aom/vpx_dsp/arm/idct16x16_neon.c

186 строки
7.5 KiB
C

/*
* Copyright (c) 2013 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_dsp/vpx_dsp_common.h"
void vpx_idct16x16_256_add_neon_pass1(const int16_t *input,
int16_t *output,
int output_stride);
void vpx_idct16x16_256_add_neon_pass2(const int16_t *src,
int16_t *output,
int16_t *pass1Output,
int16_t skip_adding,
uint8_t *dest,
int dest_stride);
void vpx_idct16x16_10_add_neon_pass1(const int16_t *input,
int16_t *output,
int output_stride);
void vpx_idct16x16_10_add_neon_pass2(const int16_t *src,
int16_t *output,
int16_t *pass1Output,
int16_t skip_adding,
uint8_t *dest,
int dest_stride);
#if HAVE_NEON_ASM
/* For ARM NEON, d8-d15 are callee-saved registers, and need to be saved. */
extern void vpx_push_neon(int64_t *store);
extern void vpx_pop_neon(int64_t *store);
#endif // HAVE_NEON_ASM
void vpx_idct16x16_256_add_neon(const int16_t *input,
uint8_t *dest, int dest_stride) {
#if HAVE_NEON_ASM
int64_t store_reg[8];
#endif
int16_t pass1_output[16*16] = {0};
int16_t row_idct_output[16*16] = {0};
#if HAVE_NEON_ASM
// save d8-d15 register values.
vpx_push_neon(store_reg);
#endif
/* Parallel idct on the upper 8 rows */
// First pass processes even elements 0, 2, 4, 6, 8, 10, 12, 14 and save the
// stage 6 result in pass1_output.
vpx_idct16x16_256_add_neon_pass1(input, pass1_output, 8);
// Second pass processes odd elements 1, 3, 5, 7, 9, 11, 13, 15 and combines
// with result in pass1(pass1_output) to calculate final result in stage 7
// which will be saved into row_idct_output.
vpx_idct16x16_256_add_neon_pass2(input+1,
row_idct_output,
pass1_output,
0,
dest,
dest_stride);
/* Parallel idct on the lower 8 rows */
// First pass processes even elements 0, 2, 4, 6, 8, 10, 12, 14 and save the
// stage 6 result in pass1_output.
vpx_idct16x16_256_add_neon_pass1(input+8*16, pass1_output, 8);
// Second pass processes odd elements 1, 3, 5, 7, 9, 11, 13, 15 and combines
// with result in pass1(pass1_output) to calculate final result in stage 7
// which will be saved into row_idct_output.
vpx_idct16x16_256_add_neon_pass2(input+8*16+1,
row_idct_output+8,
pass1_output,
0,
dest,
dest_stride);
/* Parallel idct on the left 8 columns */
// First pass processes even elements 0, 2, 4, 6, 8, 10, 12, 14 and save the
// stage 6 result in pass1_output.
vpx_idct16x16_256_add_neon_pass1(row_idct_output, pass1_output, 8);
// Second pass processes odd elements 1, 3, 5, 7, 9, 11, 13, 15 and combines
// with result in pass1(pass1_output) to calculate final result in stage 7.
// Then add the result to the destination data.
vpx_idct16x16_256_add_neon_pass2(row_idct_output+1,
row_idct_output,
pass1_output,
1,
dest,
dest_stride);
/* Parallel idct on the right 8 columns */
// First pass processes even elements 0, 2, 4, 6, 8, 10, 12, 14 and save the
// stage 6 result in pass1_output.
vpx_idct16x16_256_add_neon_pass1(row_idct_output+8*16, pass1_output, 8);
// Second pass processes odd elements 1, 3, 5, 7, 9, 11, 13, 15 and combines
// with result in pass1(pass1_output) to calculate final result in stage 7.
// Then add the result to the destination data.
vpx_idct16x16_256_add_neon_pass2(row_idct_output+8*16+1,
row_idct_output+8,
pass1_output,
1,
dest+8,
dest_stride);
#if HAVE_NEON_ASM
// restore d8-d15 register values.
vpx_pop_neon(store_reg);
#endif
return;
}
void vpx_idct16x16_10_add_neon(const int16_t *input,
uint8_t *dest, int dest_stride) {
#if HAVE_NEON_ASM
int64_t store_reg[8];
#endif
int16_t pass1_output[16*16] = {0};
int16_t row_idct_output[16*16] = {0};
#if HAVE_NEON_ASM
// save d8-d15 register values.
vpx_push_neon(store_reg);
#endif
/* Parallel idct on the upper 8 rows */
// First pass processes even elements 0, 2, 4, 6, 8, 10, 12, 14 and save the
// stage 6 result in pass1_output.
vpx_idct16x16_10_add_neon_pass1(input, pass1_output, 8);
// Second pass processes odd elements 1, 3, 5, 7, 9, 11, 13, 15 and combines
// with result in pass1(pass1_output) to calculate final result in stage 7
// which will be saved into row_idct_output.
vpx_idct16x16_10_add_neon_pass2(input+1,
row_idct_output,
pass1_output,
0,
dest,
dest_stride);
/* Skip Parallel idct on the lower 8 rows as they are all 0s */
/* Parallel idct on the left 8 columns */
// First pass processes even elements 0, 2, 4, 6, 8, 10, 12, 14 and save the
// stage 6 result in pass1_output.
vpx_idct16x16_256_add_neon_pass1(row_idct_output, pass1_output, 8);
// Second pass processes odd elements 1, 3, 5, 7, 9, 11, 13, 15 and combines
// with result in pass1(pass1_output) to calculate final result in stage 7.
// Then add the result to the destination data.
vpx_idct16x16_256_add_neon_pass2(row_idct_output+1,
row_idct_output,
pass1_output,
1,
dest,
dest_stride);
/* Parallel idct on the right 8 columns */
// First pass processes even elements 0, 2, 4, 6, 8, 10, 12, 14 and save the
// stage 6 result in pass1_output.
vpx_idct16x16_256_add_neon_pass1(row_idct_output+8*16, pass1_output, 8);
// Second pass processes odd elements 1, 3, 5, 7, 9, 11, 13, 15 and combines
// with result in pass1(pass1_output) to calculate final result in stage 7.
// Then add the result to the destination data.
vpx_idct16x16_256_add_neon_pass2(row_idct_output+8*16+1,
row_idct_output+8,
pass1_output,
1,
dest+8,
dest_stride);
#if HAVE_NEON_ASM
// restore d8-d15 register values.
vpx_pop_neon(store_reg);
#endif
return;
}