODES);
extend_to_full_distribution(&full[UNCONSTRAINED_NODES], model[PIVOT_NODE]);
}
void vp10_default_coef_probs(VP10_COMMON *cm) {
vp10_copy(cm->fc->coef_probs[TX_4X4], default_coef_probs_4x4);
vp10_copy(cm->fc->coef_probs[TX_8X8], default_coef_probs_8x8);
vp10_copy(cm->fc->coef_probs[TX_16X16], default_coef_probs_16x16);
vp10_copy(cm->fc->coef_probs[TX_32X32], default_coef_probs_32x32);
}
#define COEF_COUNT_SAT 24
#define COEF_MAX_UPDATE_FACTOR 112
#define COEF_COUNT_SAT_KEY 24
#define COEF_MAX_UPDATE_FACTOR_KEY 112
#define COEF_COUNT_SAT_AFTER_KEY 24
#define COEF_MAX_UPDATE_FACTOR_AFTER_KEY 128
static void adapt_coef_probs(VP10_COMMON *cm, TX_SIZE tx_size,
unsigned int count_sat,
unsigned int update_factor) {
const FRAME_CONTEXT *pre_fc = &cm->frame_contexts[cm->frame_context_idx];
vp10_coeff_probs_model *const probs = cm->fc->coef_probs[tx_size];
const vp10_coeff_probs_model *const pre_probs = pre_fc->coef_probs[tx_size];
vp10_coeff_count_model *counts = cm->counts.coef[tx_size];
unsigned int (*eob_counts)[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] =
cm->counts.eob_branch[tx_size];
int i, j, k, l, m;
for (i = 0; i < PLANE_TYPES; ++i)
for (j = 0; j < REF_TYPES; ++j)
for (k = 0; k < COEF_BANDS; ++k)
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
const int n0 = counts[i][j][k][l][ZERO_TOKEN];
const int n1 = counts[i][j][k][l][ONE_TOKEN];
const int n2 = counts[i][j][k][l][TWO_TOKEN];
const int neob = counts[i][j][k][l][EOB_MODEL_TOKEN];
const unsigned int branch_ct[UNCONSTRAINED_NODES][2] = {
{ neob, eob_counts[i][j][k][l] - neob },
{ n0, n1 + n2 },
{ n1, n2 }
};
for (m = 0; m < UNCONSTRAINED_NODES; ++m)
probs[i][j][k][l][m] = merge_probs(pre_probs[i][j][k][l][m],
branch_ct[m],
count_sat, update_factor);
}
}
void vp10_adapt_coef_probs(VP10_COMMON *cm) {
TX_SIZE t;
unsigned int count_sat, update_factor;
if (frame_is_intra_only(cm)) {
update_factor = COEF_MAX_UPDATE_FACTOR_KEY;
count_sat = COEF_COUNT_SAT_KEY;
} else if (cm->last_frame_type == KEY_FRAME) {
update_factor = COEF_MAX_UPDATE_FACTOR_AFTER_KEY; /* adapt quickly */
count_sat = COEF_COUNT_SAT_AFTER_KEY;
} else {
update_factor = COEF_MAX_UPDATE_FACTOR;
count_sat = COEF_COUNT_SAT;
}
for (t = TX_4X4; t <= TX_32X32; t++)
adapt_coef_probs(cm, t, count_sat, update_factor);
}