aom/aom_dsp/aom_convolve.c

855 строки
35 KiB
C

/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <string.h>
#include "./aom_config.h"
#include "./aom_dsp_rtcd.h"
#include "aom/aom_integer.h"
#include "aom_dsp/aom_convolve.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/aom_filter.h"
#include "aom_ports/mem.h"
static void convolve_horiz(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const InterpKernel *x_filters, int x0_q4,
int x_step_q4, int w, int h) {
int x, y;
src -= SUBPEL_TAPS / 2 - 1;
for (y = 0; y < h; ++y) {
int x_q4 = x0_q4;
for (x = 0; x < w; ++x) {
const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK];
int k, sum = 0;
for (k = 0; k < SUBPEL_TAPS; ++k) sum += src_x[k] * x_filter[k];
dst[x] = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
x_q4 += x_step_q4;
}
src += src_stride;
dst += dst_stride;
}
}
static void convolve_avg_horiz(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const InterpKernel *x_filters, int x0_q4,
int x_step_q4, int w, int h) {
int x, y;
src -= SUBPEL_TAPS / 2 - 1;
for (y = 0; y < h; ++y) {
int x_q4 = x0_q4;
for (x = 0; x < w; ++x) {
const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK];
int k, sum = 0;
for (k = 0; k < SUBPEL_TAPS; ++k) sum += src_x[k] * x_filter[k];
dst[x] = ROUND_POWER_OF_TWO(
dst[x] + clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS)), 1);
x_q4 += x_step_q4;
}
src += src_stride;
dst += dst_stride;
}
}
static void convolve_vert(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const InterpKernel *y_filters, int y0_q4,
int y_step_q4, int w, int h) {
int x, y;
src -= src_stride * (SUBPEL_TAPS / 2 - 1);
for (x = 0; x < w; ++x) {
int y_q4 = y0_q4;
for (y = 0; y < h; ++y) {
const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
int k, sum = 0;
for (k = 0; k < SUBPEL_TAPS; ++k)
sum += src_y[k * src_stride] * y_filter[k];
dst[y * dst_stride] = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
y_q4 += y_step_q4;
}
++src;
++dst;
}
}
static void convolve_avg_vert(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const InterpKernel *y_filters, int y0_q4,
int y_step_q4, int w, int h) {
int x, y;
src -= src_stride * (SUBPEL_TAPS / 2 - 1);
for (x = 0; x < w; ++x) {
int y_q4 = y0_q4;
for (y = 0; y < h; ++y) {
const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
int k, sum = 0;
for (k = 0; k < SUBPEL_TAPS; ++k)
sum += src_y[k * src_stride] * y_filter[k];
dst[y * dst_stride] = ROUND_POWER_OF_TWO(
dst[y * dst_stride] +
clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS)),
1);
y_q4 += y_step_q4;
}
++src;
++dst;
}
}
static void convolve(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
ptrdiff_t dst_stride, const InterpKernel *const x_filters,
int x0_q4, int x_step_q4,
const InterpKernel *const y_filters, int y0_q4,
int y_step_q4, int w, int h) {
// Note: Fixed size intermediate buffer, temp, places limits on parameters.
// 2d filtering proceeds in 2 steps:
// (1) Interpolate horizontally into an intermediate buffer, temp.
// (2) Interpolate temp vertically to derive the sub-pixel result.
// Deriving the maximum number of rows in the temp buffer (135):
// --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative).
// --Largest block size is 64x64 pixels.
// --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the
// original frame (in 1/16th pixel units).
// --Must round-up because block may be located at sub-pixel position.
// --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails.
// --((64 - 1) * 32 + 15) >> 4 + 8 = 135.
uint8_t temp[MAX_EXT_SIZE * MAX_SB_SIZE];
int intermediate_height =
(((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS;
assert(w <= MAX_SB_SIZE);
assert(h <= MAX_SB_SIZE);
assert(y_step_q4 <= 32);
assert(x_step_q4 <= 32);
convolve_horiz(src - src_stride * (SUBPEL_TAPS / 2 - 1), src_stride, temp,
MAX_SB_SIZE, x_filters, x0_q4, x_step_q4, w,
intermediate_height);
convolve_vert(temp + MAX_SB_SIZE * (SUBPEL_TAPS / 2 - 1), MAX_SB_SIZE, dst,
dst_stride, y_filters, y0_q4, y_step_q4, w, h);
}
static const InterpKernel *get_filter_base(const int16_t *filter) {
// NOTE: This assumes that the filter table is 256-byte aligned.
// TODO(agrange) Modify to make independent of table alignment.
return (const InterpKernel *)(((intptr_t)filter) & ~((intptr_t)0xFF));
}
static int get_filter_offset(const int16_t *f, const InterpKernel *base) {
return (int)((const InterpKernel *)(intptr_t)f - base);
}
void aom_convolve8_horiz_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4, int w,
int h) {
const InterpKernel *const filters_x = get_filter_base(filter_x);
const int x0_q4 = get_filter_offset(filter_x, filters_x);
(void)filter_y;
(void)y_step_q4;
convolve_horiz(src, src_stride, dst, dst_stride, filters_x, x0_q4, x_step_q4,
w, h);
}
void aom_convolve8_avg_horiz_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4, int w,
int h) {
const InterpKernel *const filters_x = get_filter_base(filter_x);
const int x0_q4 = get_filter_offset(filter_x, filters_x);
(void)filter_y;
(void)y_step_q4;
convolve_avg_horiz(src, src_stride, dst, dst_stride, filters_x, x0_q4,
x_step_q4, w, h);
}
void aom_convolve8_vert_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4, int w,
int h) {
const InterpKernel *const filters_y = get_filter_base(filter_y);
const int y0_q4 = get_filter_offset(filter_y, filters_y);
(void)filter_x;
(void)x_step_q4;
convolve_vert(src, src_stride, dst, dst_stride, filters_y, y0_q4, y_step_q4,
w, h);
}
void aom_convolve8_avg_vert_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4, int w,
int h) {
const InterpKernel *const filters_y = get_filter_base(filter_y);
const int y0_q4 = get_filter_offset(filter_y, filters_y);
(void)filter_x;
(void)x_step_q4;
convolve_avg_vert(src, src_stride, dst, dst_stride, filters_y, y0_q4,
y_step_q4, w, h);
}
void aom_convolve8_c(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
ptrdiff_t dst_stride, const int16_t *filter_x,
int x_step_q4, const int16_t *filter_y, int y_step_q4,
int w, int h) {
const InterpKernel *const filters_x = get_filter_base(filter_x);
const int x0_q4 = get_filter_offset(filter_x, filters_x);
const InterpKernel *const filters_y = get_filter_base(filter_y);
const int y0_q4 = get_filter_offset(filter_y, filters_y);
convolve(src, src_stride, dst, dst_stride, filters_x, x0_q4, x_step_q4,
filters_y, y0_q4, y_step_q4, w, h);
}
void aom_convolve8_avg_c(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
ptrdiff_t dst_stride, const int16_t *filter_x,
int x_step_q4, const int16_t *filter_y, int y_step_q4,
int w, int h) {
/* Fixed size intermediate buffer places limits on parameters. */
DECLARE_ALIGNED(16, uint8_t, temp[MAX_SB_SIZE * MAX_SB_SIZE]);
assert(w <= MAX_SB_SIZE);
assert(h <= MAX_SB_SIZE);
aom_convolve8_c(src, src_stride, temp, MAX_SB_SIZE, filter_x, x_step_q4,
filter_y, y_step_q4, w, h);
aom_convolve_avg_c(temp, MAX_SB_SIZE, dst, dst_stride, NULL, 0, NULL, 0, w,
h);
}
void aom_convolve_copy_c(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
ptrdiff_t dst_stride, const int16_t *filter_x,
int filter_x_stride, const int16_t *filter_y,
int filter_y_stride, int w, int h) {
int r;
(void)filter_x;
(void)filter_x_stride;
(void)filter_y;
(void)filter_y_stride;
for (r = h; r > 0; --r) {
memcpy(dst, src, w);
src += src_stride;
dst += dst_stride;
}
}
void aom_convolve_avg_c(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
ptrdiff_t dst_stride, const int16_t *filter_x,
int filter_x_stride, const int16_t *filter_y,
int filter_y_stride, int w, int h) {
int x, y;
(void)filter_x;
(void)filter_x_stride;
(void)filter_y;
(void)filter_y_stride;
for (y = 0; y < h; ++y) {
for (x = 0; x < w; ++x) dst[x] = ROUND_POWER_OF_TWO(dst[x] + src[x], 1);
src += src_stride;
dst += dst_stride;
}
}
void aom_scaled_horiz_c(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
ptrdiff_t dst_stride, const int16_t *filter_x,
int x_step_q4, const int16_t *filter_y, int y_step_q4,
int w, int h) {
aom_convolve8_horiz_c(src, src_stride, dst, dst_stride, filter_x, x_step_q4,
filter_y, y_step_q4, w, h);
}
void aom_scaled_vert_c(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
ptrdiff_t dst_stride, const int16_t *filter_x,
int x_step_q4, const int16_t *filter_y, int y_step_q4,
int w, int h) {
aom_convolve8_vert_c(src, src_stride, dst, dst_stride, filter_x, x_step_q4,
filter_y, y_step_q4, w, h);
}
void aom_scaled_2d_c(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
ptrdiff_t dst_stride, const int16_t *filter_x,
int x_step_q4, const int16_t *filter_y, int y_step_q4,
int w, int h) {
aom_convolve8_c(src, src_stride, dst, dst_stride, filter_x, x_step_q4,
filter_y, y_step_q4, w, h);
}
void aom_scaled_avg_horiz_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4, int w,
int h) {
aom_convolve8_avg_horiz_c(src, src_stride, dst, dst_stride, filter_x,
x_step_q4, filter_y, y_step_q4, w, h);
}
void aom_scaled_avg_vert_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4, int w,
int h) {
aom_convolve8_avg_vert_c(src, src_stride, dst, dst_stride, filter_x,
x_step_q4, filter_y, y_step_q4, w, h);
}
void aom_scaled_avg_2d_c(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
ptrdiff_t dst_stride, const int16_t *filter_x,
int x_step_q4, const int16_t *filter_y, int y_step_q4,
int w, int h) {
aom_convolve8_avg_c(src, src_stride, dst, dst_stride, filter_x, x_step_q4,
filter_y, y_step_q4, w, h);
}
#if CONFIG_LOOP_RESTORATION
static void convolve_add_src_horiz(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const InterpKernel *x_filters, int x0_q4,
int x_step_q4, int w, int h) {
int x, y;
src -= SUBPEL_TAPS / 2 - 1;
for (y = 0; y < h; ++y) {
int x_q4 = x0_q4;
for (x = 0; x < w; ++x) {
const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK];
int k, sum = 0;
for (k = 0; k < SUBPEL_TAPS; ++k) sum += src_x[k] * x_filter[k];
dst[x] = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS) +
src_x[SUBPEL_TAPS / 2 - 1]);
x_q4 += x_step_q4;
}
src += src_stride;
dst += dst_stride;
}
}
static void convolve_add_src_vert(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const InterpKernel *y_filters, int y0_q4,
int y_step_q4, int w, int h) {
int x, y;
src -= src_stride * (SUBPEL_TAPS / 2 - 1);
for (x = 0; x < w; ++x) {
int y_q4 = y0_q4;
for (y = 0; y < h; ++y) {
const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
int k, sum = 0;
for (k = 0; k < SUBPEL_TAPS; ++k)
sum += src_y[k * src_stride] * y_filter[k];
dst[y * dst_stride] =
clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS) +
src_y[(SUBPEL_TAPS / 2 - 1) * src_stride]);
y_q4 += y_step_q4;
}
++src;
++dst;
}
}
static void convolve_add_src(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const InterpKernel *const x_filters, int x0_q4,
int x_step_q4, const InterpKernel *const y_filters,
int y0_q4, int y_step_q4, int w, int h) {
uint8_t temp[MAX_EXT_SIZE * MAX_SB_SIZE];
int intermediate_height =
(((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS;
assert(w <= MAX_SB_SIZE);
assert(h <= MAX_SB_SIZE);
assert(y_step_q4 <= 32);
assert(x_step_q4 <= 32);
convolve_add_src_horiz(src - src_stride * (SUBPEL_TAPS / 2 - 1), src_stride,
temp, MAX_SB_SIZE, x_filters, x0_q4, x_step_q4, w,
intermediate_height);
convolve_add_src_vert(temp + MAX_SB_SIZE * (SUBPEL_TAPS / 2 - 1), MAX_SB_SIZE,
dst, dst_stride, y_filters, y0_q4, y_step_q4, w, h);
}
void aom_convolve8_add_src_horiz_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4,
int w, int h) {
const InterpKernel *const filters_x = get_filter_base(filter_x);
const int x0_q4 = get_filter_offset(filter_x, filters_x);
(void)filter_y;
(void)y_step_q4;
convolve_add_src_horiz(src, src_stride, dst, dst_stride, filters_x, x0_q4,
x_step_q4, w, h);
}
void aom_convolve8_add_src_vert_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4, int w,
int h) {
const InterpKernel *const filters_y = get_filter_base(filter_y);
const int y0_q4 = get_filter_offset(filter_y, filters_y);
(void)filter_x;
(void)x_step_q4;
convolve_add_src_vert(src, src_stride, dst, dst_stride, filters_y, y0_q4,
y_step_q4, w, h);
}
void aom_convolve8_add_src_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4, int w,
int h) {
const InterpKernel *const filters_x = get_filter_base(filter_x);
const int x0_q4 = get_filter_offset(filter_x, filters_x);
const InterpKernel *const filters_y = get_filter_base(filter_y);
const int y0_q4 = get_filter_offset(filter_y, filters_y);
convolve_add_src(src, src_stride, dst, dst_stride, filters_x, x0_q4,
x_step_q4, filters_y, y0_q4, y_step_q4, w, h);
}
#endif // CONFIG_LOOP_RESTORATION
#if CONFIG_HIGHBITDEPTH
static void highbd_convolve_horiz(const uint8_t *src8, ptrdiff_t src_stride,
uint8_t *dst8, ptrdiff_t dst_stride,
const InterpKernel *x_filters, int x0_q4,
int x_step_q4, int w, int h, int bd) {
int x, y;
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
src -= SUBPEL_TAPS / 2 - 1;
for (y = 0; y < h; ++y) {
int x_q4 = x0_q4;
for (x = 0; x < w; ++x) {
const uint16_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK];
int k, sum = 0;
for (k = 0; k < SUBPEL_TAPS; ++k) sum += src_x[k] * x_filter[k];
dst[x] = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd);
x_q4 += x_step_q4;
}
src += src_stride;
dst += dst_stride;
}
}
static void highbd_convolve_avg_horiz(const uint8_t *src8, ptrdiff_t src_stride,
uint8_t *dst8, ptrdiff_t dst_stride,
const InterpKernel *x_filters, int x0_q4,
int x_step_q4, int w, int h, int bd) {
int x, y;
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
src -= SUBPEL_TAPS / 2 - 1;
for (y = 0; y < h; ++y) {
int x_q4 = x0_q4;
for (x = 0; x < w; ++x) {
const uint16_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK];
int k, sum = 0;
for (k = 0; k < SUBPEL_TAPS; ++k) sum += src_x[k] * x_filter[k];
dst[x] = ROUND_POWER_OF_TWO(
dst[x] + clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd),
1);
x_q4 += x_step_q4;
}
src += src_stride;
dst += dst_stride;
}
}
static void highbd_convolve_vert(const uint8_t *src8, ptrdiff_t src_stride,
uint8_t *dst8, ptrdiff_t dst_stride,
const InterpKernel *y_filters, int y0_q4,
int y_step_q4, int w, int h, int bd) {
int x, y;
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
src -= src_stride * (SUBPEL_TAPS / 2 - 1);
for (x = 0; x < w; ++x) {
int y_q4 = y0_q4;
for (y = 0; y < h; ++y) {
const uint16_t *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
int k, sum = 0;
for (k = 0; k < SUBPEL_TAPS; ++k)
sum += src_y[k * src_stride] * y_filter[k];
dst[y * dst_stride] =
clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd);
y_q4 += y_step_q4;
}
++src;
++dst;
}
}
static void highbd_convolve_avg_vert(const uint8_t *src8, ptrdiff_t src_stride,
uint8_t *dst8, ptrdiff_t dst_stride,
const InterpKernel *y_filters, int y0_q4,
int y_step_q4, int w, int h, int bd) {
int x, y;
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
src -= src_stride * (SUBPEL_TAPS / 2 - 1);
for (x = 0; x < w; ++x) {
int y_q4 = y0_q4;
for (y = 0; y < h; ++y) {
const uint16_t *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
int k, sum = 0;
for (k = 0; k < SUBPEL_TAPS; ++k)
sum += src_y[k * src_stride] * y_filter[k];
dst[y * dst_stride] = ROUND_POWER_OF_TWO(
dst[y * dst_stride] +
clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd),
1);
y_q4 += y_step_q4;
}
++src;
++dst;
}
}
static void highbd_convolve(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const InterpKernel *const x_filters, int x0_q4,
int x_step_q4, const InterpKernel *const y_filters,
int y0_q4, int y_step_q4, int w, int h, int bd) {
// Note: Fixed size intermediate buffer, temp, places limits on parameters.
// 2d filtering proceeds in 2 steps:
// (1) Interpolate horizontally into an intermediate buffer, temp.
// (2) Interpolate temp vertically to derive the sub-pixel result.
// Deriving the maximum number of rows in the temp buffer (135):
// --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative).
// --Largest block size is 64x64 pixels.
// --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the
// original frame (in 1/16th pixel units).
// --Must round-up because block may be located at sub-pixel position.
// --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails.
// --((64 - 1) * 32 + 15) >> 4 + 8 = 135.
uint16_t temp[MAX_EXT_SIZE * MAX_SB_SIZE];
int intermediate_height =
(((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS;
assert(w <= MAX_SB_SIZE);
assert(h <= MAX_SB_SIZE);
assert(y_step_q4 <= 32);
assert(x_step_q4 <= 32);
highbd_convolve_horiz(src - src_stride * (SUBPEL_TAPS / 2 - 1), src_stride,
CONVERT_TO_BYTEPTR(temp), MAX_SB_SIZE, x_filters, x0_q4,
x_step_q4, w, intermediate_height, bd);
highbd_convolve_vert(
CONVERT_TO_BYTEPTR(temp) + MAX_SB_SIZE * (SUBPEL_TAPS / 2 - 1),
MAX_SB_SIZE, dst, dst_stride, y_filters, y0_q4, y_step_q4, w, h, bd);
}
void aom_highbd_convolve8_horiz_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4, int w,
int h, int bd) {
const InterpKernel *const filters_x = get_filter_base(filter_x);
const int x0_q4 = get_filter_offset(filter_x, filters_x);
(void)filter_y;
(void)y_step_q4;
highbd_convolve_horiz(src, src_stride, dst, dst_stride, filters_x, x0_q4,
x_step_q4, w, h, bd);
}
void aom_highbd_convolve8_avg_horiz_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4,
int w, int h, int bd) {
const InterpKernel *const filters_x = get_filter_base(filter_x);
const int x0_q4 = get_filter_offset(filter_x, filters_x);
(void)filter_y;
(void)y_step_q4;
highbd_convolve_avg_horiz(src, src_stride, dst, dst_stride, filters_x, x0_q4,
x_step_q4, w, h, bd);
}
void aom_highbd_convolve8_vert_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4, int w,
int h, int bd) {
const InterpKernel *const filters_y = get_filter_base(filter_y);
const int y0_q4 = get_filter_offset(filter_y, filters_y);
(void)filter_x;
(void)x_step_q4;
highbd_convolve_vert(src, src_stride, dst, dst_stride, filters_y, y0_q4,
y_step_q4, w, h, bd);
}
void aom_highbd_convolve8_avg_vert_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4,
int w, int h, int bd) {
const InterpKernel *const filters_y = get_filter_base(filter_y);
const int y0_q4 = get_filter_offset(filter_y, filters_y);
(void)filter_x;
(void)x_step_q4;
highbd_convolve_avg_vert(src, src_stride, dst, dst_stride, filters_y, y0_q4,
y_step_q4, w, h, bd);
}
void aom_highbd_convolve8_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4, int w,
int h, int bd) {
const InterpKernel *const filters_x = get_filter_base(filter_x);
const int x0_q4 = get_filter_offset(filter_x, filters_x);
const InterpKernel *const filters_y = get_filter_base(filter_y);
const int y0_q4 = get_filter_offset(filter_y, filters_y);
highbd_convolve(src, src_stride, dst, dst_stride, filters_x, x0_q4, x_step_q4,
filters_y, y0_q4, y_step_q4, w, h, bd);
}
void aom_highbd_convolve8_avg_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4, int w,
int h, int bd) {
// Fixed size intermediate buffer places limits on parameters.
DECLARE_ALIGNED(16, uint16_t, temp[MAX_SB_SIZE * MAX_SB_SIZE]);
assert(w <= MAX_SB_SIZE);
assert(h <= MAX_SB_SIZE);
aom_highbd_convolve8_c(src, src_stride, CONVERT_TO_BYTEPTR(temp), MAX_SB_SIZE,
filter_x, x_step_q4, filter_y, y_step_q4, w, h, bd);
aom_highbd_convolve_avg_c(CONVERT_TO_BYTEPTR(temp), MAX_SB_SIZE, dst,
dst_stride, NULL, 0, NULL, 0, w, h, bd);
}
void aom_highbd_convolve_copy_c(const uint8_t *src8, ptrdiff_t src_stride,
uint8_t *dst8, ptrdiff_t dst_stride,
const int16_t *filter_x, int filter_x_stride,
const int16_t *filter_y, int filter_y_stride,
int w, int h, int bd) {
int r;
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
(void)filter_x;
(void)filter_y;
(void)filter_x_stride;
(void)filter_y_stride;
(void)bd;
for (r = h; r > 0; --r) {
memcpy(dst, src, w * sizeof(uint16_t));
src += src_stride;
dst += dst_stride;
}
}
void aom_highbd_convolve_avg_c(const uint8_t *src8, ptrdiff_t src_stride,
uint8_t *dst8, ptrdiff_t dst_stride,
const int16_t *filter_x, int filter_x_stride,
const int16_t *filter_y, int filter_y_stride,
int w, int h, int bd) {
int x, y;
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
(void)filter_x;
(void)filter_y;
(void)filter_x_stride;
(void)filter_y_stride;
(void)bd;
for (y = 0; y < h; ++y) {
for (x = 0; x < w; ++x) {
dst[x] = ROUND_POWER_OF_TWO(dst[x] + src[x], 1);
}
src += src_stride;
dst += dst_stride;
}
}
#if CONFIG_LOOP_RESTORATION
static void highbd_convolve_add_src_horiz(const uint8_t *src8,
ptrdiff_t src_stride, uint8_t *dst8,
ptrdiff_t dst_stride,
const InterpKernel *x_filters,
int x0_q4, int x_step_q4, int w,
int h, int bd) {
int x, y;
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
src -= SUBPEL_TAPS / 2 - 1;
for (y = 0; y < h; ++y) {
int x_q4 = x0_q4;
for (x = 0; x < w; ++x) {
const uint16_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK];
int k, sum = 0;
for (k = 0; k < SUBPEL_TAPS; ++k) sum += src_x[k] * x_filter[k];
dst[x] = clip_pixel_highbd(
ROUND_POWER_OF_TWO(sum, FILTER_BITS) + src_x[SUBPEL_TAPS / 2 - 1],
bd);
x_q4 += x_step_q4;
}
src += src_stride;
dst += dst_stride;
}
}
static void highbd_convolve_add_src_vert(const uint8_t *src8,
ptrdiff_t src_stride, uint8_t *dst8,
ptrdiff_t dst_stride,
const InterpKernel *y_filters,
int y0_q4, int y_step_q4, int w, int h,
int bd) {
int x, y;
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
src -= src_stride * (SUBPEL_TAPS / 2 - 1);
for (x = 0; x < w; ++x) {
int y_q4 = y0_q4;
for (y = 0; y < h; ++y) {
const uint16_t *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
int k, sum = 0;
for (k = 0; k < SUBPEL_TAPS; ++k)
sum += src_y[k * src_stride] * y_filter[k];
dst[y * dst_stride] =
clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS) +
src_y[(SUBPEL_TAPS / 2 - 1) * src_stride],
bd);
y_q4 += y_step_q4;
}
++src;
++dst;
}
}
static void highbd_convolve_add_src(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const InterpKernel *const x_filters,
int x0_q4, int x_step_q4,
const InterpKernel *const y_filters,
int y0_q4, int y_step_q4, int w, int h,
int bd) {
// Note: Fixed size intermediate buffer, temp, places limits on parameters.
// 2d filtering proceeds in 2 steps:
// (1) Interpolate horizontally into an intermediate buffer, temp.
// (2) Interpolate temp vertically to derive the sub-pixel result.
// Deriving the maximum number of rows in the temp buffer (135):
// --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative).
// --Largest block size is 64x64 pixels.
// --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the
// original frame (in 1/16th pixel units).
// --Must round-up because block may be located at sub-pixel position.
// --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails.
// --((64 - 1) * 32 + 15) >> 4 + 8 = 135.
uint16_t temp[MAX_EXT_SIZE * MAX_SB_SIZE];
int intermediate_height =
(((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS;
assert(w <= MAX_SB_SIZE);
assert(h <= MAX_SB_SIZE);
assert(y_step_q4 <= 32);
assert(x_step_q4 <= 32);
highbd_convolve_add_src_horiz(src - src_stride * (SUBPEL_TAPS / 2 - 1),
src_stride, CONVERT_TO_BYTEPTR(temp),
MAX_SB_SIZE, x_filters, x0_q4, x_step_q4, w,
intermediate_height, bd);
highbd_convolve_add_src_vert(
CONVERT_TO_BYTEPTR(temp) + MAX_SB_SIZE * (SUBPEL_TAPS / 2 - 1),
MAX_SB_SIZE, dst, dst_stride, y_filters, y0_q4, y_step_q4, w, h, bd);
}
void aom_highbd_convolve8_add_src_horiz_c(
const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
ptrdiff_t dst_stride, const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4, int w, int h, int bd) {
const InterpKernel *const filters_x = get_filter_base(filter_x);
const int x0_q4 = get_filter_offset(filter_x, filters_x);
(void)filter_y;
(void)y_step_q4;
highbd_convolve_add_src_horiz(src, src_stride, dst, dst_stride, filters_x,
x0_q4, x_step_q4, w, h, bd);
}
void aom_highbd_convolve8_add_src_vert_c(const uint8_t *src,
ptrdiff_t src_stride, uint8_t *dst,
ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4,
int w, int h, int bd) {
const InterpKernel *const filters_y = get_filter_base(filter_y);
const int y0_q4 = get_filter_offset(filter_y, filters_y);
(void)filter_x;
(void)x_step_q4;
highbd_convolve_add_src_vert(src, src_stride, dst, dst_stride, filters_y,
y0_q4, y_step_q4, w, h, bd);
}
void aom_highbd_convolve8_add_src_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4,
int w, int h, int bd) {
const InterpKernel *const filters_x = get_filter_base(filter_x);
const int x0_q4 = get_filter_offset(filter_x, filters_x);
const InterpKernel *const filters_y = get_filter_base(filter_y);
const int y0_q4 = get_filter_offset(filter_y, filters_y);
highbd_convolve_add_src(src, src_stride, dst, dst_stride, filters_x, x0_q4,
x_step_q4, filters_y, y0_q4, y_step_q4, w, h, bd);
}
#endif // CONFIG_LOOP_RESTORATION
#endif // CONFIG_HIGHBITDEPTH